Tumor-targeting bioluminescent bacteria for in vivo imaging

Chenghao Ma , Jingxi Liu , Hongjing Liu , Xiaohan Zhao , Geng Li , Youming Zhang , Tianyu Jiang

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100224

PDF (6459KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100224 DOI: 10.1016/j.engmic.2025.100224
Original Research Article
research-article

Tumor-targeting bioluminescent bacteria for in vivo imaging

Author information +
History +
PDF (6459KB)

Abstract

As the understanding of bacteria-mediated cancer therapies deepens, bacteria such as Escherichia coli Nissle 1917 (EcN) have become a promising platform for cancer therapy. However, their potential role in real-time monitoring and visualization tools still needs to be explored and enhanced. In this study, we aimed to screen and optimize EcN visualization systems for non-invasive in vivo bioluminescence imaging in live mice. To this end, we developed three series of recombinant EcN strains expressing Gaussia luciferase (Gluc), Renilla luciferase (Rluc), and NanoLuc (Nluc), along with their respective mutants. These strains exhibited bioluminescence when different coelenterazine (CTZ) substrates were present. As a result, multiple bioluminescent EcN strain-substrate pairs were identified with stronger, longer, or red-shifted bioluminescence, offering multiple effective optical tumor-targeting systems for in vivo studies investigating bacteria-mediated cancer therapy and intestinal diseases.

Keywords

Escherichia coli Nissle 1917 / In vivo bioluminescence imaging / Luciferase / Coelenterazine

Cite this article

Download citation ▾
Chenghao Ma, Jingxi Liu, Hongjing Liu, Xiaohan Zhao, Geng Li, Youming Zhang, Tianyu Jiang. Tumor-targeting bioluminescent bacteria for in vivo imaging. Engineering Microbiology, 2025, 5(3): 100224 DOI:10.1016/j.engmic.2025.100224

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Given his role as Editor-in-Chief, Dr. Youming Zhang, had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Dr. Dongchun Ni.

CRediT authorship contribution statement

Chenghao Ma: Writing - original draft, Methodology, Data curation. Jingxi Liu: Methodology. Hongjing Liu: Methodology, Data curation. Xiaohan Zhao: Methodology, Data curation. Geng Li: Methodology. Youming Zhang: Writing - review & editing, Supervision. Tianyu Jiang: Writing - review & editing, Supervision, Conceptualization.

Acknowledgments

Thanks to Xiaomin Zhao, Haiyan Yu, Changbin Liu, Yuyu Guo and Sen Wang from the Core Facilities for Life and Environmental Sciences at the SKLMT (State Key Laboratory of Microbial Technology, Shandong University) for the assistance provided in in vivo imaging. Thanks to Prof. Minyong Li and Dr. Xingye Yang from Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University for the supply of CTZ analogues including CTZ, CTZ B5, CTZ B12, CTZ h, and FRZ.

This study was supported by the National Natural Science Foundation of China (No. 32201245 and No. 32170038), the Shandong Provincial Natural Science Foundation (ZR2020QB158), the Guangdong Basic and Applied Basic Research Foundation (2020A1515110284), the Major International Joint Research Project of the National Natural Science Foundation of China (No. 32161133013), the Future Plan for Young Scholars of Shandong University, and the SKLMT Frontiers and Challenges Project SKLMTFCP-2023-05.

References

[1]

J.Y. Fan, Y. Huang, Y. Li, T.A. Muluh, S.Z. Fu, J.B. Wu, Bacteria in cancer therapy: anew generation of weapons, Cancer Med. 11 (2022) 4457-4468, doi:10.1002/cam4.4799.

[2]

A. Kamrani, R. Hosseinzadeh, N. Shomali, J.A. Heris, P. Shahabi, R. Mohammad- inasab, S. Sadeghvand, K. Ghahremanzadeh, M. Sadeghi, M. Akbari, New im- munotherapeutic approaches for cancer treatment, Pathol. Res. Pract. 248 (2023) 154632, doi:10.1016/j.prp.2023.154632.

[3]

B. Ji, M. Wei, B. Yang, Recent advances in nanomedicines for photodynamic ther- apy (PDT)-driven cancer immunotherapy, Theranostics 12 (2022) 434-458, doi:10.7150/thno.67300.

[4]

L.M. Howell, N.S. Forbes, Bacteria-based immune therapies for cancer treat- ment, Semin. Cancer Biol. 86 (2022) 1163-1178, doi:10.1016/j.semcancer.2021.09. 006.

[5]

C.R. Gurbatri, N. Arpaia, T. Danino, Engineering bacteria as interactive cancer ther- apies, Science 378 (2022) 858-864, doi:10.1126/science.add9667.

[6]

J. Wang, M. Maniruzzaman, A global bibliometric and visualized analysis of bacteria-mediated cancer therapy, Drug Discov. Today 27 (2022) 103297, doi:10.1016/j.drudis.2022.05.023.

[7]

T. Jiang, X. Bai, M. Li, Advances in the development of bacterial biolumines- cence imaging, Annu. Rev. Anal. Chem. 17 (2024) 265-288, doi:10.1146/annurev-anchem-061622-034229.

[8]

T. Danino, A. Prindle, G.A. Kwong, M. Skalak, H. Li, K. Allen, J. Hasty, S.N. Bhatia, Programmable probiotics for detection of cancer in urine, Sci. Transl. Med. 7 (2015) 289ra84, doi:10.1126/scitranslmed.aaa3519.

[9]

T. Jiang, X. Yang, G. Li, X. Zhao, T. Sun, R. Müller, H. Wang, M. Li, Y. Zhang, Bacteria-based live vehicle for in vivo bioluminescence imaging, Anal. Chem. 93 (2021) 15687-15695, doi:10.1021/acs.analchem.1c03568.

[10]

D. Close, T. Xu, A. Smartt, A. Rogers, R. Crossley, S. Price, S. Ripp, G. Sayler, The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter, Sensors (2012) 732-752

[11]

J.J. Cohen, S.J. Eichinger, D.A. Witte, C.J. Cook, P.M. Fidopiastis, J. Tepav čevi ć, K. L. Visick, Control of competence in vibrio fischeri, Appl. Environ. Microbiol.(2021) 1429-1440 https://journals.asm.org/doi/10.1128/aem.01962-20.

[12]

V.V. Krasitskaya, E.E. Bashmakova, L.A. Frank, Coelenterazine-dependent lu- ciferases as a powerful analytical tool for research and biomedical applications, Int. J. Mol. Sci. 21 (2020) 7465, doi:10.3390/ijms21207465.

[13]

H. Dacres, M. Michie, J. Wang, K.D.G. Pfleger, S.C. Trowell, Effect of enhanced Re- nilla luciferase and fluorescent protein variants on the Förster distance of biolumi- nescence resonance energy transfer (BRET), Biochem. Biophys. Res. Commun. 425 (2012) 625-629, doi:10.1016/j.bbrc.2012.07.133.

[14]

A.M. Loening, T.D. Fenn, A.M. Wu, S.S. Gambhir, Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output, Protein Eng. Des. Sel. (2006) 391-400 https://academic.oup.com/peds/article/19/9/391/1494929?login=true.

[15]

A.M. Loening, A.M. Wu, S.S. Gambhir, Red-shifted Renilla reniformis luciferase vari- ants for imaging in living subjects, Nat. Methods (2007) 641-643 https://www.nature.com/articles/nmeth1070.

[16]

M. Ishibashi, R. Kawanabe, N. Amaba, S. Arai, F.A. Laksmi, K. Komori, M. Toku- naga, Expression and characterization of the Renilla luciferase with the cumula- tive mutation, Protein Expr. Purif. 145 (2018) 39-44, doi:10.1016/j.pep.2017.12. 010.

[17]

K. Berglund, K. Clissold, H.E. Li, L. Wen, S.Y. Park, J. Gleixner, M.E. Klein, D. Lu, J.W. Barter, M.A. Rossi, G.J. Augustine, H.H. Yin, U. Hochgeschwender, Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation, Proc. Natl. Acad. Sci. USA 113 (2016) E358-E367, doi:10.1073/pnas.1510899113.

[18]

S.B. Kim, H. Suzuki, M. Sato, H. Tao, Superluminescent variants of marine luciferases for bioassays, Anal. Chem. 83 (2011) 8732-8740, doi:10.1021/ac2021882.

[19]

J.P. Welsh, K.G. Patel, K. Manthiram, J.R. Swartz, Multiply mutated Gaussia lu- ciferases provide prolonged and intense bioluminescence, Biochem. Biophys. Res. Commun. 389 (2009) 563-568, doi:10.1016/j.bbrc.2009.09.006.

[20]

S.Y. Park, S.H. Song, B. Palmateer, A. Pal, E.D. Petersen, G.P. Shall, R.M. Welchko, K. Ibata, A. Miyawaki, G.J. Augustine, U. Hochgeschwender, Novel luciferase-opsin combinations for improved luminopsins, J. Neurosci. Res. 98 (2020) 410-421, doi:10.1002/jnr.24152.

[21]

Y. Xiong, Y. Zhang, Z. Li, M.S. Reza, X. Li, X. Tian, H.W. Ai, Engineered amber- emitting Nano luciferase and its use for immunobioluminescence imaging in vivo, J. Am. Chem. Soc. 144 (2022) 14101-14111, doi:10.1021/jacs.2c02320.

[22]

H.W. Yeh, O. Karmach, A. Ji, D. Carter, M.M. Martins-Green, H. Ai, Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging, Nat. Methods 14 (2017) 971-974, doi:10.1038/nmeth.4400.

[23]

J. Chu, Y. Oh, A. Sens, N. Ataie, H. Dana, J.J. Macklin, T. Laviv, E.S. Welf, K.M. Dean, F. Zhang, B.B. Kim, C.T. Tang, M. Hu, M.A. Baird, M.W. Davidson, M.A. Kay, R. Fi- olka, R. Yasuda, D.S. Kim, H.L. Ng, M.Z. Lin, A bright cyan-excitable orange fluo- rescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo, Nat. Biotechnol. 34 (2016) 760-767, doi:10.1038/nbt.3550.

[24]

T. Yu, J.R. Laird, J.A. Prescher, C. Thorpe, Gaussia princeps luciferase: a biolumines- cent substrate for oxidative protein folding, Protein Sci. Publ. Protein Soc. 27 (2018) 1509-1517, doi:10.1002/pro.3433.

[25]

A. Schenkmayerova, M. Toul, D. Pluskal, R. Baatallah, G. Gagnot, G.P. Pinto, V. T. Santana, M. Stuchla, P. Neugebauer, P. Chaiyen, J. Damborsky, D. Bednar, Y.L. Janin, Z. Prokop, M. Marek, Catalytic mechanism for Renilla-type luciferases, Nat. Catal. (2023) 23-38 https://www.nature.com/articles/s41929-022-00895-z.

[26]

M. Nemergut, D. Pluskal, J. Horackova, T. Sustrova, J. Tulis, T. Barta, R. Baatal- lah, G. Gagnot, V. Novakova, M. Majerova, K. Sedlackova, S.M. Marques, M. Toul, J. Damborsky, Z. Prokop, D. Bednar, Y.L. Janin, M. Marek, Illuminating the mecha- nism and allosteric behavior of NanoLuc luciferase, Nat. Commun. 14 (2023) 7864, doi:10.1038/s41467-023-43403-y.

[27]

F.M. Dijkema, M.I. Escarpizo-Lorenzana, M.K. Nordentoft, H.C. Rabe, C. Sahin, M. Landreh, R.M. Branca, E.S. Sørensen, B. Christensen, A. Prestel, K. Teilum, J.R. Winther, A suicidal and extensively disordered luciferase with a bright lumi- nescence, Protein Sci. Publ. Protein Soc. 33 (2024) e5115, doi:10.1002/pro.5115.

[28]

M.P. Hall, J. Unch, B.F. Binkowski, M.P. Valley, B.L. Butler, M.G. Wood, P. Otto, K. Zimmerman, G. Vidugiris, T. Machleidt, M.B. Robers, H.A. Benink, C.T. Eg- gers, M.R. Slater, P.L. Meisenheimer, D.H. Klaubert, F. Fan, L.P. Encell, K.V. Wood, Engineered luciferase reporter from a deep sea shrimp utilizing a novel imi- dazopyrazinone substrate, ACS Chem. Biol. 7 (2012) 1848-1857, doi:10.1021/cb3002478.

[29]

T. Jiang, X. Yang, Y. Zhou, I. Yampolsky, L. Du, M. Li, New bioluminescent coelen- terazine derivatives with various C-6 substitutions, Org. Biomol. Chem. 15 (2017) 7008-7018, doi:10.1039/C7OB01554B.

[30]

A. Shakhmin, M.P. Hall, T. Machleidt, J.R. Walker, K.V. Wood, T.A. Kirkland, Coe- lenterazine analogues emit red-shifted bioluminescence with NanoLuc, Org. Biomol. Chem. 15 (2017) 8559-8567, doi:10.1039/c7ob01985h.

AI Summary AI Mindmap
PDF (6459KB)

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/