Genotypic and molecular characterization of a moderately thermophilic cyanobacterium, Gloeocapsa sp. strain BRSZ

Sasiprapa Samsri , Tanwalee Deprom , Chananwat Kortheerakul , Sophon Sirisattha , Stephen B. Pointing , Hakuto Kageyama , Rungaroon Waditee-Sirisattha

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100226

PDF (5434KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100226 DOI: 10.1016/j.engmic.2025.100226
Original Research Article
research-article

Genotypic and molecular characterization of a moderately thermophilic cyanobacterium, Gloeocapsa sp. strain BRSZ

Author information +
History +
PDF (5434KB)

Abstract

A unicellular-colonial cyanobacterium, designated “BRSZ,” was isolated from a neutral-alkaline hot spring in Thailand. Morphological characterization revealed distinctive features consistent with those of the genus Gloeocapsa. Physiological assessments demonstrated that BRSZ is a moderately thermophilic and halotolerant cyanobacterium with the potential for chemoheterotrophic growth in dark conditions. Molecular phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences placed BRSZ within a well-defined Gloeocapsa clade, a finding corroborated by 16S-23S internal transcribed spacer (ITS) rRNA secondary structure analyses. Genome comparisons, including average nucleotide identity (ANI), genome-to-genome distance (GGD), and digital DNA-DNA hybridization (dDDH), between strain BRSZ and closely related taxa showed an ANI value of 95.45 %, near the lower boundary of the species delineation threshold (95-96 %). A GGD of 0.0374 (>0.0258) and dDDH of 69 % (<70 %) further supported genomic differentiation. Genome-based analysis revealed a mycosporine-like amino acid biosynthetic gene cluster likely involved in sunscreen compound production. Cultivation-based production of a UV-absorbing compound confirmed the functional relevance of this gene cluster. These findings expand the described diversity within the Gloeocapsa complex and enhance our understanding of the taxonomy of this group. In addition, they underscored the importance of hot spring environments as sources of novel extremophiles.

Keywords

Polyphasic taxonomy / Unicellular cyanobacteria / Gloeocapsa / Extremophile / Thermophile / Heterotrophy / Hot spring

Cite this article

Download citation ▾
Sasiprapa Samsri, Tanwalee Deprom, Chananwat Kortheerakul, Sophon Sirisattha, Stephen B. Pointing, Hakuto Kageyama, Rungaroon Waditee-Sirisattha. Genotypic and molecular characterization of a moderately thermophilic cyanobacterium, Gloeocapsa sp. strain BRSZ. Engineering Microbiology, 2025, 5(3): 100226 DOI:10.1016/j.engmic.2025.100226

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

The data supporting the findings of this study are included in this published article as well as in the Supplementary Materials available online.

Declaration of Competing Interes

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Sasiprapa Samsri: Writing - original draft, Formal analysis. Tanwalee Deprom: Investigation. Chananwat Kortheerakul: Investigation. Sophon Sirisattha: Investigation. Stephen B. Pointing: Writing - review & editing, Funding acquisition, Conceptualization. Hakuto Kageyama: Writing - review & editing, Funding acquisition, Conceptualization. Rungaroon Waditee-Sirisattha: Writing - review & editing, Funding acquisition, Conceptualization.

Acknowledgments

We thank our lab members for their technical support. This work was supported in part by the following research grants: Thailand Science research and Innovation fund Chulalongkorn University (FOOD_FF_68_121_2300_022) (to RWS), the Singapore Ministry of Education MOE-T2EP30123-0007 (to RWS & SBP), the Research Institute of Meijo University (to HK), and Postdoctoral Fellowship, the Second Century Fund (C2F), Chulalongkorn University (to SS).

References

[1]

V. Malavasi, S. Soru, G. Cao, Extremophile microalgae: the potential for biotechno- logical application, J. Phycol. 56 (2020) 559-573, doi:10.1111/jpy.12965.

[2]

C.F. Demoulin, Y.J. Lara, L. Cornet, C. Francois, D. Baurain, A. Wilmotte, E.J. Javaux, Cyanobacteria evolution: insight from the fossil record, Free Radic. Biol. Med. 140 (2019) 206-223, doi:10.1016/j.freeradbiomed.2019.05.007.

[3]

H. Bolhuis, M.S. Cretoiu, L.J. Stal, Molecular ecology of microbial mats, FEMS Mi- crobiol. Ecol. 90 (2014) 335-350, doi:10.1111/1574-6941.12408.

[4]

M. Hagemann, Molecular biology of cyanobacterial salt acclimation, FEMS Micro- biol. Rev. 35 (2011) 87-123, doi:10.1111/j.1574-6976.2010.00234.x.

[5]

D.N. Thomas, Photosynthetic microbes in freezing deserts, Trends. Microbiol. 13 (2005) 87-88, doi:10.1016/j.tim.2004.11.002.

[6]

H. Kageyama, R. Waditee-Sirisattha, Halotolerance mechanisms in salt ‑tolerant cyanobacteria, Adv. Appl. Microbiol. 124 (2023) 55-117, doi:10.1016/bs.aambs.2023.07.003.

[7]

B. Van den Burg, Extremophiles as a source for novel enzymes, Curr. Opin. Microbiol. 6 (2003) 213-218, doi:10.1016/s1369-5274(03)00060-2.

[8]

B.A. Whitton, Ecology of Cyanobacteria II: Their Diversity in Space and Time, Springer, 2012.

[9]

D. Pedersen, S.R. Miller, Photosynthetic temperature adaptation during niche diver- sification of the thermophilic cyanobacterium Synechococcus A/B clade, ISME 11 (2017) 1053-1057, doi:10.1038/ismej.2016.173.

[10]

D. Purcell, U. Sompong, L.C. Yim, T.G. Barraclough, Y. Peerapornpisal, S.B. Pointing, The effects of temperature, pH and sulphide on the community structure of hyper- thermophilic streamers in hot springs of northern Thailand, FEMS Microbiol. Ecol. 60 (2007) 456-466, doi:10.1111/j.1574-6941.2007.00302.x.

[11]

K.M. Fecteau, E.S. Boyd, M.R. Lindsay, M.J. Amenabar, K.J. Robinson, R.V. Debes, E. L. Shock, Cyanobacteria and algae meet at the limits of their habitat ranges in moderately acidic hot springs, J. Geophys. Res.-Biogeosci. 127 (2021), doi:10.1029/2021jg006446.

[12]

A. Klanchui, S. Cheevadhanarak, P. Prommeenate, A. Meechai, Exploring com- ponents of the CO(2)-concentrating mechanism in alkaliphilic cyanobacteria through genome-based analysis, Comput. Struct. Biotechnol. J. 15 (2017) 340-350, doi:10.1016/j.csbj.2017.05.001.

[13]

W. J.T.W.D. Grant, T.A. Herbert, G.A. Codd, The Alkaline Saline Environment Mi- crobes in Extreme Environments, Academic Press, London, 1986.

[14]

S. Amarouche-Yala, A. Benouadah, A. El Ouahab Bentabet, P. Lopez-Garcia, Mor- phological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs, Extremophiles 18 (2014) 1035-1047, doi:10.1007/s00792-014-0680-7.

[15]

N. Keshari, Y. Zhao, S.K. Das, T. Zhu, X. Lu, Cyanobacterial community structure and isolates from representative hot springs of Yunnan Province, China using an integrative approach, Front. Microbiol. 13 (2022) 872598, doi:10.3389/fmicb.2022.872598.

[16]

M. Yilmaz CankiliÇ, Determination of cyanobacterial composition of eynal (Sİ mav) Hot Spring in KÜtahya, Turkey, Appl. Ecol. Environ. Res. 14 (2016) 607-622, doi:10.15666/aeer/1404_607622.

[17]

O. Strunecky, K. Kopejtka, F. Goecke, J. Tomasch, J. Lukavsky, A. Neori, S. Kahl, D.H. Pieper, P. Pilarski, D. Kaftan, M. Koblizek, High diversity of ther- mophilic cyanobacteria in Rupite hot spring identified by microscopy, cultiva- tion, single-cell PCR and amplicon sequencing, Extremophiles 23 (2019) 35-48, doi:10.1007/s00792-018-1058-z.

[18]

S.F. Ikram, V. Uniyal, D. Kumar, Changes in species composition of cyanobacte- rial and microalgal communities along a temperature gradient in Tapovan Hot Spring, Garhwal Himalaya, Uttarakhand, India, Aquat. Ecol. 56 (2021) 573-584, doi:10.1007/s10452-021-09921-x.

[19]

J.N. Martinez, A. Nishihara, M. Lichtenberg, E. Trampe, S. Kawai, M. Tank, M. Kuhl, S. Hanada, V. Thiel, Vertical distribution and diversity of phototrophic bacteria within a hot spring microbial mat (Nakabusa Hot Springs, Japan), Microbes Env- iron. 34 (2019) 374-387, doi:10.1264/jsme2.ME19047.

[20]

G.B. McGregor, J.P. Rasmussen, Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation, FEMS Microbiol. Ecol. 63 (2008) 23-35, doi:10.1111/j.1574-6941.2007.00405.x.

[21]

C.E. Sharp, A.L. Brady, G.H. Sharp, S.E. Grasby, M.B. Stott, P.F. Dunfield, Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments, ISME 8 (2014) 1166-1174, doi:10.1038/ismej.2013.237.

[22]

S.M. Boomer, K.L. Noll, G.G. Geesey, B.E. Dutton, Formation of multilay- ered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming, Appl. Environ. Microbiol. 75 (2009) 2464-2475, doi:10.1128/AEM.01802-08.

[23]

A.C. Bennett, S.K. Murugapiran, T.L. Hamilton, Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park, Environ. Microbiol. Rep. 12 (2020) 503-513, doi:10.1111/1758-2229.12863.

[24]

L. Brenes-Guillen, D. Vidaurre-Barahona, S. Morales, M. Mora-Lopez, A. Sittenfeld, L. Uribe-Lorio, Novel cyanobacterial diversity found in Costa Rican thermal springs associated with Rincon de la Vieja and Miravalles volcanoes: a polyphasic approach, J. Phycol. 57 (2021) 183-198, doi:10.1111/jpy.13077.

[25]

M.C. Lau, J.C. Aitchison, S.B. Pointing, Bacterial community composition in ther- mophilic microbial mats from five hot springs in central Tibet, Extremophiles 13 (2009) 139-149, doi:10.1007/s00792-008-0205-3.

[26]

P.-h. Subtavewung, M. Raksaskulwong, J. Tulyatid, The char- acteristic and classification of hot springs in Thailand, in: Proceedings World Geothermal Congress, 2005, pp. 1-7. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0845.pdf.

[27]

J. Hongmei, J.C. Aitchison, D.C. Lacap, Y. Peerapornpisal, U. Sompong, S.B. Point- ing, Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand, Extremophiles 9 (2005) 325-332, doi:10.1007/s00792-005-0456-1.

[28]

U. Sompong, P.R. Hawkins, C. Besley, Y. Peerapornpisal, The distri- bution of cyanobacteria across physical and chemical gradients in hot springs in northern Thailand, FEMS Microbiol. Ecol. 52 (2005) 365-376, doi:10.1016/j.femsec.2004.12.007.

[29]

U. Sompong, R.W. Castenholz, S. Anuntalabhochai, Y. Peeraporn- pisal, Genetical diversity of mastigocladus in Ranong hot spring, Southern Part of Thailand, Chiang Mai J. Sci. 33 (2006) 363-370

[30]

R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic assign- ments, strain histories, and properties of pure cultures of Cyanobacteria, Microbiol 111 (1979) 1-61, doi:10.1099/00221287-111-1-1.

[31]

M. Debnath, N.C. Mandal, S. Ray, The study of cyanobacterial flora from geothermal springs of Bakreswar, West Bengal, India, Algae 24 (2009) 185-193, doi:10.4490/al- gae.2009.24.4.185.

[32]

O. Adar, R.N. Kaplan-Levy, M. Schonhölz, B. Ronen, G. Banet, Optimal tempera- ture and salinity for growth of two Cyanobacteria from Hammat Gader hot springs, Negev, Dead Sea Arava Stud. 9 (2017) 128-136.

[33]

P. Jung, A. Azua-Bustos, C. Gonzalez-Silva, T. Mikhailyuk, D. Zabicki, A. Holzinger, M. Lakatos, B. Budel, Emendation of the coccoid Cyanobacterial Genus Gloeocapsop- sis and Description of the New Species Gloeocapsopsis diffluens sp. nov. and Gloeo- capsopsis dulcis sp. nov. Isolated From the Coastal Range of the Atacama Desert (Chile), Front. Microbiol. 12 (2021) 671742, doi:10.3389/fmicb.2021.671742.

[34]

D.A. Casamatta, C.D. Villanueva, A.D. Garvey, H.S. Stocks, M. Vaccarino, P. Dvorak, P. Hasler, J.R. Johansen, Reptodigitus Chapmanii (Nostocales, Hapalosiphonaceae) Gen. Nov.: a unique nostocalean (Cyanobacteria) genus based on a polyphasic ap- proach(1), J. Phycol. 56 (2020) 425-436, doi:10.1111/jpy.12954.

[35]

D. Konstantinou, E. Voultsiadou, E. Panteris, S. Gkelis, Revealing new sponge- associated cyanobacterial diversity: novel genera and species, Mol. Phylogenet. Evol. 155 (2021) 106991, doi:10.1016/j.ympev.2020.106991.

[36]

O. Strunecky, L. Raabova, A. Bernardova, A.P. Ivanova, A. Semanova, J. Crossley, D. Kaftan, Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella, FEMS Microbiolol. Ecol. 96 (2020), doi:10.1093/femsec/fiz189.

[37]

C. George, C. Kortheerakul, N. Khunthong, C. Sharma, D. Luo, K.G. Chan, M. Daroch, K. D. Hyde, P.K.H. Lee, K.M. Goh, R. Waditee-Sirisattha, S.B. Pointing, Spatial scale modulates stochastic and deterministic influence on biogeography of photosyn- thetic biofilms in Southeast Asian hot springs, Environ. Microbiome 20 (2025) 50, doi:10.1186/s40793-025-00711-8.

[38]

G.A. O’Toole, Classic spotlight: how the gram stain works, J. Bacteriol. Res. 198 (2016) 3128, doi:10.1128/JB.00726-16.

[39]

I. Iteman, R. Rippka, N. Tandeau de Marsac, M. Herdman, Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria, Microbiol 146 (2000) 1275-1286, doi:10.1099/00221287-146-6-1275.

[40]

T. Aono, S. Samsri, R. Waditee-Sirisattha, H. Kageyama, Draft genome sequence of a cyanobacterium Gloeocapsa sp. BRSZ, isolated from Bo Khlueng hot spring in Ratchaburi, Thailand, Microbiol. Resour. Announc. 13 (2024) e00681 -00624, doi:10.1128/mra.00681-24.

[41]

K. Tamura, G. Stecher, S. Kumar, MEGA11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol. 38 (2021) 3022-3027, doi:10.1093/molbev/msab120.

[42]

N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstruct- ing phylogenetic trees, Mol. Biol. Evol. 4 (1987) 406-425, doi:10.1093/oxfordjour-nals.molbev.a040454.

[43]

J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, Evolution 39 (1985) 783-791, doi:10.2307/2408678.

[44]

K. Tamura, M. Nei, S. Kumar, Prospects for inferring very large phylogenies by us- ing the neighbor-joining method, Proc. Natl. Acad. Sci. 101 (2004) 11030-11035, doi:10.1073/pnas.0404206101.

[45]

M. Richter, R. Rossello-Mora, F. Oliver Glockner, J. Peplies, JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome compar- ison, Bioinformatics 32 (2016) 929-931, doi:10.1093/bioinformatics/btv681.

[46]

M. Richter, R. Rosselló-Móra, Shifting the genomic gold standard for the prokaryotic species definition, Proc. Natl. Acad. Sci. 106 (2009) 19126-19131, doi:10.1073/pnas.0906412106.

[47]

J.P. Meier-Kolthoff, J.S. Carbasse, R.L. Peinado-Olarte, M. Goker, TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes, Nucleic Acids Res. 50 (2022) D801-D807, doi:10.1093/nar/gkab902.

[48]

A.F.A. Jan P Meier-Kolthoff, Hans-Peter Klenk, Markus Göker, Genome sequence- based species delimitation with confidence intervals and improved distance func- tions, BMC Bioinformatics 14 (2013), doi:10.1186/1471-2105-14-60.

[49]

K. Blin, S. Shaw, H.E. Augustijn, Z.L. Reitz, F. Biermann, M. Alanjary, A. Fet- ter, B.R. Terlouw, W.W. Metcalf, E.J.N. Helfrich, G.P. van Wezel, M.H. Medema, T. Weber, antiSMASH 7.0: new and improved predictions for detection, regula- tion, chemical structures and visualisation, Nucleic Acids Res. 51 (2023) W46-W50,

[50]

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res. 31 (2003) 3406-3415, doi:10.1093/nar/gkg595.

[51]

S. Ngoennet, Y. Nishikawa, T. Hibino, R. Waditee-Sirisattha, H. Kageyama, A method for the isolation and characterization of mycosporine-like amino acids from cyanobacteria, Methods Protoc. 1 (2018) 46, doi:10.3390/mps1040046.

[52]

M. Herdman, R.W. Castenholz, I. Iteman, J.B. Waterbury, R. Rippka, Subsection I: order “Chroococcales” Wettstein 1924, emend. Rippka, Deruelles, Waterbury, Herd- man and Stanier 1979, in: D. R.Boone, R.W.Castenholz, G.W.Garrity (Eds.), Bergey’s Manual of Systematic bacteriology. 2:1. The archaea, Cyanobacteria and Deeply Branched Bacteria, Springer-Verlag, New York, 2001, p. 776.

[53]

R. Stebegg, G. Schmetterer, A. Rompel, Heterotrophy among Cyanobacteria, ACS Omega 8 (2023) 33098-33114, doi:10.1021/acsomega.3c02205.

[54]

G. Mataloni, J. Komárek, Gloeocapsopsis aurea, a new subaerophytic cyanobacterium from maritime Antarctica, Polar Biol. 27 (2004), doi:10.1007/s00300-004-0620-6.

[55]

A. Azua-Bustos, J. Zuniga, C. Arenas-Fajardo, M. Orellana, L. Salas, V. Rafael, Gloeo- capsopsis AAB1, an extremely desiccation-tolerant cyanobacterium isolated from the Atacama Desert, Extremophiles 18 (2014) 61-74, doi:10.1007/s00792-013-0592-y.

[56]

J. Kaš tovský, E.B. Gomez, J. Hladil, J.R. Johansen, Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic, Phytotaxa 181 (2014), doi:10.11646/phytotaxa.181.5.3.

[57]

M.A. Mackay, R.S. Norton, L.J. Borowitzka, Organic osmoregula- tory solutes in cyanobacteria, Microbiol 130 (1984) 2177-2191, doi:10.1099/00221287-130-9-2177.

[58]

M.C. Casero, M.A. Herrero, J.P. De la Roche, A. Quesada, D. Velazquez, S. Cires, Effect of salinity on scytonemin yield in endolithic cyanobacteria from the Atacama Desert, Sci. Rep. 14 (2024) 9731, doi:10.1038/s41598-024-60499-4.

[59]

J. Komárek, J. Kaš tovský, J. Mareš, J.R. Johansen, Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach, Pres- lia 86 (2014) 295-335.

[60]

J. Komárek, A polyphasic approach for the taxonomy of cyanobacte- ria: principles and applications, Eur. J. Phycol. 51 (2016) 346-353, doi:10.1080/09670262.2016.1163738.

[61]

E.a.E. Stackebrandt, J. E, Taxonomic parameters revisited: tarnished gold standards, Microbiol. Today 33 (2006) 152-155.

[62]

A.F. Auch, H.P. Klenk, M. Goker, Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs, Stand Genomic Sci. 2 (2010) 142-148, doi:10.4056/sigs.541628.

[63]

L. Gonzalez-Resendiz, J.R. Johansen, H. Leon-Tejera, L. Sanchez, C. Segal-Kischinevzky, V. Escobar-Sanchez, M. Morales, A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria), J. Phycol. 55 (2019) 898-911, doi:10.1111/jpy.12867.

[64]

C.A. McGovern, A.R. Norwich, A.L. Thomas, S.E. Hamsher, B.A. Biddanda, A. D. Weinke, D.A. Casamatta, Unbiased analyses of ITS folding motifs in a taxonom- ically confusing lineage: anagnostidinema visiae sp. nov. (cyanobacteria), J. Phycol. 59 (2023) 619-634, doi:10.1111/jpy.13337.

[65]

H. Kageyama, R. Waditee-Sirisattha, in: Mycosporine-Like Amino Acids as Multi- functional Secondary Metabolites in Cyanobacteria: From Biochemical to Applica- tion Aspects, Studies in Natural Products Chemistry, Elsevier, 2018, pp. 153-194.

[66]

F. Garcia-Pichel, R.W. Castenholz, Occurrence of UV-absorbing, mycosporine- like compounds among cyanobacterial isolates and an estimate of their screening capacity, Appl. Environ. Microbiol. 59 (1993) 163-169, doi:10.1128/aem.59.1.163-169.1993.

[67]

S. Jain, G. Prajapat, M. Abrar, L. Ledwani, A. Singh, A. Agrawal, Cyanobacteria as efficient producers of mycosporine-like amino acids, J. Basic Microbiol. 57 (2017) 715-727, doi:10.1002/jobm.201700044.

[68]

F. Garcia-Pichel, C.E. Wingard, R.W. Castenholz, Evidence regarding the UV sunscreen role of a mycosporine-like compound in the Cyanobac- terium Gloeocapsa sp, Appl. Environ. Microbiol. 59 (1993) 170-176, doi:10.1128/aem.59.1.170-176.1993.

[69]

R.P. Rastogi, A. Incharoensakdi, UV radiation-induced biosynthesis, stability and an- tioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobac- terium Gloeocapsa sp. CU2556, J. Photochem. Photobiol. B 130 (2014) 287-292, doi:10.1016/j.jphotobiol.2013.12.001.

[70]

J. Peng, F. Guo, S. Liu, H. Fang, Z. Xu, T. Wang, Recent advances and future prospects of mycosporine-like amino acids, Molecules 28 (2023), doi:10.3390/molecules28145588.

[71]

J. Komárek, Several problems of the polyphasic approach in the modern cyanobac- terial system, Hydrobiologia 811 (2017) 7-17, doi:10.1007/s10750-017-3379-9.

AI Summary AI Mindmap
PDF (5434KB)

215

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/