Carbon sequestration pathways in microorganisms: Advances, strategies, and applications

Shupeng Ruan , Yuchen Jiang , Aoxue Wang , Xinying Zhang , Ying Lin , Shuli Liang

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100196

PDF (1964KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100196 DOI: 10.1016/j.engmic.2025.100196
Review
research-article

Carbon sequestration pathways in microorganisms: Advances, strategies, and applications

Author information +
History +
PDF (1964KB)

Abstract

In recent years, industrial activities have significantly increased atmospheric CO2 levels, exacerbating global warming. Carbon reduction involves implementing measures to minimize CO2 emissions from human activities and achieve a balance between carbon absorption and emissions. Therefore, effective reduction of CO2 emissions is crucial. Conventional physical and chemical methods for CO₂ fixation frequently cause secondary environmental pollution. As a result, utilizing microorganisms for CO2 fixation has gained considerable interest. This review provides an overview of the natural pathways for microbial CO2 fixation, recent advancements in artificial CO2 fixation, and strategies for enhancing the efficiency of microbial CO2 fixation. We also discuss the conversion of CO2 into diverse metabolic products and high-value chemicals. By identifying efficient carbon fixation pathways for microorganisms, this review aims to lay the foundation for the biological production of high-value chemicals using CO2 as a raw material.

Keywords

CO2 fixation / Metabolic pathway / Value-added products / Natural carbon fixation pathways / Artificial carbon sequestration pathways

Cite this article

Download citation ▾
Shupeng Ruan, Yuchen Jiang, Aoxue Wang, Xinying Zhang, Ying Lin, Shuli Liang. Carbon sequestration pathways in microorganisms: Advances, strategies, and applications. Engineering Microbiology, 2025, 5(2): 100196 DOI:10.1016/j.engmic.2025.100196

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence thework reported in this paper.

CRediT Authorship Contribution Statement

Shupeng Ruan: Writing - review & editing, Writing - original draft, Investigation. Yuchen Jiang: Writing - original draft. Aoxue Wang: Writing - original draft. Xinying Zhang: Writing - original draft. Ying Lin: Writing - review & editing, Supervision, Resources, Methodology. Shuli Liang: Writing - review & editing, Visualization, Supervision, Methodology, Investigation.

Acknowledgements

This work was supported by the National Key Research and Development Program (2021YFC2104000), the National Natural Science Foundation of China (32272276), and the Fundamental Research Funds for the Central Universities.

References

[1]

G. Hu, Y. Li, C. Ye, L. Liu, X. Chen, Engineering microorganisms for en- hanced CO2 sequestration, Trends Biotechnol. 37 (5) (2019) 532-547 May, doi:10.1016/j.tibtech.2018.10.008.

[2]

M.T. Kartal, U.K. Pata, D. Ta şkı n, How are electricity generation effec- tive on carbon neutrality in the global south? Evidence from sectoral CO2 emissions by daily data, Sci. Total Environ. 926 (2024) 171911 May 20, doi:10.1016/j.scitotenv.2024.171911.

[3]

W. Zhuang, X. Song, M. Liu, Q. Wang, J. Song, L. Duan, X. Li, H. Yuan, Potential capture and conversion of CO2 from oceanwater through mineral carbonation, Sci. Total Environ. 867 (2023) 161589 Apr 1, doi:10.1016/j.scitotenv.2023.161589.

[4]

M. Sevilla, A.B. Fuertes, CO 2 adsorption by activated templated carbons, J. Colloid. Interf. Sci. 366 (1) (2012) 147-154 Jan 15, doi:10.1016/j.jcis.2011.09.038.

[5]

Y.H. Cheong, L.S. Lai, L. Shi, et al., Advancing CO 2 separation: exploring the poten- tial of additive manufacturing in membrane technology, Prog Addit Manuf (2024) March 23, doi:10.1007/s40964-024-00587-z.

[6]

H. Senboku, A. Katayama, Electrochemical carboxylation with carbon diox- ide, Current Opinion Green Sustain. Chem. 3 (2016) 50-54 November 32017, doi:10.1016/j.cogsc.2016.10.003.

[7]

A. Ughetti, F. Roncaglia, B. Anderlini, V. D’Eusanio, A.L. Russo, L. Forti, Integrated carbonate-based CO2 capture —Biofixation through cyanobacteria, Appl. Sci. 13 (19)(2023), doi:10.3390/app131910779.

[8]

A.D.M. Satya, W.Y. Cheah, S.K. Yazdi, Y.-S. Cheng, K.S. Khoo, D.-V.N. Vo, X. D. Bui, M. Vithanage, P.L. Show, Progress on microalgae cultivation in wastew- ater for bioremediation and circular bioeconomy, Environ. Res. 218 (2023), doi:10.1016/j.envres.2022.114948.

[9]

I. Papapetridis, M. Goudriaan, M. Vázquez Vitali, N.A. de Keijzer, M. van den Broek, A.J.A. van Maris, J.T Pronk, Optimizing anaerobic growth rate and fer- mentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle en- zymes for improved ethanol yield, Biotechnol. Biofuels 11 (2018) 17 Jan 25, doi:10.1186/s13068-017-1001-z.

[10]

F.R. Tabita, S. Satagopan, T.E. Hanson, N.E. Kreel, S.S. Scott, Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships, J. Exp. Bot. 59 (7) (2008) 1515-1524, doi:10.1093/jxb/erm361.

[11]

M. Fujihashi, Y. Nishitani, T. Kiriyama, R. Aono, T. Sato, T. Takai, K. Tagashira, W. Fukuda, H. Atomi, T. Imanaka, K. Miki, Mutation design of a thermophilic Ru- bisco based on three-dimensional structure enhances its activity at ambient temper- ature, Proteins 84 (10) (2016) 1339-1346 Oct, doi:10.1002/prot.25080.

[12]

R.H. Wilson, H. Alonso, S.M. Whitney, Evolving methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth, Sci. Rep. 6 (2016) 22284 Mar 1, doi:10.1038/srep22284.

[13]

Y. Zhou, S. Whitney, Directed evolution of an improved Rubisco; In vitro analy- ses to decipher fact from fiction, Int. J. Mol. Sci. 20 (20) (2019) 5019 Oct 10, doi:10.3390/ijms20205019.

[14]

S. Kajla, R. Kumari, G.K. Nagi, Microbial CO2 fixation and biotechnology in re- ducing industrial CO2 emissions, Arch. Microbiol. 204 (2) (2022) 149 Jan 21, doi:10.1007/s00203-021-02677-w.

[15]

J. Zhang, L. Guo, C. Gao, W. Song, J. Wu, L. Liu, X. Chen, Metabolic engineering strategies for microbial utilization of C1 feedstocks, Systems Microbiol. Biomanuf 3 (1) (2022) 122-136 September 19, doi:10.1007/s43393-022-00135-2.

[16]

Shuobo Shi, Qiongyu Meng, Weibo Qiao, Huimin Zhao, Establishing carbon dioxide- based third-generation biorefinery for a sustainable low-carbon economy, Synthetic Biol. J. 1 (1) (2020) 44-59 March 2, doi:10.12211/2096-8280.2020-015.

[17]

S. Luo, C. Diehl, H. He, Y. Bae, M. Klose, P. Claus, N.a.S. Cortina, C.A. Fernan- dez, H. Schulz-Mirbach, R. McLean, A.A. Ramírez Rojas, D. Schindler, N. Paczia, T.J. Erb, Construction and modular implementation of the THETA cycle for syn- thetic CO2 fixation, Nature Catalysis 6 (12) (2023) 1228-1240 December 20, doi:10.1038/s41929-023-01079-z.

[18]

M. Hügler, G. Fuchs, Assaying for the 3-hydroxypropionate cycle of carbon fixation, Methods Enzymol. 397 (2005) 212-221, doi:10.1016/S0076-6879(05)97012-2.

[19]

M. Hügler, C. Menendez, H. Schägger, G. Fuchs, Malonyl-coenzyme A reduc- tase from chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cy- cle for autotrophic CO2 fixation, J. Bacteriol. 184 (9) (2002) 2404-2410 May, doi:10.1128/JB.184.9.2404-2410.2002.

[20]

M. Ishii, S. Chuakrut, H. Arai, Y. Igarashi, Occurrence, biochemistry and possi- ble biotechnological application of the 3-hydroxypropionate cycle, Appl. Microbiol. Biotechnol. 64 (5) (2004) 605-610 Jun, doi:10.1007/s00253-003-1540-z.

[21]

Z. Liu, K. Wang, Y. Chen, T. Tan, J. Nielsen, Third-generation biorefineries as the means to produce fuels and chemicals from CO2, Nature Catalysis 3 (3) (2020) 274-288 March 18, doi:10.1038/s41929-019-0421-5.

[22]

W.H. Ramos-Vera, I.A. Berg, G. Fuchs, Autotrophic carbon dioxide assimila- tion in Thermoproteales revisited, J. Bacteriol. 191 (13) (2009) 4286-4297 Jul, doi:10.1128/JB.00145-09.

[23]

L. Liu, H. Huber, I.A. Berg, Enzymes catalyzing crotonyl-CoA conversion to acetoacetyl-CoA during the autotrophic CO2 fixation in Metallosphaera sedula, Front. Microbiol. 11 (2020) 354 Mar 11, doi:10.3389/fmicb.2020.00354.

[24]

V.R. Bysani, A.S. Alam, A. Bar-Even, F. Machens, Engineering and evolu- tion of the complete Reductive Glycine Pathway in saccharomyces cerevisiae for formate and CO2 assimilation, Metab. Eng. 81 (2024) 167-181 Jan, doi:10.1016/j.ymben.2023.11.007.

[25]

C.H. Chen, I.T. Tseng, S.C. Lo, Z.R. Yu, J.J. Pang, Y.H. Chen, C.C. Huang, S.Y. Li, Manipulating ATP supply improves in situ CO2 recycling by reductive TCA cycle in engineered Escherichia coli, 3 Biotech 10 (3) (2020) 125 Mar, doi:10.1007/s13205-020-2116-7.

[26]

Z. Malubhoy, F.M. Bahia, S.C. de Valk, E. de Hulster, T. Renduli ć, J.P.R. Ortiz, J. Xiberras, M. Klein, R. Mans, E. Nevoigt, Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae, Microb. Cell Fact. 21 (1) (2022) 102 May 28, doi:10.1186/s12934-022-01817-1.

[27]

N. de Jonge, J.S. Poulsen, N.T. Vechi, M.V.W. Kofoed, J.L. Nielsen, Wood-Ljungdahl pathway utilisation during in situ H2 biomethanation, Sci. Total Environ. 806 (Pt 3)(2022) 151254 Feb 1, doi:10.1016/j.scitotenv.2021.151254.

[28]

S. Rin Kim, S.J. Kim, S.K. Kim, S.O. Seo, S. Park, J. Shin, J.S. Kim, B.R. Park, Y.S. Jin, P.S. Chang, Y.C Park, Yeast metabolic engineering for carbon diox- ide fixation and its application, Bioresour. Technol. 346 (2022) 126349 Feb, doi:10.1016/j.biortech.2021.126349.

[29]

N. Antonovsky, S. Gleizer, E. Noor, Y. Zohar, E. Herz, U. Barenholz, L. Zel- cbuch, S. Amram, A. Wides, N. Tepper, D. Davidi, Y. Bar-On, T. Bareia, D.G. Wer- nick, I. Shani, S. Malitsky, G. Jona, A. Bar-Even, R. Milo, Sugar synthesis from CO2 in Escherichia coli, coli 166 (1) (2016) 115-125 Jun 30Epub 2016 Jun 23, doi:10.1016/j.cell.2016.05.064.

[30]

T. Gassler, M. Sauer, B. Gasser, M. Egermeier, C. Troyer, T. Causon, S. Hann, D. Mat- tanovich, M.G. Steiger, The industrial yeast pichia pastoris is converted from a het- erotroph into an autotroph capable of growth on CO2, Nat. Biotechnol. 38 (2) (2020) 210-216 Feb, doi:10.1038/s41587-019-0363-0.

[31]

S. Gleizer, R. Ben-Nissan, Y.M. Bar-On, N. Antonovsky, E. Noor, Y. Zohar, G. Jona, E. Krieger, M. Shamshoum, A. Bar-Even, Milo R. Conversion of Escherichia coli to generate all biomass carbon from CO2, Cell 179 (6) (2019) 1255-1263 Nov 27e12, doi:10.1016/j. cell.2019.11.009.

[32]

A.C.A. van Aalst, M.L.A. Jansen, R. Mans, J.T. Pronk, Quantification and mitigation of byproduct formation by low-glycerol-producing Saccharomyces cerevisiae strains containing Calvin-cycle enzymes, Biotechnol. Biofuels Bioprod. 16 (1) (2023) 81 May 12, doi:10.1186/s13068-023-02329-9.

[33]

S.W. Ragsdale, J.E. Clark, L.G. Ljungdahl, L.L. Lundie, H.L. Drake, Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein, J. Biol. Chem. 258 (4) (1983) 2364-2369 Feb 25, doi:10.1016/S0021-9258(18)32932-6.

[34]

X. Zhu, X. Tan, Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway, Sci. China Series B: Chem. 52 (12) (2009) 2071-2082 July 23, doi:10.1007/s11426-009-0082-3.

[35]

M. Kumar, S. Sundaram, E. Gnansounou, C. Larroche, I.S. Thakur, Car- bon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review, Bioresour. Technol. 247 (2018) 1059-1068 Jan, doi:10.1016/j.biortech.2017.09.050.

[36]

M.C. Evans, B.B. Buchanan, D.I. Arnon, A new ferredoxin-dependent carbon reduc- tion cycle in a photosynthetic bacterium, Proc. Natl. Acad. Sci. USA. 55 (4) (1966) 928-934 Apr, doi:10.1073/pnas.55.4.928.

[37]

N.J. Claassens, Reductive glycine pathway: a versatile route for one-carbon biotech, Trends Biotechnol. 39 (4) (2021) 327-329 Apr, doi:10.1016/j.tibtech.2021.02.005.

[38]

P. Tuyishime, J.P. Sinumvayo, Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production, World J. Microbiol. Biotechnol. 36 (8) (2020) 118 Jul 18, doi:10.1007/s11274-020-02899-y.

[39]

O. Yishai, M. Bouzon, V. Döring, A. Bar-Even, In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli, ACS Synth. Biol. 7 (9)(2018) 2023-2028 Sep 21, doi:10.1021/acssynbio.8b00131.

[40]

S. Kim, S.N. Lindner, S. Aslan, O. Yishai, S. Wenk, K. Schann, A. Bar-Even, Growth of E. coli on formate and methanol via the reductive glycine pathway, Nat. Chem. Biol. 16 (5) (2020) 538-545 May, doi:10.1038/s41589-020-0473-5.

[41]

B.M. Mitic, C. Troyer, L. Lutz, M. Baumschabl, S. Hann, D. Mattanovich, The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO2 in the yeast Komagataella phaffii, Nat. Commun. 14 (1) (2023) 7754 Nov 27, doi:10.1038/s41467-023-43610-7.

[42]

I.A. Berg, D. Kockelkorn, W. Buckel, G. Fuchs, A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea, Sci- ence 318 (5857) (2007) 1782-1786 Dec 14, doi:10.1126/science.1149976.

[43]

Z. Liu, T. Liu, Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli, J. Ind. Microbiol. Biotechnol. 43 (12) (2016) 1659-1670 Dec, doi:10.1007/s10295-016-1843-6.

[44]

H. Yu, J.C. Liao, A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds, Nat. Commun. 9 (1) (2018) 3992 Sep 28, doi:10.1038/s41467-018-06496-4.

[45]

T. Schwander, L. Schada von Borzyskowski, S. Burgener, N.S. Cortina, T.J. Erb, A synthetic pathway for the fixation of carbon dioxide in vitro, Science 354 (6314)(2016) 900-904 Nov 18, doi:10.1126/science.aah5237.

[46]

X. Lu, Y. Liu, Y. Yang, S. Wang, Q. Wang, X. Wang, Z. Yan, J. Cheng, C. Liu, X. Yang, H. Luo, S. Yang, J. Gou, L. Ye, L. Lu, Z. Zhang, Y. Guo, Y. Nie, J. Lin, S. Li, C. Tian, T. Cai, B. Zhuo, H. Ma, W. Wang, Y. Ma, Y. Liu, Y. Li, H. Jiang, Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design, Nat. Commun. 10 (1) (2019) 1378 Mar 26, doi:10.1038/s41467-019-09095-z.

[47]

L. Xiao, G. Liu, F. Gong, H. Zhu, Y. Zhang, Z. Cai, Y. Li, A minimized synthetic car- bon fixation cycle, ACS Catal 12 (1) (2021) 799-808 December 28, doi:10.1021/ac- scatal.1c04151.

[48]

R.K. Singh, R. Singh, D. Sivakumar, S. Kondaveeti, T. Kim, J. Li, B.H. Sung, B.-K. Cho, D. R. Kim, S.C. Kim, V.C. Kalia, Y.-H.P.J. Zhang, H. Zhao, Y.C. Kang, J.-K. Lee, Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction, ACS Catal 8 (12) (2018) 11085-11093 October 17, doi:10.1021/acscatal.8b02646.

[49]

J. Liu, H. Zhang, Y. Xu, H. Meng, A.P. Zeng, Turn air-captured CO2 with methanol into amino acid and pyruvate in an ATP/NAD(P)H-free chemoenzymatic system, Nat. Commun. 14 (1) (2023) 2772 May 15, doi:10.1038/s41467-023-38490-w.

[50]

J.B. Siegel, A.L. Smith, S. Poust, A.J. Wargacki, A. Bar-Even, C. Louw, B.W. Shen, C. B. Eiben, H.M. Tran, E. Noor, J.L. Gallaher, J. Bale, Y. Yoshikuni, M.H. Gelb, J.D. Keasling, B.L. Stoddard, M.E. Lidstrom, D. Baker, Computational protein de- sign enables a novel one-carbon assimilation pathway, Proc. Natl. Acad. Sci. USA. 112 (12) (2015) 3704-3709 Mar 24, doi:10.1073/pnas.1500545112.

[51]

T. Cai, H. Sun, J. Qiao, L. Zhu, F. Zhang, J. Zhang, Z. Tang, X. Wei, J. Yang, Q. Yuan, W. Wang, X. Yang, H. Chu, Q. Wang, C. You, H. Ma, Y. Sun, Y. Li, C. Li, H. Jiang, Q. Wang, Y. Ma, Cell-free chemoenzymatic starch synthesis from carbon dioxide, Science 373 (6562) (2021) 1523-1527 Sep 24, doi:10.1126/science.abh4049.

[52]

M. Scheffen, D.G. Marchal, T. Beneyton, S.K. Schuller, M. Klose, C. Diehl, J. Lehmann, P. Pfister, M. Carrillo, H. He, S. Aslan, N.S. Cortina, P. Claus, D. Bollschweiler, J.-C. Baret, J.M. Schuller, J. Zarzycki, A. Bar-Even, T.J. Erb, A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation, Nature Catalysis 4 (2) (2021) 105-115 January 4, doi:10.1038/s419-020-00557-y.

[53]

L. Guo, M. Liu, Y. Bi, Q. Qi, M. Xian, G. Zhao, Using a synthetic machinery to improve carbon yield with acetylphosphate as the core, Nat. Commun. 14 (1) (2023) 5286 Aug 30, doi:10.1038/s41467-023-41135-7.

[54]

S. Luo, P.P. Lin, L.-Y. Nieh, G.-B. Liao, P.-W. Tang, C. Chen, J.C. Liao, A cell-free self- replenishing CO2 -fixing system, Nature Catalysis 5 (2) (2022) 154-162 February 24, doi:10.1038/s41929-022-00746-x.

[55]

J.H. Hennacy, M.C. Jonikas, Prospects for engineering biophysical CO2 concentrat- ing mechanisms into land plants to enhance yields, Annu. Rev. Plant Biol. 71 (2020) 461-485 Apr 29, doi:10.1146/annurev-arplant-081519-040100.

[56]

D. Wang, Q. Li, W. Li, J. Xing, Z. Su, Improvement of succinate pro- duction by overexpression of a cyanobacterial carbonic anhydrase in Es- cherichia coli, Enzyme Microb. Technol. 45 (6-7) (2009) 491-497 August 13, doi:10.1016/j.enzmictec.2009.08.003.

[57]

M. Xiao, X. Zhu, C. Bi, Y. Ma, X. Zhang, Improving succinate productivity by en- gineering a cyanobacterial CO2 concentrating system (CCM) in Escherichia coli, Biotechnol. J. 12 (9) (2017) Sep, doi:10.1002/biot.201700199.

[58]

G.D. Price, M.R. Badger, S. von Caemmerer, The prospect of using cyanobacterial bi- carbonate transporters to improve leaf photosynthesis in C3 crop plants, Plant Phys- iol. 155 (1) (2011) 20-26 Jan, doi:10.1104/pp.110.164681.

[59]

N. Qin, L. Li, X. Wan, X. Ji, Y. Chen, C. Li, P. Liu, Y. Zhang, W. Yang, J. Jiang, J. Xia, S. Shi, T. Tan, J. Nielsen, Y. Chen, Z. Liu, Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast, Nat. Commun. 15 (1) (2024) 1591 Feb 21, doi:10.1038/s41467-024-45557-9.

[60]

T. Gassler, M. Baumschabl, J. Sallaberger, M. Egermeier, D. Mattanovich, Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris, Metab. Eng. 69 (2022) 112-121 Jan, doi:10.1016/j.ymben.2021.11.007.

[61]

B. Innocent, D. Liaigre, D. Pasquier, et al., Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium, J. Appl. Electrochem. 39 (2009) 227-232 September 13, doi:10.1007/s10800-008-9658-4.

[62]

K.Y. Lee, S.J. Park, K.A. Lee, S.H. Kim, H. Kim, Y. Meroz, L. Mahadevan, K.H. Jung, T.K. Ahn, K.K. Parker, K. Shin, Photosynthetic artificial organelles sustain and con- trol ATP-dependent reactions in a protocellular system, Nat. Biotechnol. 36 (6)(2018) 530-535 Jul, doi:10.1038/nbt.4140.

[63]

K.K. Sakimoto, A.B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production, Science 351 (6268) (2016) 74-77 Jan 1, doi:10.1126/science.aad3317.

[64]

W. Wei, P. Sun, Z. Li, K. Song, W. Su, B. Wang, Y. Liu, J. Zhao, A surface-display biohybrid approach to light-driven hydrogen production in air, Sci. Adv. 4 (2) (2018) eaap9253 Feb 21, doi:10.1126/sciadv.aap9253.

[65]

J. Guo, M. Suástegui, K.K. Sakimoto, V.M. Moody, G. Xiao, D.G. Nocera, N.S. Joshi, Light-driven fine chemical production in yeast biohybrids, Science 362 (6416)(2018) 813-816 Nov 16, doi:10.1126/science.aat9777.

[66]

G. Hu, Z. Li, D. Ma, C. Ye, L. Zhang, C. Gao, L. Liu, X. Chen, Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals, Nature Catalysis 4 (5) (2021) 395-406 April 24, doi:10.1038/s41929-021-00606-0.

[67]

M. Baumschabl, Ö. Ata, B.M. Mitic, L. Lutz, T. Gassler, C. Troyer, S. Hann, D. Mattanovich, Conversion of CO2 into organic acids by engineered autotrophic yeast, Proc. Natl. Acad. Sci. USA. 119 (47) (2022) e2211827119 Nov 22, doi:10.1073/pnas.2211827119.

[68]

C. Diehl, P.D. Gerlinger, N. Paczia, T.J. Erb, Synthetic anaplerotic modules for the direct synthesis of complex molecules from CO2, Nat. Chem. Biol. 19 (2) (2023) 168-175 Feb, doi:10.1038/s41589-022-01179-0.

[69]

F.M. Schwarz, V. Müller, Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen, Biotechnol. Biofuels 13 (2020) 32 Feb 28, doi:10.1186/s13068-020-1670-x.

[70]

M. Roger, T.C.P. Reed, F. Sargent, Harnessing Escherichia coli for bio-based produc- tion of formate under pressurized H2 and CO2 gases, Appl. Environ. Microb. 87 (21)(2021) e0029921 Oct 14, doi:10.1128/AEM.00299-21.

[71]

M.J. Lai, J.C. Tsai, E.I. Lan, CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria, Biore- sour. Technol. 366 (2022) 128131 Dec, doi:10.1016/j.biortech.2022.128131.

[72]

A. Mook, M.H. Beck, J.P. Baker, N.P. Minton, P. Dürre, F.R. Bengelsdorf, Autotrophic lactate production from H2 + CO2 using recombinant and fluorescent FAST-tagged acetobacterium woodii strains, Appl. Microbiol. Biotechnol. 106 (4) (2022) 1447-1458 Feb, doi:10.1007/s00253-022-11770-z.

[73]

Y. Guo, R. Zhang, J. Wang, R. Qin, J. Feng, K. Chen, X. Wang, Engineering yeasts to Co-utilize methanol or formate coupled with CO2 fixation, Metab. Eng. 84 (2024) 1-12 May 15, doi:10.1016/j.ymben.2024.05.002.

[74]

S. Ehira, T. Takeuchi, A. Higo, Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria, Appl. Microbiol. Biotechnol. 102 (3) (2018) 1523-1531 Feb, doi:10.1007/s00253-017-8620-y.

[75]

J.K. Heffernan, K. Valgepea, Souza de, R. Pinto Lemgruber, I. Casini, M. Plan, R. Tap- pel, S.D. Simpson, M. Köpke, L.K. Nielsen, E. Marcellin, Enhancing CO2 -valorization using Clostridium autoethanogenum for sustainable fuel and chemicals produc- tion, Front. Bioeng. Biotechnol. 8 (2020) 204 Mar 27, doi:10.3389/fbioe.2020. 00204.

[76]

F.E. Liew, R. Nogle, T. Abdalla, B.J. Rasor, C. Canter, R.O. Jensen, L. Wang, J. Strutz, P. Chirania, S. De Tissera, A.P. Mueller, Z. Ruan, A. Gao, L. Tran, N.L. Engle, J.C. Bromley, J. Daniell, R. Conrado, T.J. Tschaplinski, R.J. Gian- none, R.L. Hettich, A.S. Karim, S.D. Simpson, S.D. Brown, C. Leang, M.C. Jew- ett, M. Köpke, Carbon-negative production of acetone and isopropanol by gas fer- mentation at industrial pilot scale, Nat. Biotechnol. 40 (3) (2022) 335-344 Mar, doi:10.1038/s41587-021-01195-w.

[77]

F.K. Bentley, A. Zurbriggen, A. Melis, Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene, Mol. Plant 7 (1) (2014) 71-86 Jan, doi:10.1093/mp/sst134.

AI Summary AI Mindmap
PDF (1964KB)

509

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/