Diversity analysis of phytase-producing bacteria from coastal seawater and sediment and characterization of their phytases

Yuan Xiao-Jie , Liu Rui , Li Jian , Zhao Wen-Xiao , Fu Hui-Hui , Zhou Yan-Rong , Sun Mei-Ling , Chen Xiu-Lan , Zhang Yu-Qiang

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100223

PDF (3694KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (4) : 100223 DOI: 10.1016/j.engmic.2025.100223
Original Research Article
research-article

Diversity analysis of phytase-producing bacteria from coastal seawater and sediment and characterization of their phytases

Author information +
History +
PDF (3694KB)

Abstract

Phytic acid, also known as inositol hexaphosphate (IP6), is one of the most abundant organophosphorus compounds in nature. Its degradation by phytase plays a key role in the natural phosphorus cycle. In addition, phytases are widely used in livestock and poultry feed to enhance phosphorus utilization. While most reported and commercial phytases are derived from terrestrial organisms, relatively few originate from marine microorganisms, and information on the diversity of phytase-producing marine bacteria remains limited. In this study, following enrichment with sodium phytate, we analyzed the bacterial diversity in seawater and sediment samples collected from the coast of Aoshan Bay in Qingdao, China, using 16S rRNA gene amplicon sequencing. A total of 138 OTUs representing 10 phyla, 15 classes, 37 orders, 55 families, and 70 genera were identified. Furthermore, 27 phytase-producing bacterial strains were isolated from the enrichment cultures, primarily belonging to the phyla Firmicutes (14/27) and Proteobacteria (12/27). Five extracellular phytase genes were identified through genome sequencing of three representative strains. These phytases were subsequently expressed and characterized. All were classified as histidine acid phosphatase-type phytases, exhibiting optimal activity at temperatures of 50-60 °C and pH values of 4.0-5.0. Notably, phytase 3919 showed a specific activity as high as 2485.25 U/mg, indicating strong potential for practical applications. This study provides insight into the diversity of coastal bacteria involved in phytic acid degradation, contributing to our understanding of bacterial-driven phosphorus cycling in coastal ecosystems and facilitating the discovery of phytases with industrial potential.

Keywords

Phytic acid / Phytase / Phytase-producing bacteria / Coast

Cite this article

Download citation ▾
Yuan Xiao-Jie, Liu Rui, Li Jian, Zhao Wen-Xiao, Fu Hui-Hui, Zhou Yan-Rong, Sun Mei-Ling, Chen Xiu-Lan, Zhang Yu-Qiang. Diversity analysis of phytase-producing bacteria from coastal seawater and sediment and characterization of their phytases. Engineering Microbiology, 2025, 5(4): 100223 DOI:10.1016/j.engmic.2025.100223

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

The genome data of strain P1A3, P4A3, and PZQ1 have been submitted to the NCBI Genbank database under the accession numbers JBMUJK000000000.1, JBMUJL000000000.1, and JBKIIK000000000.1. It can be found here: https://www.ncbi.nlm.nih.gov/nuccore//.

CRediT authorship contribution statement

Xiao-Jie Yuan: Writing - original draft, Validation, Methodology, Investigation, Data curation, Conceptualization. Rui Liu: Validation, Investigation, Formal analysis, Conceptualization. Jian Li: Resources. Wen-Xiao Zhao: Methodology. Hui-Hui Fu: Supervision, Funding acquisition. Yan-Rong Zhou: Methodology, Funding acquisition. Mei-Ling Sun: Validation, Formal analysis, Data curation. Xiu-Lan Chen: Writing - review & editing, Supervision, Project administration, Funding acquisition, Conceptualization. Yu-Qiang Zhang: Supervision, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We would like to thank Xiangmei Ren from Life Science General Research Technology Platform of SKLMT (State Key Laboratory of Microbial Technology, Shandong University) for the assistance in Tecan Microplate spectrophotometer. This work was supported by the National Key R&D Program of China (grant numbers 2024YFC2816000, 2024YFC2816005), the Major Scientific and Technological Innovation Project (MSTIP) of Shandong Province (grant number 2023CXGC010414), the Marine S&T Fund of Shandong Province for Qingdao Marine Science and Technology Center (grant number 2022QNLM030004-3), and the Frontiers and Challenges Project (grant number SKLMTFCP‐2023‐06), and the Open Projects Fund (grant number M2023-04) from State Key Laboratory of Microbial Technology, Shandong University.

References

[1]

C. Cheng, B.L. Lim, Beta-propeller phytases in the aquatic environment, Arch. Mi- crobiol. 185 (2006) 1-13, doi: 10.1007/s00203-005-0080-6.

[2]

X. Liu, R. Han, Y. Cao, B.L. Turner, L.Q. Ma, Enhancing phytate availability in soils and phytate-P acquisition by plants: a review, Environ. Sci. Technol. 56 (2022) 9196-9219, doi: 10.1021/acs.est.2c00099.

[3]

B.M. Scott, K. Koh, G.D. Rix, Structural and functional profile of phy- tases across the domains of life, Curr. Res. Struct. Biol. 7 (2024) 100139, doi: 10.1016/j.crstbi.2024.100139.

[4]

B.L. Turner, M.J. Papházy, P.M. Haygarth, I.D. Mckelvie, Inositol phosphates in the environment, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357 (2002) 449-469, doi: 10.1098/rstb.2001.0837.

[5]

M. Suzumura, A. Kamatani, Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments: implications for the phosphorus cycle, Geochim. Cos- mochim. 59 (1995) 1021-1026, doi: 10.1016/0016-7037(95)00006-2.

[6]

L.M. Stout, T.T. Nguyen, D.P. Jaisi, Relationship of phytate, phytate-mineralizing bacteria, and beta-propeller phytase genes along a coastal tributary to the Chesa- peake Bay, Soil Sci. Soc. Am. J. 80 (2016) 84-96, doi: 10.2136/sssaj2015.04.0146.

[7]

B.L. Lim, P. Yeung, C. Cheng, J.E. Hill, Distribution and diversity of phytate- mineralizing bacteria, ISME J. 1 (2007) 321-330, doi: 10.1038/ismej.2007.40.

[8]

I.M. Acquistapace, M.A. Zi¸etek, A.W.H. Li, M. Salmon, I. Kühn, M.R. Bedford, C.A. Brearley, A.M. Hemmings, Snapshots during the catalytic cycle of a histidine acid phytase reveal an induced-fit structural mechanism, J. Biol. Chem. 295 (2020) 17724-17737, doi: 10.1074/jbc.RA120.015925.

[9]

D.J. Rigden, The histidine phosphatase superfamily: structure and function, Biochem. J. 409 (2008) 333-348, doi: 10.1042/BJ20071097.

[10]

M.Z. Yao, W.L. Lu, T.G. Chen, W. Wang, Y.J. Fu, B.S. Yang, A.H. Liang, Ef- fect of metals ions on thermostable alkaline phytase from Bacillus subtilis YCJS isolated from soybean rhizosphere soil, Ann. Microbiol. 64 (2014) 1123-1131, doi: 10.1007/s13213-013-0751-5.

[11]

V. Kumar, A.N. Yadav, P. Verma, P. Sangwan, A. Saxena, K. Kumar, B. Singh, 𝛽-propeller phytases: diversity, catalytic attributes, current developments and po- tential biotechnological applications, Int. J. Biol. Macromol. 98 (2017) 595-609, doi: 10.1016/j.ijbiomac.2017.01.134.

[12]

G.A. Castillo Villamizar, H. Nacke, L. Griese, L. Tabernero, K. Funkner, R. Daniel, Characteristics of the first protein tyrosine phosphatase with phytase activity from a soil metagenome, Genes 10 (2019) 101, 10.3390/genes10020101.

[13]

A.A. Puhl, R.J. Gruninger, R. Greiner, T.W. Janzen, S.C. Mosimann, L.B. Selinger, Kinetic and structural analysis of a bacterial protein tyrosine phosphatase- like myo-inositol polyphosphatase, Protein Sci. 16 (2007) 1368-1378, doi: 10.1110/ps.062738307.

[14]

Carla E. Hegeman, A novel phytase with sequence similarity to purple acid phos- phatases is expressed in cotyledons of germinating soybean seedlings, Plant Physiol. 126 (2001) 1598-1608, doi: 10.1104/pp.126.4.1598.

[15]

N. Hirimuthugoda, Diversity of phytase-producing marine yeasts, Cienc. Mar. 32 (2006) 673-682, doi: 10.7773/cm.v32i4.1165.

[16]

K. Saranya, A. Sundaramanickam, S. Manupoori, S.V. Kanth, Screening of multi- faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition, Microbiol. Res. 261 (2022) 127080, doi: 10.1016/j.micres.2022.127080.

[17]

A.K. Farha, A.M. Hatha, Bioprospecting potential and secondary metabo- lite profile of a novel sediment-derived fungus Penicillium sp. ArCSPf from continental slope of Eastern Arabian Sea, Mycology 10 (2019) 109-117, doi: 10.1080/21501203.2019.1572034.

[18]

L. Lin, J. Ling, Q. Peng, X. Lin, W. Zhou, Y. Zhang, Q. Yang, M. Ahamad, Y. Zhang, C. Wang, Y. Wang, J. Dong, The distribution characteristics of 𝛽-propeller phytase genes in rhizosphere sediment provide insight into species specialty from phytic mineralization in subtropical and tropical seagrass ecosystems, Ecotoxicology 30 (2021) 1781-1788, doi: 10.1007/s10646-021-02425-2.

[19]

S.J. Nam, Y.O. Kim, T.K. Ko, J.K. Kang, K.H. Chun, J.H. Auh, C.S. Lee, I. K. Lee, S. Park, B.C. Oh, Molecular and biochemical characteristics of 𝛽-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential applica- tion for animal feed additives, J. Microbiol. Biotechnol. 24 (2014) 1413-1420, doi: 10.4014/jmb.1407.07063.

[20]

P. Yu, X. Wang, J. Liu, Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic, J. Basic Microbiol. 55 (2015) 1029-1039, doi: 10.1002/jobm.201400865.

[21]

L.Y. Zheng, N.H. Liu, S. Zhong, Y. Yu, X.Y. Zhang, Q.L. Qin, X.Y. Song, Y.Z. Zhang, H. Fu, M. Wang, A. McMinn, X.L. Chen, P.Y. Li, Diaminopimelic acid metabolism by Pseudomonadota in the ocean, Microbiol. Spectr. 10 (2022) e00691-22, doi: 10.1128/spectrum.00691-22.

[22]

R.L. Tatusov, M.Y. Galperin, D.A. Natale, E.V. Koonin, The COG database: a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res. 28 (2000) 33-36, doi: 10.1093/nar/28.1.33.

[23]

M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, M. Tanabe, KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res. 44 (2016) D457-D462, 10.1093/nar/gkv1070.

[24]

J. Dyrløv Bendtsen, H. Nielsen, G. von Heijne, S. Brunak, Improved pre- diction of signal peptides: SignalP 3.0, J. Mol. Biol. 340 (2004) 783-795, doi: 10.1016/j.jmb.2004.05.028.

[25]

P. Yu, X.T. Wang, J.W. Liu, Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic, J. Basic. Microbiol. 55 (2015) 1029-1039, doi: 10.1002/jobm.201400865.

[26]

D.C. Lee, M.A. Cottrill, C.W. Forsberg, Z. Jia, Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase, J. Biol. Chem. 278 (2003) 31412-31418, doi: 10.1074/jbc.M213154200.

[27]

A.D. Suleimanova, A. Beinhauer, L.R. Valeeva, I.B. Chastukhina, N.P. Bala- ban, E.V. Shakirov, R. Greiner, M.R. Sharipova, Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bac- terium Pantoea sp. Strain 3.5.1, Appl. Environ. Microbiol. 81 (2015) 6790-6799, doi: 10.1128/AEM.01384-15.

[28]

A. Sajidan, A. Farouk, R. Greiner, P. Jungblut, E.C. Müller, R. Borriss, Molecu- lar and physiological characterisation of a 3-phytase from soil bacterium Kleb- siella sp. ASR1, Appl. Microbiol. Biotechnol. 65 (2004), doi: 10.1007/s00253-003-1530-1.

[29]

E. Rodriguez, Y. Han, X.G. Lei, Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene ( appA2) isolated from pig colon, Biochem. Bio- phys. Res. Commun. 257 (1999) 117-123, doi: 10.1006/bbrc.1999.0361.

[30]

J. Dvoráková, Phytase: sources, preparation and exploitation, Folia Microbiol. (Praha) 43 (1998) 323-338, doi: 10.1007/BF02818571.

[31]

L. Lin, J. Ling, Q. Peng, X. Lin, W. Zhou, Y. Zhang, Q. Yang, M. Ahamad, Y. Zhang, C. Wang, Y. Wang, J. Dong, The distribution characteristics of 𝛽-propeller phytase genes in rhizosphere sediment provide insight into species specialty from phytic mineralization in subtropical and tropical seagrass ecosystems, Ecotoxicology 30 (2021) 1781-1788, doi: 10.1007/s10646-021-02425-2.

[32]

X. Li, Z. Liu, Z. Chi, J. Li, X. Wang, Molecular cloning, characterization, and expres- sion of the phytase gene from marine yeast Kodamaea ohmeri BG3, Mycol. Res. 113 (2009) 24-32, doi: 10.1016/j.mycres.2008.07.003.

[33]

C. Krishna, S.E. Nokes, Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology, J. Ind. Microbiol. Biotechnol. 26 (2001) 161-170, doi: 10.1038/sj.jim.7000103.

[34]

B. Singh, T. Satyanarayana, Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants, J. Anim. Physiol. Anim. Nutr. 99 (2015) 646-660, doi: 10.1111/jpn.12236.

[35]

D. Lim, S. Golovan, C.W. Forsberg, Z. Jia, Crystal structures of Escherichia coli phytase and its complex with phytate, Nat. Struct. Biol. 7 (2000) 108-113, doi: 10.1038/72371.

[36]

M.S. Kim, X.G. Lei, Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR, Appl. Microbiol. Biotechnol. 79 (2008) 69-75, doi: 10.1007/s00253-008-1412-7.

[37]

W. Gu, H.Q. Huang, K. Meng, P.L. Yang, D.W. Fu, H.Y. Luo, Y.R. Wang, B.Yao, Z.C. Zhan, Gene cloning, expression, and characterization of a novel phy- tase from Dickeya paradisiaca, Appl. Biochem. Biotechnol. 157 (2009) 113-123, doi: 10.1007/s12010-008-8329-6.

[38]

C.S. Quan, S.D. Fan, L.H. Zhang, Y.J. Wang, Y. Ohta, Purification and properties of a phytase from Candida krusei WZ-001, J. Biosci. Bioeng. 94 (2002) 419-425, doi: 10.1016/S1389-1723(02)80219-5.

[39]

A.A. Tkachenko, A.N. Kalinina, L.N. Borshchevskaya, S.P. Sineoky, T.L. Gordeeva, A novel phytase from Citrobacter gillenii : characterization and expression in Pichia pastoris ( Komagataella pastoris ), FEMS Microbiol. Lett. 368 (2021) fnaa217, 10.1093/femsle/fnaa217.

[40]

W. Zhao, A. Xiong, X. Fu, F. Gao, Y. Tian, R. Peng, High level expression of an acid- stable phytase from Citrobacter freundii in Pichia pastoris, Appl. Biochem. Biotechnol. 162 (2010) 2157-2165, doi: 10.1007/s12010-010-8990-4.

[41]

W. Zhang, E.J. Mullaney, X.G. Lei, Adopting selected hydrogen bonding and ionic in- teractions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase, Appl. Environ. Microbiol. 73 (2007) 3069-3076, doi: 10.1128/AEM.02970-06.

[42]

X.G. Lei, J.D. Weaver, E. Mullaney, A.H. Ullah, M.J. Azain, Phytase, a new life for an "old" enzyme, Annu. Rev. Anim. Biosci. 1 (2013) 283-309, doi: 10.1146/annurev-an-imal-031412-103717.

[43]

A.S. Xiong, Q.H. Yao, R.H. Peng, Z. Zhang, F. Xu, J.G. Liu, P.L. Han, J.M. Chen, High level expression of a synthetic gene encoding Peniophora lycii phytase in methy- lotrophic yeast Pichia pastoris, Appl. Microbiol. Biotechnol. 72 (2006) 1039-1047, doi: 10.1007/s00253-006-0384-8.

[44]

H. Huang, H. Luo, P. Yang, K. Meng, Y. Wang, T. Yuan, Y. Bai, B. Yao, A novel phytase with preferable characteristics from Yersinia intermedia, Biochem. Biophys. Res. Commun. 350 (2006) 884-889, doi: 10.1016/j.bbrc.2006.09.118.

[45]

H.Y. Luo, H.Q. Huang, P.L. Yang, Y.R. Wang, T.Z. Yuan, N.F. Wu, B. Yao, Y.L. Fan, A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris, Curr. Microbiol. 55 (2007) 185-192, doi: 10.1007/s00284-006-0586-4.

[46]

H.W. Kim, Y.O. Kim, J.H. Lee, K.K. Kim, Y.J. Kim, Isolation and characterization of a phytase with improved properties from Citrobacter braakii, Biotechnol. Lett. 25 (2003) 1231-1234, doi: 10.1023/a:1025020309596.

AI Summary AI Mindmap
PDF (3694KB)

259

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/