The role of microbiota dysbiosis in Parkinson’s disease: Pathophysiology and therapeutic opportunities

Shabnam Santos , Ivonne Salinas , Nicolás Almeida , Andrés Caicedo

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100222

PDF (981KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100222 DOI: 10.1016/j.engmic.2025.100222
Review
research-article

The role of microbiota dysbiosis in Parkinson’s disease: Pathophysiology and therapeutic opportunities

Author information +
History +
PDF (981KB)

Abstract

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder characterized by debilitating motor and non-motor symptoms. Its etiology is multifactorial, with no single definitive cause identified, although aging is a significant risk factor. Additional risks include genetic predisposition, family history, and environmental factors such as pesticide exposure and Helicobacter pylori infection. Dysbiosis of the gut microbiota, and in particular bacterial imbalances, has been implicated in the disruption of the gut-brain axis, contributing to both systemic and neuroinflammation. Environmental factors such as antibiotic exposure and toxins can precipitate microbial dysregulation, potentially accelerating PD progression. Understanding the mechanisms of the gut-brain axis and identifying strategies to preserve a healthy microbiome are essential for developing novel therapeutic approaches. This review synthesizes current therapeutic strategies and ongoing research focused on restoring gut-brain balance to combat PD. These approaches include fecal microbiota transplantation, dietary interventions, and probiotic therapies, all of which show promise in mitigating both motor and non-motor symptoms. Furthermore, we emphasize the urgent need for continued research into probiotics and innovative therapeutic approaches for gut-brain axis modulation, presenting novel opportunities for effective PD management.

Keywords

Gut-brain axis / Microbiota dysbiosis / Parkinson’s disease / Probiotic therapy / Neuroinflammation

Cite this article

Download citation ▾
Shabnam Santos, Ivonne Salinas, Nicolás Almeida, Andrés Caicedo. The role of microbiota dysbiosis in Parkinson’s disease: Pathophysiology and therapeutic opportunities. Engineering Microbiology, 2025, 5(3): 100222 DOI:10.1016/j.engmic.2025.100222

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of AI in Scientific Writing

During the preparation of this work, the authors used ChatGPT to check grammar and clarity of the text when needed. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Declaration of Competing Interest

Authors SS, IS and NA declare no known competing financial interests or personal relationships that could have influenced the work reported in this paper. AC is the scientific founder and advisor of Dragon Biomed, an entrepreneurial initiative at the Universidad San Francisco de Quito (USFQ). He also serves as a scientific advisor in the Research and Development department of Luvigix. In these capacities, AC provides scientific guidance and expertise but does not participate in decision-making or operational activities within either organization.

CRediT authorship contribution statement

Shabnam Santos: Writing - review & editing, Writing - original draft, Investigation, Formal analysis. Ivonne Salinas: Writing - review & editing, Writing - original draft, Investigation, Formal analysis. Nicolás Almeida: Writing - review & editing, Writing - original draft, Investigation, Formal analysis. Andrés Caicedo: Writing - review & editing, Writing - original draft, Visualization, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Acknowledgments

This study did not receive specific funding. We extend our gratitude to the School of Medicine, the Instituto de Investigaciones en Biomedicina (USFQ), the Space Front Institute at Universidad San Francisco de Quito, and the Mito-Act Research Consortium in Quito, Ecuador, for their unwavering support of our research and initiatives. The authorship team is grateful to Reema Azar for her assistance in ensuring the appropriate use of the English language in the manuscript.

References

[1]

A. Ascherio, M.A. Schwarzschild, The epidemiology of Parkinson’s disease: risk fac- tors and prevention, Lancet. Neurol 15 (12) (2016 Nov)1257-1272.

[2]

World Health Organization. Parkinson disease [Internet]. Parkinson. Disease.(2023).[2024 Sep 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease

[3]

W. Yang, J.L. Hamilton, C. Kopil, J.C. Beck, C.M. Tanner, R.L. Albin, et al., Cur- rent and projected future economic burden of Parkinson’s disease in the U.S, npj. Parkinsons. Disease 6 (2020 Jul 9) 15.

[4]

A. Caicedo, K.K. Singh, Mitochondria makeover: unlocking the path to healthy longevity, Expert. Opin. Ther. Targets 28 (6) (2024 Jun)477-480.

[5]

M.J. Armstrong, M.S. Okun, Diagnosis and treatment of parkinson disease: a review, JAMA 323 (6) (2020 Feb 11)548-560.

[6]

E.L. Lane, l -DOPA for Parkinson’s disease-a bittersweet pill, Eur. J. Neurosci 49 (3)(2019 Feb)384-398.

[7]

D.G. Chan, K. Ventura, A. Villeneuve, P. Du Bois, M.R Holahan, Exploring the con- nection between the gut microbiome and parkinson’s disease symptom progression and pathology: implications for supplementary treatment options, J. Parkinsons. Dis 12 (8) (2022) 2339-2352.

[8]

E. Thursby, N. Juge, Introduction to the human gut microbiota, Biochem. J 474 (11)(2017 May 16)1823-1836.

[9]

T. Hrncir, Gut microbiota dysbiosis: triggers, consequences, diagnostic and thera- peutic options, Microorganisms 10 (3) (2022 Mar 7).

[10]

A.S. Alsegiani, Z.A. Shah, The influence of gut microbiota alteration on age-related neuroinflammation and cognitive decline, Neural. Regen. Res 17 (11) (2022 Nov)2407-2412.

[11]

T.H. Mertsalmi, E. Pekkonen, F. Scheperjans, Antibiotic exposure and risk of Parkin- son’s disease in Finland: a nationwide case-control study, Mov. Disord 35 (3) (2020 Mar)431-442.

[12]

GBD 2016 Parkinson’s Disease Collaborators, Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet. Neurol 17 (11) (2018 Nov)939-953.

[13]

C. Cattaneo, J. Pagonabarraga, Sex differences in parkinson’s disease: a narrative review, Neurol. Ther 14 (1) (2025 Feb)57-70.

[14]

L.V. Kalia, A.E. Lang, Parkinson’s disease, Lancet 386 (9996) (2015 Aug 29)896-912.

[15]

R. Balestrino, A.H.V. Schapira, Parkinson disease, Eur.J.Neurol, 27 (1) (2020 Jan)27-42.

[16]

D.W. Dickson, Neuropathology of Parkinson disease, Parkinsonism. Relat. Disord 46 (Suppl 1) (2018 Jan)Suppl 1S30-3.

[17]

I. Pallarès, V. Iglesias, S. Ventura, The rho termination factor of Clostridium bo- tulinum contains a prion-like domain with a highly amyloidogenic core, Front. Mi- crobiol 6 (2015) 1516.

[18]

A.H. Yuan, A. Hochschild, A bacterial global regulator forms a prion, Science 355 (6321) (2017 Jan 13)198-201.

[19]

E.M. Hill-Burns, J.W. Debelius, J.T. Morton, W.T. Wissemann, M.R. Lewis, Z. D. Wallen, et al., Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome, Mov. Disord 32 (5) (2017 May)739-49.

[20]

C. Bullich, A. Keshavarzian, J. Garssen, A. Kraneveld, P. Perez-Pardo, Gut Vibes in Parkinson’s Disease: the microbiota-Gut-brain axis, Mov. Disord. Clin. Pract. (Hobo- ken) 6 (8) (2019 Nov)639-51.

[21]

S. Westfall, U. Iqbal, M. Sebastian, G.M. Pasinetti, Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer’s disease, Prog. Mol. Biol. Transl. Sci 168 (2019 Jul 4) 147-81.

[22]

M.-F. Sun, Y.-Q. Shen, Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease, Ageing. Res. Rev 45 (2018 Aug) 53-61.

[23]

B. Chassaing, O. Koren, J.K. Goodrich, A.C. Poole, S. Srinivasan, R.E. Ley, et al., Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome, Nature 519 (7541) (2015 Mar 5)92-6.

[24]

J.K. Tan, L. Macia, C.R. Mackay, Dietary fiber and SCFAs in the regulation of mucosal immunity, J. Allergy. Clin. Immunol 151 (2) (2023 Feb)361-70.

[25]

Z. Jiang, X. Wang, H. Zhang, J. Yin, P. Zhao, Q. Yin, et al., Ketogenic diet protects MPTP-induced mouse model of Parkinson’s disease via altering gut microbiota and metabolites, MedComm 4 (3) (2023 Jun)e268.

[26]

Q. Zhao, Y. Chen, W. Huang, H. Zhou, W. Zhang, Drug-microbiota interactions: an emerging priority for precision medicine, Signal. Transduct. Target. Ther 8 (1) (2023 Oct 9)386.

[27]

M.A. Jackson, J.K. Goodrich, M.-E. Maxan, D.E. Freedberg, J.A. Abrams, A.C. Poole, et al., Proton pump inhibitors alter the composition of the gut microbiota, Gut 65 (5) (2016 May)749-56.

[28]

L. Tian, C. Huang, W. Fu, L. Gao, N. Mi, M. Bai, et al., Proton pump inhibitors may enhance the risk of digestive diseases by regulating intestinal microbiota, Front. Pharmacol 14 (2023 Jul 17) 1217306.

[29]

D. Maseda, E. Ricciotti, NSAID-gut microbiota interactions, Front. Pharmacol 11 (2020 Aug 7) 1153.

[30]

N.T. Mueller, M.K. Differding, M. Zhang, N.M. Maruthur, S.P. Juraschek, E.R. Miller, et al., Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial, Diabetes. Care 44 (7) (2021 Jul)1462-71.

[31]

M.E. Caetano-Silva, A. Shrestha, A.F. Duff, D. Kontic, P.C. Brewster, M.C. Kasperek, et al., Aging amplifies a gut microbiota immunogenic signature linked to heightened inflammation, Aging. Cell 23 (8) (2024 Aug)e14190.

[32]

M.L. Wong, A. Inserra, M.D. Lewis, C.A. Mastronardi, L. Leong, J. Choo, et al., Inflam- masome signaling affects anxiety- and depressive-like behavior and gut microbiome composition, Mol. Psychiatry 21 (6) (2016 Jun)797-805.

[33]

T.D. Butler, J.E. Gibbs, Circadian host-microbiome interactions in immunity, Front. Immunol 11 (2020 Aug 14) 1783.

[34]

Y. Xu, Y. Su, S. Cai, Y. Yao, X. Chen, Environmental and occupational exposure to organochlorine pesticides associated with Parkinson’s disease risk: a systematic review and meta-analysis based on epidemiological evidence, Public. Health 237 (2024 Dec) 374-86.

[35]

N.U. Mahbub, M.M. Islam, S.-T. Hong, H.-J. Chung, Dysbiosis of the gut microbiota and its effect on 𝛼-synuclein and prion protein misfolding: consequences for neu- rodegeneration, Front. Cell. Infect. Microbiol 14 (2024 Feb 16) 1348279.

[36]

A. Gallop, J. Weagley, S.U.R. Paracha, G. Grossberg, The role of the gut microbiome in parkinson’s disease, J. Geriatr. Psychiatry. Neurol 34 (4) (2021 Jul)253-62.

[37]

H. Nishiwaki, M. Ito, T. Ishida, T. Hamaguchi, T. Maeda, K. Kashihara, et al., Meta-analysis of gut dysbiosis in Parkinson’s disease, Mov. Disord 35 (9) (2020 Sep)1626-35.

[38]

R. Kerstens, P. Joyce, The gut microbiome as a catalyst and emerging therapeutic target for parkinson’s disease: a comprehensive update, Biomedicines 12 (8) (2024 Aug 2).

[39]

F. Bai, L. You, H. Lei, X. Li, Association between increased and decreased gut micro- biota abundance and Parkinson’s disease: a systematic review and subgroup meta-analysis, Exp. Gerontol 191 (2024 Jun 15) 112444.

[40]

M. Kalyan, A.H. Tousif, S. Sonali, C. Vichitra, T. Sunanda, S.S. Praveenraj, et al., Role of endogenous lipopolysaccharides in neurological disorders, Cells 11 (24) (2022 Dec 14).

[41]

H.M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F.J. Troost, R.J. Brummer, Re- view article: the role of butyrate on colonic function, Aliment. Pharmacol. Ther 27 (2) (2008 Jan 15)104-19.

[42]

W. Fusco, M.B. Lorenzo, M. Cintoni, S. Porcari, E. Rinninella, F. Kaitsas, et al., Short-- chain fatty-acid-producing bacteria: key components of the Human gut microbiota, Nutrients 15 (9) (2023 May 6).

[43]

B. Kalyanaraman, G. Cheng, M. Hardy, Gut microbiome, short-chain fatty acids, al- pha-synuclein, neuroinflammation, and ROS/RNS: relevance to Parkinson’s disease and therapeutic implications, Redox. Biol 71 (2024 May) 103092.

[44]

A.E. Hill, R. Wade-Martins, P.W.J. Burnet, What is our understanding of the influence of gut microbiota on the pathophysiology of parkinson’s disease? Front. Neurosci 15 (2021 Aug 26) 708587.

[45]

J.S. Loh, W.Q. Mak, L.K.S. Tan, C.X. Ng, H.H. Chan, S.H. Yeow, et al., Microbio- ta-gut-brain axis and its therapeutic applications in neurodegenerative diseases, Sig- nal. Transduct. Target. Ther 9 (1) (2024 Feb 16)37.

[46]

Y. Li, Y. Xia, S. Yin, F. Wan, J. Hu, L. Kou, et al., Targeting microglial 𝛼-synuclein/TLRs/NF-kappaB/NLRP 3 inflammasome axis in Parkinson’s, Disease.. Front. Immunol. 12 (2021 Oct 8) 719807.

[47]

D. Trudler, K.L. Nazor, Y.S. Eisele, T. Grabauskas, N. Dolatabadi, J. Parker, et al., Soluble 𝛼-synuclein-antibody complexes activate the NLRP3 inflammasome in hiP- SC-derived microglia, Proc. Natl. Acad. Sci. USA 118 (15) (2021 Apr 13).

[48]

A.R. Trainor, D.S. MacDonald, J. Penney, Microglia: roles and genetic risk in Parkin- son’s disease, Front. Neurosci 18 (2024 Nov 1) 1506358.

[49]

D. Kwon, K. Zhang, K.C. Paul, A.D. Folle, I. Del Rosario, J.P. Jacobs, et al., Diet and the gut microbiome in patients with Parkinson’s disease, npj. Parkinsons. Disease 10 (1) (2024 Apr 22)89.

[50]

Q. Cao, M. Shen, R. Li, Y. Liu, Z. Zeng, J. Zhou, et al., Elucidating the specific mech- anisms of the gut-brain axis: the short-chain fatty acids-microglia pathway, J. Neu- roinflammation 22 (1) (2025 May 21) 133.

[51]

Z. Li, H. Liang, Y. Hu, L. Lu, C. Zheng, Y. Fan, et al., Gut bacterial profiles in Parkin- son’s disease: a systematic review, CNS. Neurosci. Ther 29 (1) (2023 Jan)140-57.

[52]

C. Haikal, Q.-Q. Chen, J.-Y. Li, Microbiome changes: an indicator of Parkinson’s disease? Transl. Neurodegener 8 (2019 Dec 24) 38.

[53]

T. Konstantinidis, C. Tsigalou, A. Karvelas, E. Stavropoulou, C. Voidarou, E. Bezirt- zoglou, Effects of antibiotics upon the gut microbiome: a review of the literature, Biomedicines 8 (11) (2020 Nov 16).

[54]

L.Y. Tan, X.Y. Yeo, H.-G. Bae, D.P.S. Lee, R.C. Ho, J.E. Kim, et al., Association of gut microbiome dysbiosis with neurodegeneration: can gut microbe-modifying diet prevent or alleviate the symptoms of neurodegenerative diseases? Life. (Basel) 11 (7) (2021 Jul 15).

[55]

F. Scheperjans, V. Aho, P.A.B. Pereira, K. Koskinen, L. Paulin, E. Pekkonen, et al., Gut microbiota are related to Parkinson’s disease and clinical phenotype, Mov. Disord 30 (3) (2015 Mar)350-358.

[56]

V.T.E. Aho, P.A.B. Pereira, S. Voutilainen, L. Paulin, E. Pekkonen, P. Auvinen, et al., in:Gut Microbiota in Parkinson’s disease: Temporal stability and Relations to Disease Progression, 44, EBioMedicine, 2019 Jun 18, pp. 691-707.

[57]

V.A. Petrov, I.V. Saltykova, I.A. , Zhukova, V.M. Alifirova, N.G. Zhukova, Y.B. Doro- feeva, et al., Analysis of gut microbiota in patients with Parkinson’s disease, Bull. Exp. Biol. Med 162 (6) (2017 Apr 20)734-7.

[58]

A. Keshavarzian, S.J. Green, P.A. Engen, R.M. Voigt, A. Naqib, C.B. Forsyth, et al., Colonic bacterial composition in Parkinson’s disease, Mov. Disord 30 (10) (2015 Sep)1351-60.

[59]

F. Hopfner, A. Künstner, S.H. Müller, S. Künzel, K.E. Zeuner, N.G. Margraf, et al., Gut microbiota in Parkinson disease in a northern German cohort, Brain. Res 1667 (2017 Jul 15) 41-5.

[60]

D. Pietrucci, R. Cerroni, V. Unida, A. Farcomeni, M. Pierantozzi, N.B. Mercuri, et al., Dysbiosis of gut microbiota in a selected population of Parkinson’s patients, Parkin- sonism. Relat. Disord 65 (2019 Aug) 124-30.

[61]

A.H. Tan, J.W. Hor, C.W. Chong, S.-Y. Lim, Probiotics For Parkinson’s disease: Cur- rent evidence and Future Directions, 5, JGH Open, 2021 Apr 414-9.

[62]

X. Yang, X. He, S. Xu, Y. Zhang, C. Mo, Y. Lai, et al., Effect of lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson’s disease, Food. Funct 14 (15) (2023 Jul 31)6828-39.

[63]

S.P. van Kessel, A. Bullock, G. van Dijk, S. El Aidy, Parkinson’s disease medication alters small intestinal motility and microbiota composition in healthy rats, mSystems 7 (1) (2022 Feb 22)e0119121.

[64]

C. Li, L. Cui, Y. Yang, J. Miao, X. Zhao, J. Zhang, et al., Gut microbiota differs between parkinson’s disease patients and healthy controls in northeast china, Front. Mol. Neurosci 12 (2019 Jul 11) 171.

[65]

Y. Qian, X. Yang, S. Xu, C. Wu, Y. Song, N. Qin, et al., Alteration of the fecal micro- biota in Chinese patients with Parkinson’s disease, Brain. Behav. Immun 70 (2018 May) 194-202.

[66]

F. Scheperjans, R. Levo, B. Bosch, M. Lääperi, P.A.B. Pereira, O.-P. Smolander, et al., Fecal microbiota transplantation for treatment of parkinson disease: a randomized clinical trial, JAMA. Neurol 81 (9) (2024 Sep 1)925-38.

[67]

L. Xie, D. Chen, X. Zhu, C. Cheng, Efficacy and safety of probiotics in Parkinson’s constipation: a systematic review and meta-analysis, Front. Pharmacol 13 (2022) 1007654.

[68]

Y. Cheng, G. Tan, Q. Zhu, C. Wang, G. Ruan, S. Ying, et al., Efficacy of fecal mi- crobiota transplantation in patients with Parkinson’s disease: clinical trial results from a randomized, placebo-controlled design, Gut. Microbes 15 (2) (2023 Dec 6)2284247.

[69]

A. Bruggeman, C. Vandendriessche, H. Hamerlinck, D. De Looze, D.J. Tate, M. Vuyl- steke, et al., Safety and efficacy of faecal microbiota transplantation in patients with mild to moderate Parkinson’s disease (GUT-PARFECT): a double-blind, placebo-con- trolled, randomised, phase 2 trial, EClinicalMedicine 71 (2024 May) 102563.

[70]

S. Keymanesh, K. Tosefsky, J.S.T. Lam, A. Metcalfe-Roach, P. Uzelman, M. Sacheli, et al., The Safety and Feasibility of Mediterranean-Ketogenic Dietary Interventions on Gut Health in Parkinson’s Disease: A Protocol For an Open-label, Randomized, Crossover Design Clinical Trial, KIM Trial). Res Sq, 2023 Mar 6.

[71]

I. van der Berg, S. Schootemeijer, K. Overbeek, B.R. Bloem, N.M. de Vries, Dietary interventions in parkinson’s disease, J. Parkinsons. Dis 14 (1) (2024) 1-16.

[72]

L. Wu, L. Chu, Y. Pang, J. Huo, H. Cao, Q. Tian, et al., Effects of dietary supplements, foods, and dietary patterns in Parkinson’s disease: meta-analysis and systematic re- view of randomized and crossover studies, Eur. J. Clin. Nutr 78 (5) (2024 May)365-75.

[73]

H. Sun, F. Zhao, Y. Liu, T. Ma, H. Jin, K. Quan, et al., Probiotics synergized with conventional regimen in managing Parkinson’s disease, npj. Parkinsons. Disease 8 (1) (2022 May 24)62.

[74]

E. Cassani, G. Privitera, G. Pezzoli, C. Pusani, C. Madio, L. Iorio, et al., Use of pro- biotics for the treatment of constipation in Parkinson’s disease patients, Minerva. Gastroenterol. Dietol 57 (2) (2011 Jun)117-21.

[75]

M. Barichella, C. Pacchetti, C. Bolliri, E. Cassani, L. Iorio, C. Pusani, et al., Probi- otics and prebiotic fiber for constipation associated with Parkinson disease: an RCT, Neurology 87 (12) (2016 Sep 20)1274-80.

[76]

A. Parashar, M. Udayabanu, Gut microbiota: implications in Parkinson’s disease, Parkinsonism. Relat. Disord 38 (2017 May) 1-7.

[77]

J.M. Taylor, B.S. Main, P.J. Crack, Neuroinflammation and oxidative stress: co-con- spirators in the pathology of Parkinson’s disease, Neurochem. Int 62 (5) (2013 Apr)803-19.

[78]

V. Castelli, M. d’Angelo, F. Lombardi, M. Alfonsetti, A. Antonosante, M. Catanesi, et al., Effects of the probiotic formulation SLAB 51 in in vitro and in vivo Parkinson’s disease models, Aging. (Albany. NY) 12 (5) (2020 Mar 9)4641-59.

[79]

E. Alipour Nosrani, O.R. Tamtaji, Z. Alibolandi, P. Sarkar, M. Ghazanfari, A. Azami Tameh, et al., Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: a behavioral, biochemical, and histological study, J. Immunoassay. Immunochem 42 (2) (2021 Mar 4)106-120.

[80]

O.R. Tamtaji, M. Taghizadeh, R. Daneshvar Kakhaki, E. Kouchaki, F. Bahmani, S. Borzabadi, et al., Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial, Clin. Nutr 38 (3) (2019 Jun)1031-1035.

[81]

H. Zhang, Y. Duan, F. Cai, D. Cao, L. Wang, Z. Qiao, et al., Next-generation probiotics: microflora intervention to Human diseases, Biomed. Res. Int 2022 (2022 Nov 16) 5633403.

[82]

O.M. Al-Fakhrany, E. Elekhnawy, Next-generation probiotics: the upcoming biother- apeutics, Mol. Biol. Rep 51 (1) (2024 Apr 15)505.

[83]

M. Yue, J. Wei, W. Chen, D. Hong, T. Chen, X. Fang, Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson’s disease via inhibiting ferroptosis, Nutrients 14 (22) (2022 Nov 18).

[84]

G. Ternák, D. Kuti, K.J. Kovács, Dysbiosis in Parkinson’s disease might be triggered by certain antibiotics, Med. Hypotheses 137 (2020 Apr) 109564.

[85]

N. Vijiaratnam, T. Simuni, O. Bandmann, H.R. Morris, T. Foltynie, Progress towards therapies for disease modification in Parkinson’s disease, Lancet. Neurol 20 (7) (2021 Jul)559-72.

[86]

C. Blauwendraat, M.A. Nalls, A.B. Singleton, The genetic architecture of Parkinson’s disease, Lancet. Neurol 19 (2) (2020 Feb)170-8.

AI Summary AI Mindmap
PDF (981KB)

244

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/