Functional heterologous expression of the reversible Cu-decarboxylase from the lichen, Cladonia uncialis

Harman Gill , John L. Sorensen

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100211

PDF (4611KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100211 DOI: 10.1016/j.engmic.2025.100211
Original Research Article
research-article

Functional heterologous expression of the reversible Cu-decarboxylase from the lichen, Cladonia uncialis

Author information +
History +
PDF (4611KB)

Abstract

Despite the isolation of over 1000 known bioactive lichen mycobiont-derived secondary metabolites (SMs), understanding the genetic basis of their biosynthesis remains elusive. Biosynthetic gene clusters (BGCs) have been tentatively linked to chemical structures, with core genes such as polyketide synthases (PKSs) surrounded by accessory genes like decarboxylases. In this study, we focused on a decarboxylase gene from the genome of the lichen cladonia uncialis (named as Cu-decarboxylase) to elucidate its role in SM biosynthesis. A 963 bp gene was cloned from C. uncialis and expressed in Escherichia coli (BL21(DE3) cells using the pQE80L expression vector. The resulting 35 kDa protein was purified by applying a Ni+-NTA column using an FPLC system. Functional activity assays revealed the decarboxylation and reversible carboxylation of resorcinol to 2,4-dihydroxybenzoic acid and orcinol to orsellinic acid. This suggests a potential role for this Cu-decarboxylase in SM biosynthesis.

Furthermore, the lack of activity on substrates like anthranilic acid and aniline highlighted the importance of the phenolic OH group in facilitating these reactions. The 3D protein structure was predicted with AlphaFold3, based on sequence similarity with a known decarboxylases and revealed the importance of a zinc cofactor for the catalytic activity of the enzyme. The optimization of the reaction conditions, particularly for orsellinic acid production from orcinol, may enhance conversion rates and offer a viable route for industrial-scale production of bioactive compounds. This study marks the first known instance of functional heterologous expression of a non-codon-optimized gene isolated from lichen in E. coli.

Keywords

Isolation / Secondary / Bioactive compounds / Polyketides / Carboxylation / Decarboxylation

Cite this article

Download citation ▾
Harman Gill, John L. Sorensen. Functional heterologous expression of the reversible Cu-decarboxylase from the lichen, Cladonia uncialis. Engineering Microbiology, 2025, 5(2): 100211 DOI:10.1016/j.engmic.2025.100211

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data presented in this manuscript, including plasmids and gene sequences, is available free of charge by contacting the corresponding author.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT Authorship Contribution Statement

Harman Gill: Writing - original draft, Investigation, Formal analysis. John L. Sorensen: Writing - review & editing, Supervision, Conceptualization.

Acknowledgments

We would like to acknowledge Dr. Hamidreza Karbalaeiheidari (Department of Chemistry, U of Manitoba), for his guidance in cloning, and Dr. Nediljko Budisa (Department of Chemistry, U of Manitoba) for providing the expression plasmid and granting access to the FPLC instrument in their lab.

Financial support from an NSERC Discovery Grant (RGPIN-2017-04958) to JLS for this research is gratefully acknowledged. Funding to HG from the U of Manitoba Faculty of Science Enhancement of Graduate Stipends Program is acknowledged.

References

[1]

M. Grimm, M. Grube, U. Schiefelbein, D. Zühlke, J. Bernhardt, K. Riedel, The Lichens’ Microbiota, Still a Mystery? Frontiers in Microbiology 12 (2021) 623839, doi:10.3389/fmicb.2021.623839.

[2]

F. Lutzoni, J. Miadlikowska, Lichens, Current Biology: CB 19 (13) (2009) R502-R503, doi:10.1016/j.cub.2009.04.034.

[3]

P. Matos, P. Pinho, G. Aragón, I. Martínez, A. Nunes, A.M.V.M. Soares, C. Bran- quinho, Lichen traits responding to aridity, Journal of Ecology 103 (2) (2015) 451-458, doi:10.1111/1365-2745.12364.

[4]

D. Armaleo, X. Sun, C. Culberson, Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone, Mycologia 103 (4) (2011) 741-754.

[5]

H. Gill, J.L. Sorensen, J. Collemare, Lichen Fungal Secondary Metabolites: Progress in the Genomic Era Toward Ecological Roles in the Interaction,in: C.Mesarich (Eds.), Plant Relationships:Fungal-Plant Interactions, Springer Inter- national Publishing, 2023, pp. 185-208, doi:10.1007/978-3-031-16503-0_7.

[6]

J.T. Kealey, J.P. Craig, P.J. Barr, Identification of a lichen depside polyketide syn- thase gene by heterologous expression in Saccharomyces cerevisiae, Metabolic En- gineering Communications 13 (2021) e00172, doi:10.1016/j.mec.2021.e00172.

[7]

W. Kim, R. Liu, S. Woo, K.B. Kang, H. Park, Y.H. Yu, H.H. Ha, S.Y. Oh, J.H. Yang, H. Kim, Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression, mBio 12 (3) (2021) e01111-e01121.

[8]

W. Yi, Z. Neng, Y. Xiaolong, H. Mei, H. Jae-Seoun, Y. Yuming, W. Juan, Heterologous transcription of a polyketide synthase gene from the lichen forming fungi Usnea longissima, Research Journal of Biotechnology 11 (10) (2016) 16-21.

[9]

S.J. Sinnemann, Ó.S. Andrésson, D.W. Brown, V.P. Miao, Cloning and heterologous expression of Solorina crocea pyrG, Current Genetics 37 (5) (2000) 333-338.

[10]

K. Yang, J. Tian, N.P. Keller, Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review, Environmental Microbiology 24 (7) (2022) 2857-2881, doi:10.1111/1462-2920.16034.

[11]

R.L. Bertrand, M. Abdel-Hameed, J.L. Sorensen, Lichen Biosynthetic Gene Clusters Part II: Homology Mapping Suggests a Functional Diversity, Journal of Natural Prod- ucts 81 (4) (2018) 732-748, doi:10.1021/acs.jnatprod.7b00770.

[12]

L. Martinet, A. Naômé, B. Deflandre, M. Maciejewska, D. Tellatin, E. Tenconi, N. Smargiasso, E. de Pauw, G.P. van Wezel, S. Rigali, A Single Biosynthetic Gene Cluster Is Responsible for the Production of Bagremycin Antibiotics and Ferroverdin Iron Chelators, mBio 10 (4) (2019) e01230 -19, doi:10.1128/mBio.01230-19.

[13]

Y. Ishii, Y. Narimatsu, Y. Iwasaki, N. Arai, K. Kino, K. Kirimura, Reversible and nonoxidative 𝛾-resorcylic acid decarboxylase: Characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1, 3-dihydroxybenzene, from Rhizobium radiobacter, Biochemical and Biophysical Research Communications 324 (2) (2004) 611-620.

[14]

K. Kino, Y. Hirokawa, R. Gawasawa, R. Murase, R. Tsuchihashi, R. Hara, Screening, gene cloning, and characterization of orsellinic acid decarboxylase from Arthrobac- ter sp. K8 for regio-selective carboxylation of resorcinol derivatives, Journal of Biotechnology 323 (2020) 128-135.

[15]

K. Kirimura, H. Gunji, R. Wakayama, T. Hattori, Y. Ishii, Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decar- boxylase, Biochemical and Biophysical Research Communications 394 (2) (2010) 279-284.

[16]

C. Wuensch, J. Gross, G. Steinkellner, A. Lyskowski, K. Gruber, S.M. Glueck, K. Faber, Regioselective ortho-carboxylation of phenols catalyzed by benzoic acid decarboxy- lases: a biocatalytic equivalent to the Kolbe-Schmitt reaction, RSC Advances 4 (19)(2014) 9673-9679.

[17]

C. Wuensch, T. Pavkov-Keller, G. Steinkellner, J. Gross, M. Fuchs, A. Hromic, A. Lyskowski, K. Fauland, K. Gruber, S.M. Glueck, Regioselective Enzymatic 𝛽-Carboxylation of para-Hydroxy-styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases, Advanced Synthesis & Catalysis 357 (8) (2015) 1909-1918.

[18]

M. Yoshida, T. Oikawa, H. Obata, K. Abe, H. Mihara, N. Esaki, Biochemical and genetic analysis of the 𝛾-resorcylate (2, 6-dihydroxybenzoate) catabolic pathway in Rhizobium sp. strain MTP-10005: Identification and functional analysis of its gene cluster, Journal of Bacteriology 189 (5) (2007) 1573-1581.

[19]

R.L. Bertrand, M. Abdel-Hameed, J.L. Sorensen, Lichen Biosynthetic Gene Clusters. Part I. Genome Sequencing Reveals a Rich Biosynthetic Potential, Journal of Natural Products 81 (4) (2018) 723-731, doi:10.1021/acs.jnatprod.7b00769.

[20]

M. Yoshida, N. Fukuhara, T. Oikawa, Thermophilic, Reversible 𝛾-Resorcylate De- carboxylase from Rhizobium sp. Strain MTP-10005: Purification, Molecular Char- acterization, and Expression, Journal of Bacteriology 186 (20) (2004) 6855-6863, doi:10.1128/JB.186.20.6855-6863.2004.

[21]

R.L. Bertrand, J.L. Sorensen, Lost in Translation: Challenges with Heterologous Ex- pression of Lichen Polyketide Synthases, ChemistrySelect 4 (21) (2019) 6473-6483, doi:10.1002/slct.201901762.

[22]

M. Goto, H. Hayashi, I. Miyahara, K. Hirotsu, M. Yoshida, T. Oikawa, Crystal Struc- tures of Nonoxidative Zinc-dependent 2,6-Dihydroxybenzoate (𝛾 -Resorcylate) De- carboxylase from Rhizobium sp. Strain MTP-10005, Journal of Biological Chemistry 281 (45) (2006) 34365-34373, doi:10.1074/jbc.M607270200.

[23]

E.L. Wise, W.S. Yew, J. Akana, J.A. Gerlt, I. Rayment, Evolution of Enzymatic Activities in the Orotidine 5‘-Monophosphate Decarboxylase Suprafamily: Struc- tural Basis for Catalytic Promiscuity in Wild-Type and Designed Mutants of 3-Keto-l-gulonate 6-Phosphate Decarboxylase, Biochemistry 44 (6) (2005) 1816-1823, doi:10.1021/bi0478143.

[24]

T.M. Stanley, W.H. Johnson, E.A. Burks, C.P. Whitman, C.C. Hwang, P.F. Cook, Ex- pression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase, Biochemistry 39 (4) (2000) 718-726, doi:10.1021/bi9918902.

[25]

T. Li, H. Iwaki, R. Fu, Y. Hasegawa, H. Zhang, A. Liu, 𝛼-Amino-𝛽 -carboxymuconic-𝜀 -semialdehyde Decarboxylase (ACMSD) Is a New Member of the Amidohydrolase Superfamily, Biochemistry 45 (21) (2006) 6628-6634, doi:10.1021/bi060108c.

[26]

T. Li, A.L. Walker, H. Iwaki, Y. Hasegawa, A. Liu, Kinetic and Spectroscopic Char- acterization of ACMSD from Pseudomonas fluorescens Reveals a Pentacoordinate Mononuclear Metallocofactor, Journal of the American Chemical Society 127 (35)(2005) 12282-12290, doi:10.1021/ja0532234.

[27]

M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Bio- chemistry 72 (1976) 248-254, doi:10.1006/abio.1976.9999.

[28]

E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera —A visualization system for exploratory research and analysis, Journal of Computational Chemistry 25 (13) (2004) 1605-1612, doi:10.1002/jcc.20084.

[29]

J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., Bodenstein S.W., Evans D.A., Hung, C.C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu, Z., Ž emgulyt ė A., Arvaniti E., …Jumper J.M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493-500. doi:10.1038/s41586-024-07487-w.

[30]

E.C. Meng, T.D. Goddard, E.F. Pettersen, G.S. Couch, Z.J. Pearson, J.H. Morris, T.E. Ferrin, UCSF ChimeraX: Tools for structure building and analysis, Protein Sci- ence 32 (11) (2023) e4792, doi:10.1002/pro.4792.

[31]

K. Tamura, G. Stecher, S. Kumar, MEGA11: molecular Evolutionary Genetics Anal- ysis Version 11, Molecular Biology and Evolution 38 ( 7) (2021) 3022-3027, doi:10.1093/molbev/msab120.

[32]

E. Zuckerkandl, L. Pauling, Evolutionary divergence and convergence in pro- teins, in: Evolving Genes and Proteins, Elsevier, 1965, pp. 97-166. https://www.sciencedirect.com/science/article/pii/B9781483227344500176.

[33]

J. Dopazo, Estimating errors and confidence intervals for branch lengths in phylo- genetic trees by a bootstrap approach, Journal of Molecular Evolution 38 ( 3) (1994) 300-304, doi:10.1007/BF00176092.

[34]

A. Rzhetsky, M. Nei, Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference, Journal of Molecular Evolution 35 ( 4) (1992) 367-375, doi:10.1007/BF00161174.

[35]

X. Zhang, J. Ren, P. Yao, R. Gong, M. Wang, Q. Wu, D. Zhu, Biochemical characteri- zation and substrate profiling of a reversible 2,3-dihydroxybenzoic acid decarboxy- lase for biocatalytic Kolbe-Schmitt reaction, Enzyme and Microbial Technology 113 (2018) 37-43, doi:10.1016/j.enzmictec.2018.02.008.

[36]

S. Bierbaumer, M. Nattermann, L. Schulz, R. Zschoche, T.J. Erb, C.K. Winkler, M. Tinzl, S.M. Glueck, Enzymatic Conversion of CO2: From Natural to Artificial Utilization, Chemical Reviews (2023), doi:10.1021/acs.chemrev.2c00581.

[37]

F. Liu, S.H. Wang, R. Cheewangkoon, R.L. Zhao, Uneven distribution of prokaryote- derived horizontal gene transfer in fungi: a lifestyle-dependent phenomenon, mBio 16 (1) (2024) e02855 -24, doi:10.1128/mbio.02855-24.

[38]

C. Puginier, C. Libourel, J. Otte, P. Skaloud, M. Haon, S. Grisel, M. Petersen, J.G. Berrin, P.M. Delaux, F. Dal Grande, J. Keller, Phylogenomics reveals the evo- lutionary origins of lichenization in chlorophyte algae, Nature Communications 15 (2024) 4452, doi:10.1038/s41467-024-48787-z.

[39]

S. Huneck, NATURE OF LICHEN SUBSTANCES, in: The Lichens, Elsevier, 1973, pp. 495-522, doi:10.1016/B978-0-12-044950-7.50020-9.

[40]

P. Papadopoulou, O. Tzakou, C. Vagias, P. Kefalas, V. Roussis, 𝛽-Orcinol Metabo- lites from the Lichen Hypotrachyna revoluta, Molecules 12 (5) (2007) Article 5, doi:10.3390/12050997.

[41]

B. Ranković (Ed.), Lichen Secondary Metabolites:Bioactive Properties and Pharmaceutical Potential, Springer International Publishing, 2019, doi:10.1007/978-3-030-16814-8.

[42]

S.M. Glueck, S. Gümüs, W.M. Fabian, K. Faber, Biocatalytic carboxylation, Chemical Society Reviews 39 (1) (2010) 313-328.

[43]

H. Gilman, H.B. Willis, T.H. Cook, F.J. Webb, R.N. Meals, Dibenzofuran. XVIII. Iso- meric Metalation Products of Some Phenols and their Methyl Ethers1, Journal of the American Chemical Society 62 (3) (1940) 667-669.

AI Summary AI Mindmap
PDF (4611KB)

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/