Analysis of single-cell RNA sequencing data to examine the gastric inflammation-to-cancer transition and evaluation of the effect of probiotic on precancerous lesions

Minmin Hu , Shiyang Xu , Ruofei Xu , Xiangjie Qi , Xiaofeng Yu , Jinqi Wang , Yige Li , Yangyang Liu , Guiran Xi , Junbao Yu , Mei Shi

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100208

PDF (5198KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (3) : 100208 DOI: 10.1016/j.engmic.2025.100208
Original Research Article
research-article

Analysis of single-cell RNA sequencing data to examine the gastric inflammation-to-cancer transition and evaluation of the effect of probiotic on precancerous lesions

Author information +
History +
PDF (5198KB)

Abstract

Gastric cancer (GC) is the fifth most prevalent malignancy globally. However, its heterogeneity and asymptomatic early-stage development hinder timely diagnosis and effective treatment. Here, we employed single-cell RNA sequencing to delineate the transitional features of pit mucous cells (PMCs) during the gastritis-to-cancer transition and identified 100 core genes. Characterization of the gene set revealed the role of ribosomal protein small subunit and ribosomal protein large subunit in inflammation-to-cancer transition, which promoted ribonucleoprotein complex biogenesis and cytoplasmic translation. External validation using independent cohorts confirmed that this core gene set discriminated disease progression (AUC>0.7) and was significantly enriched in GC tissues (p<0.01). Moreover, we evaluated the therapeutic intervention effects of C. butyricum and synbiotics (Weichanghao®) using a rat model of gastritis and demonstrated the targeted suppression of inflammation-to-cancer transition genes. Our findings establish the basis for early diagnosis of GC through PMC-driven molecular dynamics. Additionally, we propose microbiota-based strategies to prevent the inflammation-to-cancer transition in preneoplastic stages. Furthermore, our results highlight that dysbiosis of the gastric microbiome can be addressed using probiotic supplementations and the core gene set may provide labeling for the evaluation of probiotics-based treatment.

Keywords

Gastric cancer / Inflammation-to-cancer transition / Single-cell RNA sequencing / Probiotic

Cite this article

Download citation ▾
Minmin Hu, Shiyang Xu, Ruofei Xu, Xiangjie Qi, Xiaofeng Yu, Jinqi Wang, Yige Li, Yangyang Liu, Guiran Xi, Junbao Yu, Mei Shi. Analysis of single-cell RNA sequencing data to examine the gastric inflammation-to-cancer transition and evaluation of the effect of probiotic on precancerous lesions. Engineering Microbiology, 2025, 5(3): 100208 DOI:10.1016/j.engmic.2025.100208

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

Publicly available data was downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Experimental data in this study are available on request to the corresponding authors

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Minmin Hu: Writing - original draft, Investigation, Formal analysis. Shiyang Xu: Writing - original draft, Investigation, Formal analysis. Ruofei Xu: Validation, Investigation. Xiangjie Qi: Resources. Xiaofeng Yu: Resources. Jinqi Wang: Investigation, Conceptualization. Yige Li: Investigation. Yangyang Liu: Validation. Guiran Xi: Validation. Junbao Yu: Validation. Mei Shi: Writing - review & editing, Supervision, Investigation.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA0717002) and Qingdao Municipal People's Livelihood Project (22-3-7-smjk-8-nsh).

References

[1]

H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209-249, doi:10.3322/caac.21660.

[2]

R. Sitarz, M. Skierucha, J. Mielko, J. Offerhaus, R. Maciejewski, W. Polkowski, Gas- tric cancer: epidemiology, prevention, classification, and treatment, Cancer Manage Res. 10 (2018) 239-248, doi:10.2147/CMAR.S149619.

[3]

W.B. Morrison, Inflammation and cancer: a comparative view, J. Vet. Intern. Med. 26 (2012) 18-31, doi:10.1111/j.1939-1676.2011.00836.x.

[4]

J. Hou, M. Karin, B. Sun, Targeting cancer-promoting inflammation - have anti- inflammatory therapies come of age? Nat. Rev. Clin. Oncol. 18 (2021) 261-279, doi:10.1038/s41571-020-00459-9.

[5]

P. Correa, Human gastric carcinogenesis: a multistep and multifactorial process First American Cancer Society Award lecture on Cancer Epidemiology and Prevention, Cancer Res. 52 (1992) 6735-6740.

[6]

S. Carl-McGrath, M. Ebert, C. Röcken, Gastric adenocarcinoma: epidemiology, pathology and pathogenesis, Cancer Ther. 5 (2007) 879-896.

[7]

K. Taniguchi, M. Karin, IL-6 and related cytokines as the critical lynch- pins between inflammation and cancer, Semin. Immunol. 26 (2014) 54-74, doi:10.1016/j.smim.2014.01.001.

[8]

C. Geismann, H. Schäfer, J.-P. Gundlach, C. Hauser, J.-H. Egberts, G. Schneider, A. Arlt, NF- 𝜅b dependent chemokine signaling in pancreatic cancer, Cancers. (Basel) 11 (2019) 1445, doi:10.3390/cancers11101445.

[9]

K.E. De Visser, J.A. Joyce, The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth, Cancer Cell 41 (2023) 374-403, doi:10.1016/j.ccell.2023.02.016.

[10]

S. Zhang, Z. Liu, D. Wu, L. Chen, L. Xie, Single-cell RNA-seq analysis reveals microen- vironmental infiltration of plasma cells and hepatocytic prognostic markers in HCC with cirrhosis, Front. Oncol. 10 (2020) 596318, doi:10.3389/fonc.2020.596318.

[11]

M.J. Bazyari, Z. Saadat, A.A. Firouzjaei, S.H. Aghaee-Bakhtiari, Deciphering col- orectal cancer progression features and prognostic signature by single-cell RNA se- quencing pseudotime trajectory analysis, Biochem. Biophys. Rep. 35 (2023) 101491, doi:10.1016/j.bbrep.2023.101491.

[12]

Y. Zheng, X. Wang, X. Yang, N. Xing, Single-cell RNA sequencing reveals the cellu- lar and molecular characteristics of high-grade and metastatic bladder cancer, Cell Oncol. 46 (2023) 1415-1427, doi:10.1007/s13402-023-00820-x.

[13]

H. Lv, Y. Mu, C. Zhang, M. Zhao, P. Jiang, S. Xiao, H. Sun, N. Wu, D. Sun, Y. Jin, Com- parative analysis of single-cell transcriptome reveals heterogeneity and commonal- ity in the immune microenvironment of colorectal cancer and inflammatory bowel disease, Front. Immunol. 15 (2024) 1356075, doi:10.3389/fimmu.2024.1356075.

[14]

Y. Liang, L. Qiao, L. Lu, R. Zhang, S. Biswas, Q. Bu, Z. Xu, Y. Zhou, J. Tang, J. Zhou, H. Zhou, Integrated single-cell transcriptomics reveals the hypoxia-induced inflammation-cancer transformation in NASH-derived hepatocellular carcinoma, Cell Prolif.. https://doi.org/10.1111/cpr.13576.

[15]

J. Yao, Q. Cui, W. Fan, Y. Ma, Y. Chen, T. Liu, X. Zhang, Y. Xi, C. Wang, L. Peng, Y. Luo, A. Lin, W. Guo, L. Lin, Y. Lin, W. Tan, D. Lin, C. Wu, J. Wang, Single- cell transcriptomic analysis in a mouse model deciphers cell transition states in the multistep development of esophageal cancer, Nat. Commun. 11 (2020) 3715, doi:10.1038/s41467-020-17492-y.

[16]

R. Zeng, H. Gou, H.C.H. Lau, J. Yu, Stomach microbiota in gastric can- cer development and clinical implications, Gut 73 (2024) 2062-2073, doi:10.1136/gutjnl-2024-332815.

[17]

R.M. Ferreira, J. Pereira-Marques, I. Pinto-Ribeiro, J.L. Costa, F. Carneiro, J. C. Machado, C. Figueiredo, Gastric microbial community profiling re- veals a dysbiotic cancer-associated microbiota, Gut 67 (2018) 226-236, doi:10.1136/gutjnl-2017-314205.

[18]

D. Dai, Y. Yang, J. Yu, T. Dang, W. Qin, L. Teng, J. Ye, H. Jiang, Interactions between gastric microbiota and metabolites in gastric cancer, Cell Death. Dis. 12 (2021) 1104, doi:10.1038/s41419-021-04396-y.

[19]

M.A.M. Rogers, D.M. Aronoff, The influence of non-steroidal anti-inflammatory drugs on the gut microbiome, Clin. Microbiol. Infect. 22 (2016) 178.e1-178.e9, doi:10.1016/j.cmi.2015.10.003.

[20]

J. Suez, N. Zmora, E. Segal, E. Elinav, The pros, cons, and many unknowns of pro- biotics, Nat. Med. 25 (2019) 716-729, doi:10.1038/s41591-019-0439-x.

[21]

F.A. Wolf, P. Angerer, F.J. Theis, SCANPY: large-scale single-cell gene expression data analysis, Genome Biol. 19 (2018) 15, doi:10.1186/s13059-017-1382-0.

[22]

S.L. Wolock, R. Lopez, A.M. Klein, Scrublet: computational identification of cell doublets in single-cell transcriptomic data, Cell Syst. 8 (2019) 281-291. e9, doi:10.1016/j.cels.2018.11.005.

[23]

Z. Zeng, Y. Ma, L. Hu, B. Tan, P. Liu, Y. Wang, C. Xing, Y. Xiong, H. Du, Omic-Verse: a framework for bridging and deepening insights across bulk and single-cell sequencing, Nat. Commun. 15 (2024) 5983, doi:10.1038/s41467-024-50194-3.

[24]

L. Heumos, Y. Ji, L. May, T. Green, X. Zhang, X. Wu, J. Ostner, S. Peidli, A. Schumacher, K. Hrovatin, M. Müller, F. Chong, G. Sturm, A. Tejada, E. Dann, M. Dong, M. Bahrami, I. Gold, S. Rybakov, A. Namsaraeva, A. Moinfar, Z. Zheng, E. Roellin, I. Mekki, C. Sander, M. Lotfollahi, H.B. Schiller, F.J. Theis, Pertpy: an end-to-end framework for perturbation analysis, bioRxiv [Preprint] (2024), doi:10.1101/2024.08.04.606516.

[25]

R. Gao, S. Bai, Y.C. Henderson, Y. Lin, A. Schalck, Y. Yan, T. Kumar, M. Hu, E. Sei, A. Davis, F. Wang, S.F. Shaitelman, J.R. Wang, K. Chen, S. Moulder, S.Y. Lai, N.E. Navin, Delineating copy number and clonal substructure in hu- man tumors from single-cell transcriptomes, Nat. Biotechnol. 39 (2021) 599-608, doi:10.1038/s41587-020-00795-2.

[26]

M. Kang, J.J.A. Armenteros, G.S. Gulati, R. Gleyzer, S. Avagyan, E.L. Brown, W. Zhang, A. Usmani, N. Earland, Z. Wu, J. Zou, R.C. Fields, D.Y. Chen, A.A. Chaudhuri, A.M. Newman, Mapping single-cell developmental potential in health and disease with interpretable deep learning, bioRxiv [Preprint] (2024), doi:10.1101/2024.03.19.585637.

[27]

A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene setenrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 15545-15550, doi:10.1073/pnas.0506580102.

[28]

S. Xu, E. Hu, Y. Cai, Z. Xie, X. Luo, L. Zhan, W. Tang, Q. Wang, B. Liu, R. Wang, W. Xie, T. Wu, L. Xie, G. Yu, Using clusterProfiler to characterize multiomics data, Nat. Protoc. 19 (2024) 3292-3320, doi:10.1038/s41596-024-01020-z.

[29]

D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable, T. Fang, N.T. Doncheva, S. Pyysalo, P. Bork, L.J. Jensen, C. von Mering, The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest, Nucleic. Acids. Res. 51 (2023) D638-D646, doi:10.1093/nar/gkac1000.

[30]

G. Duan, G. Wu, X. Chen, D. Tian, Z. Li, Y. Sun, Z. Du, L. Hao, S. Song, Y. Gao, J. Xiao, Z. Zhang, Y. Bao, B. Tang, W. Zhao, HGD: an integrated homologous gene database across Multiple species, Nucleic. Acids. Res. 51 (2023) D994-D1002, doi:10.1093/nar/gkac970.

[31]

S. Hänzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analy- sis for microarray and RNA-seq data, BMC. Bioinformatics. 14 (2013) 7, doi:10.1186/1471-2105-14-7.

[32]

S. Chen, Y. Zhou, Y. Chen, J. Gu, fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics. 34 (2018) i884-i890, doi:10.1093/bioinformatics/bty560.

[33]

A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T.R. Gingeras, STAR: ultrafast universal RNA-seq aligner, Bioinformat- ics. 29 (2013) 15-21, doi:10.1093/bioinformatics/bts635.

[34]

Y. Liao, G.K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics. 30 (2014) 923-930, doi:10.1093/bioinformatics/btt656.

[35]

M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550, doi:10.1186/s13059-014-0550-8.

[36]

P. Zhang, Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer, Cell Rep. 30 (2020) 4317, doi:10.1016/j.celrep.2020.03.020.

[37]

Q. Luo, Y. Pan, Q. Fu, X. Zhang, S. Zhou, P. Yu, H. Tian, P. Liu, S. Chen, H. Zhang, T. Qin, Immortalization-upregulated protein promotes pancreatic cancer progression by regulating NPM1/FHL1-mediated cell-cycle-checkpoint protein activity, Cell Biol. Toxicol. 39 (2023) 2069-2087, doi:10.1007/s10565-022-09695-4.

[38]

C. Wang, Y. Wang, J. Chen, Y. Wang, C. Pang, C. Liang, L. Yuan, Y. Ma, CLDN18.2 expression and its impact on prognosis and the immune microenvironment in gastric cancer, BMC. Gastroenterol. 23 (2023) 283, doi:10.1186/s12876-023-02924-y.

[39]

K.-F. Pan, W.-Q. Li, L. Zhang, W.-D. Liu, J.-L. Ma, Y. Zhang, K. Ulm, J.-X. Wang, L. Zhang, M. Bajbouj, L.-F. Zhang, M. Li, M. Vieth, M. Quante, L.-H. Wang, S. Suchanek, R. Mejías-Luque, H.-M. Xu, X.-H. Fan, X. Han, Z.-C. Liu, T. Zhou, W.-X. Guan, R.M. Schmid, M. Gerhard, M. Classen, W.-C. You, Gastric cancer prevention by community eradication of Helicobacter pylori: a cluster-randomized controlled trial, Nat. Med. 30 (2024) 3250-3260, doi:10.1038/s41591-024-03153-w.

[40]

Z. Peng, C.-X. Wang, E.-H. Fang, G.-B. Wang, Q. Tong, Role of epithelial- mesenchymal transition in gastric cancer initiation and progression, World J. Gas- troenterol. 20 (2014) 5403-5410, doi:10.3748/wjg.v20.i18.5403.

[41]

X. Zhou, J. Yang, Y. Lu, Y. Ma, Y. Meng, Q. Li, J. Gao, Z. Jiang, L. Guo, W. Wang, Y. Liu, L. Wen, M. Kai, W. Fu, F. Tang, Relationships of tumor differentiation and immune infiltration in gastric cancers revealed by single-cell RNA-seq analyses, Cell Mol. Life Sci. 80 (2023) 57, doi:10.1007/s00018-023-04702-1.

[42]

T.R. Menheniott, B. Kurklu, A.S. Giraud, Gastrokines: stomach-specific proteins with putative homeostatic and tumor suppressor roles, Am. J. Physiol. Gastrointest. Liver. Physiol. 304 (2013) G109-G121, doi:10.1152/ajpgi.00374.2012.

[43]

T.S. Reynolds, Extracellular heat shock protein 90 alpha (eHsp90 𝛼)’s role in cancer progression and the development of therapeutic strategies, Eur. J. Med. Chem. 5 (2024) 116736, doi:10.1016/j.ejmech.2024.116736.

[44]

K. Yonemori, N. Seki, H. Kurahara, Y. Osako, T. Idichi, T. Arai, K. Koshizuka, Y. Kita, K. Maemura, S. Natsugoe, ZFP 36L2 promotes cancer cell aggressiveness and is regu-lated by antitumor microRNA-375 in pancreatic ductal adenocarcinoma, Cancer Sci. 108 (2017) 124-135, doi:10.1111/cas.13119.

[45]

L. Huyghe, A. Van Parys, A. Cauwels, S. Van Lint, S. De Munter, J. Bultinck, L. Zabeau, J. Hostens, A. Goethals, N. Vanderroost, A. Verhee, G. Uzé, N. Kley, F. Peelman, B. Vandekerckhove, P. Brouckaert, J. Tavernier, Safe eradication of large established tumors using neovasculature-targeted tumor necrosis factor-based ther- apies, EMBo Mol. Med. 12 (2020) e11223, doi:10.15252/emmm.201911223.

[46]

J. Kim, C. Park, K.H. Kim, E.H. Kim, H. Kim, J.K. Woo, J.K. Seong, K.T. Nam, Y.C. Lee, S.Y. Cho, Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity, Npj Precis. Onc. 6 (2022) 9, doi:10.1038/s41698-022-00251-1.

[47]

J. Zhang, M. Zhang, J. Lou, L. Wu, S. Zhang, X. Liu, Y. Ke, S. Zhao, Z. Song, X. Bai, Y. Cai, T. Jiang, G. Zhang, Machine learning integration with single-cell transcrip- tome sequencing datasets reveals the impact of tumor-associated neutrophils on the immune microenvironment and immunotherapy outcomes in gastric cancer, IJMS 25 (2024) 12715, doi:10.3390/ijms252312715.

[48]

H. Yin, R. Guo, H. Zhang, S. Liu, Y. Gong, Y. Yuan, A dynamic transcriptome map of different tissue microenvironment cells identified during gastric cancer de- velopment using single-cell RNA sequencing, Front. Immunol. 12 (2021) 728169, doi:10.3389/fimmu.2021.728169.

[49]

S. Chaudhary, J.A. Siddiqui, R. Pothuraju, R. Bhatia, Ribosome biogene- sis, altered metabolism and ribotoxic stress response in pancreatic ductal adenocarcinoma tumor microenvironment, Cancer Lett. 612 (2025) 217484, doi:10.1016/j.canlet.2025.217484.

[50]

J. Pelletier, G. Thomas, S. Volarevi ć, Ribosome biogenesis in cancer: new players and therapeutic avenues, Nat. Rev. Cancer 18 (2018) 51-63, doi:10.1038/nrc.2017.104.

[51]

Y. Ban, Y. Zou, Y. Liu, S. Lee, R.B. Bednarczyk, J. Sheng, Y. Cao, S.T. Wong, D. Gao, Targeting ribosome biogenesis as a novel therapeutic approach to over- come EMT-related chemoresistance in breast cancer, Elife 12 (2024) RP89486, doi:10.7554/eLife.89486.

[52]

M. Raš ková, L. Lacina, Z. Kejík, A. Venhauerová, M. Skali čková, M. Kolář, M. Jakubek, D. Rosel, K. Smetana, J. Brábek, The role of IL-6 in cancer cell in- vasiveness and metastasis-overview and therapeutic opportunities, Cells 11 (2022) 3698, doi:10.3390/cells11223698.

[53]

Q. Liu, H. Huo, S. Ao, T. Liu, L. Yang, Z. Fei, Z. Zhang, L. Ding, Q. Cui, J. Lin, M. Yu, W. Xiong, TGF‑ 𝛽1 ‑induced epithelial ‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p ‑AMPK pathway in breast cancer cells, Oncol. Rep. 44 (2020) 1206-1215, doi:10.3892/or.2020.7661.

[54]

M. Hagihara, T. Ariyoshi, Y. Kuroki, S. Eguchi, S. Higashi, T. Mori, T. Nonogaki, K. Iwasaki, M. Yamashita, N. Asai, Y. Koizumi, K. Oka, M. Takahashi, Y. Yamag- ishi, H. Mikamo, Clostridium butyricum enhances colonization resistance against clostridioides difficile by metabolic and immune modulation, Sci. Rep. 11 (2021) 15007, doi:10.1038/s41598-021-94572-z.

[55]

C.N. Spencer, J.L. McQuade, V. Gopalakrishnan, J.A. McCulloch, M. Vetizou, A.P. Cogdill, M.A.W. Khan, X. Zhang, M.G. White, C.B. Peterson, M.C. Wong, G. Morad, T. Rodgers, J.H. Badger, B.A. Helmink, M.C. Andrews, R.R. Rodrigues, A. Morgun, Y.S. Kim, J. Roszik, K.L. Hoffman, J. Zheng, Y. Zhou, Y.B. Medik, L.M. Kahn, S. Johnson, C.W. Hudgens, K. Wani, P.-O. Gaudreau, A.L. Harris, M.A. Jamal, E.N. Baruch, E. Perez-Guijarro, C.-P. Day, G. Merlino, B. Pazdrak, B.S. Lochmann, R.A. Szczepaniak-Sloane, R. Arora, J. Anderson, C.M. Zobniw, E. Posada, E. Sirmans, J. Simon, L.E. Haydu, E.M. Burton, L. Wang, M. Dang, K. Clise-Dwyer, S. Schneider, T. Chapman, N.-A.A.S. Anang, S. Duncan, J. Toker, J.C. Malke, I.C. Glitza, R.N. Amaria, H.A. Tawbi, A. Diab, M.K. Wong, S.P. Pa- tel, S.E. Woodman, M.A. Davies, M.I. Ross, J.E. Gershenwald, J.E. Lee, P. Hwu, V. Jensen, Y. Samuels, R. Straussman, N.J. Ajami, K.C. Nelson, L. Nezi, J.F. Pet- rosino, P.A. Futreal, A.J. Lazar, J. Hu, R.R. Jenq, M.T. Tetzlaff, Y. Yan, W.S. Garrett, C. Huttenhower, P. Sharma, S.S. Watowich, J.P. Allison, L. Cohen, G. Trinchieri, C.R. Daniel, J.A. Wargo, Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response, Science (1979) 374 (2021) 1632-1640, doi:10.1126/science.aaz7015.

AI Summary AI Mindmap
PDF (5198KB)

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/