Production of dicarboxylates from ω-amino acids using a cofactor- and co-substrate-free in vitro biosynthetic system

Jinxin Yan , Hui Zhang , Hongxu Zhang , Hairong Yu , Wenjia Tian , Mingyuan Liu , Weikang Sun , Leilei Guo , Xiaoxu Tan , Kaiyu Gao , Tianyi Jiang , Chuanjuan Lü , Qianjin Kang , Wensi Meng , Cuiqing Ma , Chao Gao , Ping Xu

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100210

PDF (1500KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100210 DOI: 10.1016/j.engmic.2025.100210
Original Research Article
research-article

Production of dicarboxylates from ω-amino acids using a cofactor- and co-substrate-free in vitro biosynthetic system

Author information +
History +
PDF (1500KB)

Abstract

Dicarboxylates are valuable platform compounds with a broad range of applications. The in vitro biosynthetic system used to produce dicarboxylates from ω-amino acids via the natural pathway requires costly cofactors and co-substrates, which restricts its economic feasibility of use. In this study, we designed a cofactor- and co-substrate-free artificial pathway for the production of dicarboxylates from ω-amino acids. Only three enzymes (viz., amine oxidase from Kluyveromyces marxianus DMKU3-1042, xanthine oxidase from bovine milk, and catalase from Aspergillus niger) were required for dicarboxylate production. Succinate (0.79 g g-1), glutarate (0.83 g g-1), and adipate (0.77 g g-1) were produced in high yields from the corresponding ω-amino acids through the in vitro biosynthetic system with the artificial pathway. Glutarate could also be produced from l-lysine by further introducing l-lysine monooxygenase and 5-aminovaleramide amidohydrolase from Pseudomonas putida KT2440 into the in vitro biosynthetic system, with the cofactor- and co-substrate-free system achieving a product yield of 0.63 g g-1. Considering its desirable characteristics, this artificial pathway-based in vitro biosynthetic system may be a promising alternative for dicarboxylate production from biotechnologically produced ω-amino acids.

Keywords

Dicarboxylate / ω-amino acid / Cofactor / Artificial pathway / In vitro biosynthetic system

Cite this article

Download citation ▾
Jinxin Yan, Hui Zhang, Hongxu Zhang, Hairong Yu, Wenjia Tian, Mingyuan Liu, Weikang Sun, Leilei Guo, Xiaoxu Tan, Kaiyu Gao, Tianyi Jiang, Chuanjuan Lü, Qianjin Kang, Wensi Meng, Cuiqing Ma, Chao Gao, Ping Xu. Production of dicarboxylates from ω-amino acids using a cofactor- and co-substrate-free in vitro biosynthetic system. Engineering Microbiology, 2025, 5(3): 100210 DOI:10.1016/j.engmic.2025.100210

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

The data supporting the findings of this study are included in this published article as well as in the Supplementary Materials available online.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jinxin Yan: Writing - original draft, Data curation. Hui Zhang: Writing - review & editing, Data curation. Hongxu Zhang: Writing - review & editing, Data curation. Hairong Yu: Investigation. Wenjia Tian: Investigation. Mingyuan Liu: Investigation. Weikang Sun: Investigation. Leilei Guo: Investigation. Xiaoxu Tan: Investigation. Kaiyu Gao: Investigation. Tianyi Jiang: Funding acquisition. Chuanjuan Lü: Writing - review & editing, Validation, Supervision, Funding acquisition, Conceptualization. Qianjin Kang: Validation, Investigation. Wensi Meng: Funding acquisition. Cuiqing Ma: Validation, Investigation. Chao Gao: Writing - review & editing, Validation, Funding acquisition, Conceptualization. Ping Xu: Validation, Investigation.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (32300045, 32300029), Youth Program of Natural Science Foundation of Shandong Province (ZR2022QC092, ZR2023QC237), China Postdoctoral Science Foundation (2023M742085), Youth Program of Natural Science Foundation of Qingdao City (23-2-1-31-zyyd-jch), Postdoctoral Innovation Program of Shandong Province (SDCX-ZG-202400150), Qingdao Postdoctoral Research Project (QDBSH20230201011), State Key Laboratory of Microbial Technology Open Projects Fund (M2023-02), Open Funding Project of State Key Laboratory of Microbial Metabolism (MMLKF24-07), China Postdoctoral Science Foundation (2024M751800) and State Key Laboratory of Microbial Technology (SKLMTFCP-2023-03). We also thank Dr. Jing Zhu, Dr. Jingyao Qu, Dr. Zhifeng Li, and Dr. Guannan Lin from State Key Laboratory of Microbial Technology for assistance in mass spectrographic analysis.

References

[1]

R.W. Haushalter, R.M. Phelan, K.M. Hoh, C. Su, G. Wang, E.E. Baidoo, J.D. Keasling, Production of odd-carbon dicarboxylic acids in Escherichia coli using an engineered biotin-fatty acid biosynthetic pathway, J. Am. Chem. Soc. 139 (2017) 4615-4618, doi:10.1021/jacs.6b11895.

[2]

G. Paris, L. Berlinguet, R. Gaudry, J. English Jr., J.E. Dayan, Glutaric acid and glu- tarimide, Org. Synth. 37 (2003) 47-47, doi:10.1002/0471264180.os037.16.

[3]

M. Vafaeezadeh, M.M. Hashemi, A non-cyanide route for glutaric acid synthesis from oxidation of cyclopentene in the ionic liquid media, Process Saf. Environ. Prot. 100 (2016) 203-207, doi:10.1016/j.psep.2016.01.011.

[4]

N.S. Kruyer, P. Peralta-Yahya, Metabolic engineering strategies to bio- adipic acid production, Curr. Opin. Biotechnol. 45 (2017) 136-143, doi:10.1016/j.copbio.2017.03.006.

[5]

H. Chung, J.E. Yang, J.Y. Ha, T.U. Chae, J.H. Shin, M. Gustavsson, S.Y. Lee, Bio- based production of monomers and polymers by metabolically engineered mi- croorganisms, Curr. Opin. Biotechnol. 36 (2015) 73-84, doi:10.1016/j.copbio.2015. 07.003.

[6]

A. Mazière, P. Prinsen, A. García, R. Luque, C. Len, A review of progress in (bio)catalytic routes from/to renewable succinic acid, Biofuels Bioprod. Biorefin. 11 (2017) 908-931, doi:10.1002/bbb.1785.

[7]

T.U. Chae, J.H. Ahn, Y.S. Ko, J.W. Kim, J.A. Lee, E.H. Lee, S.Y. Lee, Metabolic en- gineering for the production of dicarboxylic acids and diamines, Metab. Eng. 58 (2020) 2-16, doi:10.1016/j.ymben.2019.03.005.

[8]

Y. Zhong, J. Gu, C. Shang, J. Deng, Y. Liu, Z. Cui, X. Lu, Q. Qi, Sustain- able succinic acid production from lignocellulosic hydrolysates by engineered strains of Yarrowia lipolytica at low pH, Bioresour. Technol. 408 (2024) 131166, doi:10.1016/j.biortech.2024.131166.

[9]

Z. Cui, Y. Zhong, Z. Sun, Z. Jiang, J. Deng, Q. Wang, J. Nielsen, J. Hou, Q. Qi, Reconfiguration of the reductive TCA cycle enables high-level suc- cinic acid production by Yarrowia lipolytica, Nat. Commun. 14 (2023) 8480, doi:10.1038/s41467-023-44245-4.

[10]

C.J. Chiang, R.C. Hu, Z.C. Huang, Y.P. Chao, Production of succinic acid from amino acids in Escherichia coli, J. Agric. Food Chem. 69 (2021) 8172-8178, doi:10.1021/acs.jafc.1c02958.

[11]

Y. Liu, O. Esen, J.T. Pronk, W.M. van Gulik, Uncoupling growth and succinic acid production in an industrial Saccharomyces cerevisiae strain, Biotechnol. Bioeng. 118 (2021) 1576-1586, doi:10.1002/bit.27672.

[12]

W. Li, L. Ma, X. Shen, J. Wang, Q. Feng, L. Liu, G. Zheng, Y. Yan, X. Sun, Q. Yuan, Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production, Nat. Commun. 10 (2019) 3337, doi:10.1038/s41467-019-11289-4.

[13]

M. Zhao, G. Li, Y. Deng, Engineering Escherichia coli for glutarate produc- tion as the C(5) platform backbone, Appl. Environ. Microbiol. 84 (2018), doi:10.1128/AEM.00814-18.

[14]

T. Han, G.B. Kim, S.Y. Lee, Glutaric acid production by systems metabolic engineer- ing of an l -lysine-overproducing Corynebacterium glutamicum, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 30328-30334, doi:10.1073/pnas.2017483117.

[15]

H.T. Kim, T.U. Khang, K.A. Baritugo, S.M. Hyun, K.H. Kang, S.H. Jung, B.K. Song, K. Park, M.K. Oh, G.B. Kim, H.U. Kim, S.Y. Lee, S.J. Park, J.C. Joo, Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical, Metab. Eng. 51 (2019) 99-109, doi:10.1016/j.ymben.2018.08.007.

[16]

M. Zhao, D. Huang, X. Zhang, M.A.G. Koffas, J. Zhou, Y. Deng, Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway, Metab. Eng. 47 (2018) 254-262, doi:10.1016/j.ymben.2018.04.002.

[17]

X. Zhang, Y. Liu, J. Wang, Y. Zhao, Y. Deng, Biosynthesis of adipic acid in metabol- ically engineered Saccharomyces cerevisiae, J. Microbiol. 58 (2020) 1065-1075, doi:10.1007/s12275-020-0261-7.

[18]

Y. Zhou, M. Zhao, S. Zhou, Y. Zhao, G. Li, Y. Deng, Biosynthesis of adipic acid by a highly efficient induction-free system in Escherichia coli, J. Biotechnol. 314-315 (2020) 8-13, doi:10.1016/j.jbiotec.2020.03.011.

[19]

T. Hao, G. Li, S. Zhou, Y. Deng, Engineering the reductive TCA pathway to dynami- cally regulate the biosynthesis of adipic acid in Escherichia coli, ACS Synth. Biol. 10 (2021) 632-639, doi:10.1021/acssynbio.0c00648.

[20]

H. Liu, Y. Jin, R. Zhang, Y. Ning, Y. Yu, P. Xu, L. Deng, F. Wang, Recent advances and perspectives on production of value-added organic acids through metabolic engineering, Biotechnol. Adv. 62 (2023) 108076, doi:10.1016/j.biotechadv.2022.108076.

[21]

N.S. Kruyer, N. Wauldron, A.S. Bommarius, P. Peralta-Yahya, Fully biological pro- duction of adipic acid analogs from branched catechols, Sci. Rep. 10 (2020) 13367, doi:10.1038/s41598-020-70158-z.

[22]

M. Teshima, V.P. Willers, V. Sieber, Cell-free enzyme cascades-application and tran- sition from development to industrial implementation, Curr. Opin. Biotechnol. 79 (2023) 102868, doi:10.1016/j.copbio.2022.102868.

[23]

J.A. Rollin, J. Martin del Campo, S. Myung, F. Sun, C. You, A. Bakovic, R. Castro, S.K. Chandrayan, C.H. Wu, M.W. Adams, R.S. Senger, Y.H. Zhang, High-yield hy- drogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 4964-4969, doi:10.1073/pnas.1417719112.

[24]

J.S. Martin del Campo, J. Rollin, S. Myung, Y. Chun, S. Chandrayan, R. Patino, M. W. Adams, Y.H. Zhang, High-yield production of dihydrogen from xylose by us- ing a synthetic enzyme cascade in a cell-free system, Angew. Chem. Int. Ed. Engl. 52 (2013) 4587-4590, doi:10.1002/anie.201300766.

[25]

C. You, H. Chen, S. Myung, N. Sathitsuksanoh, H. Ma, X.Z. Zhang, J. Li, Y.H. Zhang, Enzymatic transformation of nonfood biomass to starch, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 7182-7187, doi:10.1073/pnas.1302420110.

[26]

J.K. Guterl, D. Garbe, J. Carsten, F. Steffler, B. Sommer, S. Reisse, A. Philipp, M. Haack, B. Ruhmann, A. Koltermann, U. Kettling, T. Bruck, V. Sieber, Cell-free metabolic engineering: production of chemicals by minimized reaction cascades, ChemSusChem 5 (2012) 2165-2172, doi:10.1002/cssc.201200365.

[27]

J.H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Artificial biocatalytic linearcascades for preparation of organic molecules, Chem. Rev. 118 (2018) 270-348, doi:10.1021/acs.chemrev.7b00033.

[28]

J.M. Sperl, V. Sieber∗, Multienzyme cascade reactions ―status and recent advances, ACS Catal. 8 (2018) 2385-2396 Vol., doi:10.1021/acscatal.7b03440.

[29]

K. Petroll, D. Kopp, A. Care, P.L. Bergquist, A. Sunna, Tools and strategies for constructing cell-free enzyme pathways, Biotechnol. Adv. 37 (2019) 91-108, doi:10.1016/j.biotechadv.2018.11.007.

[30]

S. Güner, V. Wegat, A. Pick, V. Sieber, Design of a synthetic enzyme cascade for the in vitro fixation of a C1 carbon source to a functional C4 sugar, Green Chem. 23 (2021) 6583-6590, doi:10.1039/D1GC02226A.

[31]

S. Sutiono, O. Melse, M. Döring, P. Lommes, V. Sieber, Integrating chemocatal- ysis and enzyme engineering for coproduction of bioplastic precursors butane- diol and succinic acid from xylose, Adv. Synth. Catal. 366 (2024) 299-308, doi:10.1002/adsc.202300819.

[32]

V.P. Willers, M. Döring, B. Beer, V. Sieber, Cell-free enzymatic l -alanine synthesis from green methanol, Chem. Catal. 3 (2023), doi:10.1016/j.checat.2022.100502.

[33]

J.W. Song, E.Y. Jeon, D.H. Song, H.Y. Jang, U.T. Bornscheuer, D.K. Oh, J.B. Park, Multistep enzymatic synthesis of long-chain alpha,omega-dicarboxylic and omega- hydroxycarboxylic acids from renewable fatty acids and plant oils, Angew. Chem. Int. Ed. Engl. 52 (2013) 2534-2537, doi:10.1002/anie.201209187.

[34]

J. Lu, D. Lu, Q. Wu, S. Jin, J. Liu, M. Qin, L. Deng, F. Wang, K. Nie, Bio- catalytic cascade of sebacic acid production with in situ co-factor regenera- tion enabled by engineering of an alcohol dehydrogenase, Catalysts 12 (2022), doi:10.3390/catal12111318.

[35]

J. Son, Y.J. Sohn, K.A. Baritugo, S.Y. Jo, H.M. Song, S.J. Park, Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as poten- tial platform chemicals and bio-based polyamides monomers, Biotechnol. Adv. 62 (2023) 108070, doi:10.1016/j.biotechadv.2022.108070.

[36]

Q. Wang, X. Liu, J. Fu, S. Wang, Y. Chen, K. Chang, H. Li, Substrate sustained release- based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912, Microb. Cell Factories 17 (2018) 80, doi:10.1186/s12934-018-0919-6.

[37]

L. Yao, C. Lyu, Y. Wang, S. Hu, W. Zhao, H. Cao, J. Huang, L. Mei, High-level pro- duction of gamma-aminobutyric acid via efficient co-expression of the key genes of glutamate decarboxylase system in Escherichia coli, Eng. Microbiol. 3 (2023) 100077, doi:10.1016/j.engmic.2023.100077.

[38]

J. Cheng, Q. Luo, H. Duan, H. Peng, Y. Zhang, J. Hu, Y. Lu, Efficient whole-cell catalysis for 5-aminovalerate production from l -lysine by using en- gineered Escherichia coli with ethanol pretreatment, Sci. Rep. 10 (2020) 990, doi:10.1038/s41598-020-57752-x.

[39]

S.J. Park, E.Y. Kim, W. Noh, H.M. Park, Y.H. Oh, S.H. Lee, B.K. Song, J. Je- gal, S.Y. Lee, Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals, Metab. Eng. 16 (2013) 42-47, doi:10.1016/j.ymben.2012.11.011.

[40]

J. Cheng, G. Hu, Y. Xu, M.P. Torrens-Spence, X. Zhou, D. Wang, J.K. Weng, Q. Wang, Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle, Metab. Eng. 55 (2019) 23-32, doi:10.1016/j.ymben.2019.06.009.

[41]

P. Liu, H. Zhang, M. Lv, M. Hu, Z. Li, C. Gao, P. Xu, C. Ma, Enzymatic production of 5-aminovalerate from l -lysine using l -lysine monooxygenase and 5-aminovaleramide amidohydrolase, Sci. Rep. 4 (2014) 5657, doi:10.1038/srep05657.

[42]

M.A. Markwell, S.M. Haas, L.L. Bieber, N.E. Tolbert, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem. 87 (1978) 206-210, doi:10.1016/0003-2697(78)90586-9.

[43]

M.S. Malik, E.S. Park, J.S. Shin, Features and technical applications of omega-transaminases, Appl. Microbiol. Biotechnol. 94 (2012) 1163-1171, doi:10.1007/s00253-012-4103-3.

[44]

S. Zhang, D.A. Bryant, The tricarboxylic acid cycle in Cyanobacteria, Science 334 (2011) 1551-1553 (1979), doi:10.1126/science.1210858.

[45]

A. Al-Shameri, L. Schmermund, V. Sieber, Current advances in the enzyme engineering of O2 -dependent enzymes-boosting the versatility and applica- bility of oxygenases and oxidases, ChemCatChem 16 (2024) e202301109, doi:10.1002/cctc.202301109.

[46]

A. Al-Shameri, L. Schmermund, V. Sieber, Engineering approaches for O2- dependent enzymes, Curr. Opin. Green Sustain. Chem. 40 (2023) 100733, doi:10.1016/j.cogsc.2022.100733.

[47]

Y. Asano, K. Yasukawa, Identification and development of amino acid oxidases, Curr. Opin. Chem. Biol. 49 (2019) 76-83, doi:10.1016/j.cbpa.2018.10.020.

[48]

E.M. Shepard, D.M. Dooley, Inhibition and oxygen activation in copper amine oxi- dases, Acc. Chem. Res. 48 (2015) 1218-1226, doi:10.1021/ar500460z.

[49]

K. Matsumura, H. Hisada, H. Obata, Y. Hata, A. Kawato, Y. Abe, O. Akita, A novel amine oxidase-encoding gene from Aspergillus oryzae, J. Biosci. Bioeng. 98 (2004) 359-365, doi:10.1016/S1389-1723(04)00296-8.

[50]

J.I. Lee, Y.W. Kim, Characterization of amine oxidases from Arthrobacter aurescens and application for determination of biogenic amines, World J. Microbiol. Biotech- nol. 29 (2013) 673-682, doi:10.1007/s11274-012-1223-y.

[51]

D. Corpillo, F. Valetti, M.G. Giuffrida, A. Conti, A. Rossi, A. Finazzi-Agro, C. Giunta, Induction and characterization of a novel amine oxidase from the yeast Kluyveromyces marxianus, Yeast 20 (2003) 369-379, doi:10.1002/yea.969.

[52]

T.A. Krenitsky, S.M. Neil, G.B. Elion, G.H. Hitchings, A comparison of the specificities of xanthine oxidase and aldehyde oxidase, Arch. Biochem. Biophys. 150 (1972) 585-599, doi:10.1016/0003-9861(72)90078-1.

[53]

F.F. Morpeth, Studies on the specificity toward aldehyde substrates and steady- state kinetics of xanthine oxidase, Biochim. Biophys. Acta 744 (1983) 328-334, doi:10.1016/0167-4838(83)90207-8.

[54]

L. Eggeling, M. Bott, A giant market and a powerful metabolism: l -lysine providedby Corynebacterium glutamicum, Appl. Microbiol. Biotechnol. 99 (2015) 3387-3394, doi:10.1007/s00253-015-6508-2.

[55]

H. Ying, S. Tao, J. Wang, W. Ma, K. Chen, X. Wang, P. Ouyang, Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical inter- mediate l -pipecolic acid in Escherichia coli, Microb. Cell Factories 16 (2017) 52, doi:10.1186/s12934-017-0666-0.

[56]

Y.G. Hong, Y.M. Moon, J.W. Hong, S.Y. No, T.R. Choi, H.R. Jung, S.Y. Yang, S.K. Bhatia, J.O. Ahn, K.M. Park, Y.H. Yang, Production of glutaric acid from5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpress- ing GabTD from Bacillus subtilis, Enzyme Microb. Technol. 118 (2018) 57-65, doi:10.1016/j.enzmictec.2018.07.002.

[57]

S.Y. Yang, T.R. Choi, H.R. Jung, Y.L. Park, Y.H. Han, H.S. Song, S.K. Bha-tia, K. Park, J.O. Ahn, W.Y. Jeon, J.S. Kim, Y.H. Yang, Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol, Enzyme Microb. Technol. 128 (2019) 72-78, doi:10.1016/j.enzmictec.2019.05.003.

AI Summary AI Mindmap
PDF (1500KB)

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/