Advances in synthetic microbial ecosystems approach for studying ecological interactions and their influencing factors

Wei Jiang , Sumeng Wang , Fei Gu , Xiaoya Yang , Qingsheng Qi , Quanfeng Liang

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100205

PDF (1321KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100205 DOI: 10.1016/j.engmic.2025.100205
Review
research-article

Advances in synthetic microbial ecosystems approach for studying ecological interactions and their influencing factors

Author information +
History +
PDF (1321KB)

Abstract

Investigating ecological interactions within microbial ecosystems is essential for enhancing our comprehension of key ecological issues, such as community stability, keystone species identification, and the manipulation of community structures. However, exploring these interactions proves challenging within complex natural ecosystems. With advances in synthetic biology, the design of synthetic microbial ecosystems has received increasing attention due to their reduced complexity and enhanced controllability. Various ecological relationships, including commensalism, amensalism, mutualism, competition, and predation have been established within synthetic ecosystems. These relationships are often context-dependent and shaped by physical and chemical environmental factors, as well as by interacting populations and surrounding species. This review consolidates current knowledge of synthetic microbial ecosystems and factors influencing their ecological dynamics. A deeper understanding of how these ecosystems function and respond to different variables will advance our understanding of microbial-community interactions.

Cite this article

Download citation ▾
Wei Jiang, Sumeng Wang, Fei Gu, Xiaoya Yang, Qingsheng Qi, Quanfeng Liang. Advances in synthetic microbial ecosystems approach for studying ecological interactions and their influencing factors. Engineering Microbiology, 2025, 5(2): 100205 DOI:10.1016/j.engmic.2025.100205

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT Authorship Contribution Statement

Wei Jiang: Writing - review & editing, Writing - original draft, Visualization, Funding acquisition. Sumeng Wang: Writing - review & editing, Visualization. Fei Gu: Writing - original draft, Visualization. Xiaoya Yang: Writing - review & editing, Software. Qingsheng Qi: Supervision, Conceptualization. Quanfeng Liang: Supervision, Funding acquisition, Conceptualization.

Acknowledgments

This study was supported by the Hainan Province Science and Technology Special Fund (ZDYF2024XDNY164), National Natural Science Foundation of China (32470065, 31971336), Shandong Provincial Natural Science Foundation (ZR2022QC222), Shandong Province Medical and Health Science and Technology Project (202404070807), Science and Technology Development Program of Jinan Municipal Health Commission (2024102001), Youth Science Foundation of Shandong First Medical University (202201-132), and Talent Introduction of Jinan Central Hospital (YJRC2022002).

References

[1]

L. Naves-Alegre, E. Sebastián-González, J.A. Sánchez-Zapata, Behavioral interactions are modulated by facilitation along a heterotrophic succession, Ecology 105 (2024) e4236.

[2]

M.G.J. de Vos, M. Zagorski, A. McNally, T. Bollenbach, Interaction networks, ecolog- ical stability, and collective antibiotic tolerance in polymicrobial infections, P Natl Acad Sci USA 114 (2017) 10666-10671.

[3]

N.R. Pace, A molecular view of microbial diversity and the biosphere, Science 276 (1997) 734-740.

[4]

T.M. Schmidt, The maturing of microbial ecology, Int Microbiol 9 (2006) 217-223.

[5]

X. Chen, M. Gao, L. Wang, G. Qiang, Y. Wu, H. Huang, A synthetic microbial con- sortium protects against obesity by regulating vitamin B6 metabolism, 16 (2024) 2304901.

[6]

S.A.V. Jennings, T. Clavel, Synthetic communities of gut microbes for basic research and translational approaches in animal health and nutrition, Annu Rev Anim Biosci 12 (2024) 283-300.

[7]

J.L. Chodkowski, A. Shade, A synthetic community system for probing microbial interactions driven by exometabolites, Msystems 2 (2017).

[8]

S.R. Gandhi, E.A. Yurtsev, K.S. Korolev, J. Gore, Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population, P Natl Acad Sci USA 113 (2016) 6922-6927.

[9]

A.L. McCully, B. LaSarre, J.B. McKinlay, Recipient-biased competition for an in- tracellularly generated cross-fed nutrient is required for coexistence of microbial mutualists, Mbio 8 (2017).

[10]

R.P. Maharjan, T. Ferenci, Metabolomic diversity in the species Escherichia coli and its relationship to genetic population structure, Metabolomics 1 (2005) 235-242.

[11]

R.E. Ley, J.K. Harris, J. Wilcox, J.R. Spear, S.R. Miller, B.M. Bebout, J.A. Maresca, D. A. Bryant, M.L. Sogin, N.R. Pace, Unexpected diversity and complexity of the Guer- rero Negro hypersaline microbial mat, Appl Environ Microb 72 (2006) 3685-3695.

[12]

S. Pande, H. Merker, K. Bohl, M. Reichelt, S. Schuster, L.F. de Figueiredo, C. Kaleta, C. Kost, Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria, Isme J 8 (2014) 953-962.

[13]

K. De Roy, M. Marzorati, P. Van den Abbeele, T. Van de Wiele, N. Boon, Synthetic microbial ecosystems: an exciting tool to understand and apply microbial commu- nities, Environ Microbiol 16 (2014) 1472-1481.

[14]

C.E. Lawson, W.R. Harcombe, R. Hatzenpichler, S.R. Lindemann, F.E. Loffler, M. A. O’Malley, H.G. Martin, B.F. Pfleger, L. Raskin, O.S. Venturelli, D.G. Weissbrodt, D.R. Noguera, K.D. McMahon, Common principles and best practices for engineering microbiomes, Nat Rev Microbiol 17 (2019) 725-741.

[15]

D. San Leon, J. Nogales, Toward merging bottom-up and top-down model-based de- signing of synthetic microbial communities, Curr Opin Microbiol 69 (2022) 102169.

[16]

X. Chen, C. He, Q. Zhang, S. Bayakmetov, X. Wang, Modularized design and con- struction of tunable microbial consortia with flexible topologies, ACS Synth Biol 13 (2024) 183-194.

[17]

A. Heinken, A. Basile, I. Thiele, Advances in constraint-based modelling of microbial communities, Curr Opin Syst Biol 27 (2021).

[18]

C. Li, Y. Han, X. Zou, X. Zhang, Q. Ran, C. Dong, A systematic discussion and com- parison of the construction methods of synthetic microbial community, Synth Syst Biotechnol 9 (2024) 775-783.

[19]

W. Jiang, X.Y. Yang, F. Gu, X.M. Li, S.M. Wang, Y. Luo, Q.S. Qi, Q.F. Liang, Construc- tion of synthetic microbial ecosystems and the regulation of population proportion, ACS Synth Biol 11 (2022) 538-646.

[20]

P. Chesson, Mechanisms of maintenance of species diversity, Annu Rev Ecol Syst 31 (2000) 343-366.

[21]

M.A. Nowak, K. Sigmund, Evolutionary dynamics of biological games, Science 303 (2004) 793-799.

[22]

S.A. West, A.S. Griffin, A. Gardner, S.P. Diggle, Social evolution theory for microor- ganisms, Nat Rev Microbiol 4 (2006) 597-607.

[23]

K. Faust, J. Raes, Microbial interactions: from networks to models, Nat Rev Microbiol 10 (2012) 538-550.

[24]

B.D. Karkaria, A.J.H. Fedorec, C.P. Barnes, Automated design of synthetic microbial communities, Nat Commun 12 (2021).

[25]

F.L. Wu, A.J. Lopatkin, D.A. Needs, C.T. Lee, S. Mukherjee, L.C. You, A unifying framework for interpreting and predicting mutualistic systems, Nat Commun 10 (2019).

[26]

M.J. Liao, A. Miano, C.B. Nguyen, L. Chao, J. Hasty, Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli, Nat Commun 11 (2020).

[27]

R.N. Alnahhas, M. Sadeghpour, Y. Chen, A.A. Frey, W. Ott, K. Josic, M.R. Bennett, Majority sensing in synthetic microbial consortia, Nat Commun 11 (2020).

[28]

S. Srinivasan, A. Jnana, T.S. Murali, Modeling microbial community networks: meth- ods and tools for studying microbial interactions, Microb. Ecol. 87 (2024) 56.

[29]

F. Liu, J.W. Mao, T. Lu, Q. Hua, Synthetic, context-dependent microbial consortium of Predator and prey, ACS Synth Biol 8 (2019) 1713-1722.

[30]

B. LaSarre, A.L. McCully, J.T. Lennon, J.B. McKinlay, Microbial mutualism dynam- ics governed by dose-dependent toxicity of cross-fed nutrients, Isme J 11 (2017) 337-348.

[31]

D.W. Rivett, T. Scheuerl, C.T. Culbert, S.B. Mombrikotb, E. Johnstone, T.G. Barra- clough, T. Bell, Resource-dependent attenuation of species interactions during bac- terial succession, Isme J 10 (2016) 2259-2268.

[32]

H. Bachmann, D. Molenaar, M. Kleerebezem, J.E.T.V. Vlieg, High local substrate availability stabilizes a cooperative trait, Isme J 5 (2011) 929-932.

[33]

A.E. Blanchard, C. Liao, T. Lu, An ecological understanding of quorum sensing-con- trolled bacteriocin synthesis, Cell Mol Bioeng 9 (2016) 443-454.

[34]

A.T. Nguyen, J.W. Jones, M.A. Ruge, M.A. Kane, A.G. Oglesby-Sherrouse, Iron deple- tion enhances production of antimicrobials by Pseudomonas aeruginosa, J Bacteriol 197 (2015) 2265-2275.

[35]

S.K. Hansen, P.B. Rainey, J.A.J. Haagensen, S. Molin, Evolution of species interac- tions in a biofilm community, Nature 445 (2007) 533-536.

[36]

P.E.M. Purnick, R. Weiss, The second wave of synthetic biology: from modules to systems, Nat Rev Mol Cell Bio 10 (2009) 410-422.

[37]

B. Hu, J. Du, R.Y. Zou, Y.J. Yuan, An environment-sensitive synthetic microbial ecosystem, Plos One 5 (2010).

[38]

T.A. Hoek, K. Axelrod, T. Biancalani, E.A. Yurtsev, J.H. Liu, J. Gore, Resource avail- ability modulates the cooperative and competitive nature of a microbial cross-feed- ing mutualism, Plos Biol 14 (2016).

[39]

D.R. Amor, R. Montanez, S. Duran-Nebreda, R. Sole, Spatial dynamics of synthetic microbial mutualists and their parasites, Plos Comput Biol 13 (2017).

[40]

V.C. Ozgen, W.T. Kong, A.E. Blanchard, F. Liu, T. Lu, Spatial interference scale as a determinant of microbial range expansion, Sci Adv 4 (2018).

[41]

F. Liu, J.W. Mao, W.T. Kong, Q. Hua, Y.J. Feng, R. Bashir, T. Lu, Interaction variabil- ity shapes succession of synthetic microbial ecosystems, Nat Commun 11 (2020).

[42]

M.J.I. Muller, B.I. Neugeboren, D.R. Nelson, A.W. Murray, Genetic drift opposes mutualism during spatial population expansion, P Natl Acad Sci USA 111 (2014) 1037-1042.

[43]

G.W. Roell, J. Zha, R.R. Carr, M.A. Koffas, S.S. Fong, Y.J.J. Tang, Engineering mi- crobial consortia by division of labor, Microb Cell Fact 18 (2019).

[44]

S.Y. Li, J. Xiao, T.Z. Sun, F.J. Yu, K.H. Zhang, Y.T. Feng, C.C. Xu, B.J. Wang, L. Cheng, Synthetic microbial consortia with programmable ecological interactions, Methods Ecol Evol 13 (2022) 1608-1621.

[45]

W. Weber, M. Baba, M. Fussenegger, Synthetic ecosystems based on airborne inter- and intrakingdom communication, P Natl Acad Sci USA 104 (2007) 10435-10440.

[46]

W.T. Kong, D.R. Meldgin, J.J. Collins, T. Lu, Designing microbial consortia with defined social interactions, Nat Chem Biol 14 (2018) 821 -+.

[47]

E.A. Yurtsev, A. Conwill, J. Gore, Oscillatory dynamics in a bacterial cross-protection mutualism, P Natl Acad Sci USA 113 (2016) 6236-6241.

[48]

D.H. Boucher, S. James, K.H. Keeler, The Ecology of Mutualism, Annu Rev Ecol Syst 13 (1982) 315-347.

[49]

J.F. Bruno, J.J. Stachowicz, M.D. Bertness, Inclusion of facilitation into ecological theory, Trends Ecol Evol 18 (2003) 119-125.

[50]

W.Y. Shou, S. Ram, J.M.G. Vilar, Synthetic cooperation in engineered yeast popula- tions, P Natl Acad Sci USA 104 (2007) 1877-1882.

[51]

K. Hosoda, S. Suzuki, Y. Yamauchi, Y. Shiroguchi, A. Kashiwagi, N. Ono, K. Mori, T. Yomo, Cooperative adaptation to establishment of a synthetic bacterial mutual- ism, Plos One 6 (2011).

[52]

A. Kerner, J. Park, A. Williams, X.X.N.N. Lin, A programmable Escherichia coli Con- sortium via Tunable Symbiosis, Plos One 7 (2012).

[53]

M.T. Mee, J.J. Collins, G.M. Church, H.H. Wang, Syntrophic exchange in synthetic microbial communities, P Natl Acad Sci USA 111 (2014) E2149-E2156.

[54]

H. Peng, A.P.S. Darlington, E.J. South, H.-H. Chen, W. Jiang, R. Ledesma-Amaro, A molecular toolkit of cross-feeding strains for engineering synthetic yeast communi- ties, Nature microbiology 9 (2024) 848-863.

[55]

W. Harcombe, Novel cooperation experimentally evolved between species, Evolu- tion (N Y) 64 (2010) 2166-2172.

[56]

M. Ziesack, T. Gibson, J.K.W. Oliver, A.M. Shumaker, B.B. Hsu, D.T. Riglar, T.W. Giessen, N.V. DiBenedetto, L. Bry, J.C. Way, P.A. Silver, G.K. Gerber, Engi- neered interspecies amino acid cross-feeding increases population evenness in a syn- thetic bacterial consortium, Msystems 4 (2019).

[57]

L.J. Li, T. Wu, Y. Wang, M. Ran, Y. Kang, Q. Ouyang, C.X. Luo, Spatial coordina- tion in a mutually beneficial bacterial community enhances its antibiotic resistance, Commun Biol 2 (2019).

[58]

F.K. Balagadde, H. Song, J. Ozaki, C.H. Collins, M. Barnet, F.H. Arnold, S.R. Quake, L. C. You, A synthetic Escherichia coli predator-prey ecosystem, Mol Syst Biol 4 (2008).

[59]

H. Song, S. Payne, M. Gray, L.C. You, Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem, Nat Chem Biol 5 (2009) 929-935.

[60]

A.J. Waite, W. Shou, Adaptation to a new environment allows cooperators to purge cheaters stochastically, Proc Natl Acad Sci U S A 109 (2012) 19079-19086.

[61]

E.D. Kelsic, J. Zhao, K. Vetsigian, R. Kishony, Counteraction of antibiotic production and degradation stabilizes microbial communities, Nature 521 (2015) 516-U208.

[62]

E.S. Wright, K.H. Vetsigian, Inhibitory interactions promote frequent bistability among competing bacteria, Nat Commun 7 (2016).

[63]

J. Gore, H. Youk, A. van Oudenaarden, Snowdrift game dynamics and facultative cheating in yeast, Nature 459 (2009) 253-256.

[64]

S.P. Hammarlund, J.M. Chacon, W.R. Harcombe, A shared limiting resource leads to competitive exclusion in a cross-feeding system, Environ Microbiol 21 (2019) 759-771.

[65]

C. Ratzke, J. Gore, Self-organized patchiness facilitates survival in a cooperatively growing Bacillus subtilis population, Nature microbiology 1 (2016) 16022.

[66]

H.J. Kim, J.Q. Boedicker, J.W. Choi, R.F. Ismagilov, Defined spatial structure stabi- lizes a synthetic multispecies bacterial community, P Natl Acad Sci USA 105 (2008) 18188-18193.

[67]

A. Sharma, K.B. Wood, Spatial segregation and cooperation in radially expanding microbial colonies under antibiotic stress, Isme J 15 (2021) 3019-3033.

[68]

B. LaSarre, A.M. Deutschbauer, C.E. Love, J.B. McKinlay, Covert cross-feeding re- vealed by genome-wide analysis o fitness determinants in a synthetic bacterial mu- tualism, Appl Environ Microb 86 (2020).

[69]

A. Henderson, A. Del Panta, O.T. Schubert, S. Mitri, S. van Vliet, Disentangling the feedback loops driving spatial patterning in microbial communities, NPJ Biofilms Microbiomes 11 (2025) 32.

[70]

Q. Yan, Y. Ming, J. Liu, H. Yin, Q. He, J. Li, M. Huang, Z. He, Microbial biotechnol- ogy: from synthetic biology to synthetic ecology, Adv Biotechnol (Singap) 3 (2025) 1.

[71]

D. Gonze, K.Z. Coyte, L. Lahti, K. Faust, Microbial communities as dynamical sys- tems, Curr Opin Microbiol 44 (2018) 41-49.

[72]

S. Widder, R.J. Allen, T. Pfeiffer, T.P. Curtis, C. Wiuf, W.T. Sloan, O.X. Cordero, S.P. Brown, B. Momeni, W. Shou, H. Kettle, H.J. Flint, A.F. Haas, B. Laroche, J.U. Kreft, P.B. Rainey, S. Freilich, S. Schuster, K. Milferstedt, J.R. van der Meer, T. Grobetakopf, J. Huisman, A. Free, C. Picioreanu, C. Quince, I. Klapper, S. Labarthe, B.F. Smets, H. Wang, F. Isaac Newton Institute, O.S. Soyer, Challenges in microbial ecology: building predictive understanding of community function and dynamics, Isme J 10 (2016) 2557-2568.

[73]

P. Carbonell, T. Radivojevic, H.G. Martín, Opportunities at the intersection of synthetic biology, machine learning, and automation, ACS Synth Biol 8 (2019) 1474-1477.

[74]

A.J. Lopatkin, J.J. Collins, Predictive biology: modelling, understanding and har- nessing microbial complexity, Nat Rev Microbiol 18 (2020) 507-520.

[75]

D. DiMucci, M. Kon, D. Segre, Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks, Msystems 3 (2018).

[76]

J.Y. Lee, N.C. Sadler, R.G. Egbert, C.R. Anderton, K.S. Hofmockel, J.K. Jansson, H.S. Song, Deep learning predicts microbial interactions from self-organized spa- tiotemporal patterns, Comput Struct Biotechnol J 18 (2020) 1259-1269.

[77]

A.V. Colarusso, I. Goodchild-Michelman, M. Rayle, A.R. Zomorrodi, Computational modeling of metabolism in microbial communities on a genome-scale, Curr Opin Syst Biol 26 (2021) 46-57.

[78]

S. Wu, Z. Qu, D. Chen, H. Wu, Q. Caiyin, J. Qiao, Deciphering and designing micro- bial communities by genome-scale metabolic modelling, Comput Struct Biotechnol J 23 (2024) 1990-2000.

[79]

P.A. Leggieri, Y. Liu, M. Hayes, B. Connors, S. Seppala, M.A. O’Malley, O.S. Ven- turelli, Integrating systems and synthetic biology to understand and engineer micro- biomes, Annu Rev Biomed Eng 23 (2021) 169-201.

[80]

N. Pouyanfar, S.Z. Harofte, M. Soltani, S. Siavashy, E. Asadian, F. Ghorbani-Bidkor- beh, R. Keçili, C.M. Hussain, Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: recent advances and prospects, Trends Environ Anal 34 (2022).

[81]

E.C. Mehlferber, G. Arnault, B. Joshi, L.P. Partida-Martinez, K.A. Patras, M. Simonin, B. Koskella, A cross-systems primer for synthetic microbial communities, Nature microbiology 9 (2024) 2765-2773.

[82]

L. Benninghaus, L.S. Schwardmann, T. Jilg, V.F. Wendisch, Establishment of syn- thetic microbial consortia with Corynebacterium glutamicum and Pseudomonas putida: design, construction, and application to production of gamma-glutamyliso- propylamide and l -theanine, Microb Biotechnol 17 (2024) e14400.

[83]

M. Li, J. Hu, Z. Wei, A. Jousset, T. Pommier, X. Yu, Y. Xu, Q. Shen, Synthetic mi- crobial communities: sandbox and blueprint for soil health enhancement, Imeta 3 (2024) e172.

[84]

M. Berkhout, E. Zoetendal, C. Plugge, C. Belzer, Use of synthetic communities to study microbial ecology of the gut, Microbiome Research Reports 1 (2022) 4.

[85]

Z. Dang, M. Gao, L. Wang, J. Wu, Y. Guo, Z. Zhu, H. Huang, G. Kang, Synthetic bac- terial therapies for intestinal diseases based on quorum-sensing circuits, Biotechnol Adv 65 (2023) 108142.

[86]

S.R. Biswas, P. Ray, M.C. Johnson, B. Ray, Influence of growth-conditions on the pro- duction of a bacteriocin, Pediocin Ach, by Pediococcus-Acidilactici H, Appl Environ Microb 57 (1991) 1265-1267.

[87]

O.P. Kuipers, M.M. Beerthuyzen, P.G.G.A. Deruyter, E.J. Luesink, W.M. Devos, Au- toregulation of nisin biosynthesis in lactococcus-lactis by signal-transduction, J Biol Chem 270 (1995) 27299-27304.

[88]

T. Spiess, S.M. Korn, P. Kotter, K.D. Entian, Autoinduction specificities of the lan- tibiotics Subtilin and Nisin, Appl Environ Microb 81 (2015) 7914-7923.

[89]

S.F.M. Hart, H.B. Mi, R. Green, L. Xie, J.M.B. Pineda, B. Momeni, W.Y. Shou, Uncov- ering and resolving challenges of quantitative modeling in a simplified community of interacting cells, Plos Biol 17 (2019).

[90]

N. Klitgord, D. Segre, Environments that induce synthetic microbial ecosystems, Plos Comput Biol 6 (2010).

[91]

A. Bissett, M.V. Brown, S.D. Siciliano, P.H. Thrall, Microbial community responses to anthropogenically induced environmental change: towards a systems approach, Ecol Lett 16 (2013) 128-139.

AI Summary AI Mindmap
PDF (1321KB)

293

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/