Optimizing the CRISPR/Cas9 system for gene editing in Yarrowia lipolytica

Jianhui Liu , Yamin Zhu , Jin Hou

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100193

PDF (1696KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (2) : 100193 DOI: 10.1016/j.engmic.2025.100193
Original Research Article
research-article

Optimizing the CRISPR/Cas9 system for gene editing in Yarrowia lipolytica

Author information +
History +
PDF (1696KB)

Abstract

Yarrowia lipolytica is a promising host for producing valuable chemicals owing to its robustness and metabolic versatility. Efficient genome editing tools are essential for advancing its biotechnological applications. Although CRISPR/Cas9 technology has been applied in Y. lipolytica, achieving a consistently high editing performance remains challenging owing to the low homologous recombination efficiency and variability in system components. In this study, we optimized CRISPR/Cas9-mediated genome editing in Y. lipolytica to enhance its editing efficiency. Using the RNA polymerase III promoter SCR1-tRNA for sgRNA expression, we achieved a gene disruption efficiency of 92.5 %. The tRNA-sgRNA architecture enabled a dual gene disruption efficiency of 57.5 %. KU70 deletion in the Cas9 system increased the integration efficiency to 92.5 %, and Rad52 and Sae2 overexpression boosted homologous recombination. The introduction of Cas9D147Y, P411T (iCas9) enhanced the efficiency of both gene disruption and genome integration. This study provides a powerful tool for efficient gene editing in Y. lipolytica, which will accelerate the construction of yeast cell factories.

Keywords

CRISPR/Cas9 technology / Yarrowia lipolytica / sgRNA promoter / Cas9 expression strategy / Multiplex gene editing / Genome integration

Cite this article

Download citation ▾
Jianhui Liu, Yamin Zhu, Jin Hou. Optimizing the CRISPR/Cas9 system for gene editing in Yarrowia lipolytica. Engineering Microbiology, 2025, 5(2): 100193 DOI:10.1016/j.engmic.2025.100193

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All relevant data supporting the findings of this study are available in this manuscript and the supplementary materials.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jianhui Liu: Writing - original draft, Methodology, Investigation, Formal analysis, Data curation. Yamin Zhu: Writing - original draft, Methodology, Investigation, Formal analysis, Data curation. Jin Hou: Writing - review & editing, Writing - original draft, Resources, Project administration, Funding acquisition.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U23A20268), the National Natural Science Foundation of Shandong Province (ZR2022ZD24), and the Taishan Scholar Project of Shandong Province (tsqn202312061).

References

[1]

H. Guo, S. Su, C. Madzak, J. Zhou, H. Chen, G. Chen, Applying pathway engineering to enhance production of alpha-ketoglutarate in Yarrowia lipolytica, Appl. Microbiol. Biotechnol. 100 (2016) 9875-9884.

[2]

S.V. Kamzolova, A.I. Yusupova, N.G. Vinokurova, N.I. Fedotcheva, M.N. Kon- drashova, T.V. Finogenova, I.G. Morgunov, Chemically assisted microbial produc- tion of succinic acid by the yeast yarrowia lipolytica grown on ethanol, Appl. Micro- biol. Biotechnol. 83 (2009) 1027-1034.

[3]

Z. Cui, Y. Zhong, Z. Sun, Z. Jiang, J. Deng, Q. Wang, J. Nielsen, J. Hou, Q. Qi, Re- configuration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica, Nat. Commun. 14 (2023) 8480.

[4]

A. Agrawal, Z. Yang, M. Blenner, Engineering Yarrowia lipolytica for the biosynthesis of geraniol, Metab. Eng. Commun. 17 (2023) e00228.

[5]

Z. Luo, J.T. Shi, X.L. Chen, J. Chen, F. Liu, L.J. Wei, Q. Hua, Iterative gene integration mediated by 26S rDNA and non-homologous end joining for the efficient production of lycopene in Yarrowia lipolytica, Bioresour. Bioprocess. 10 (2023) 83.

[6]

D.N. Wang, C.X. Yu, J. Feng, L.J. Wei, J. Chen, Z. Liu, L. Ouyang, L. Zhang, F. Liu, Q. Hua, Comparative transcriptome analysis reveals the redirection of metabolic flux from cell growth to astaxanthin biosynthesis in Yarrowia lipolytica, Yeast 41 (2024) 369-378.

[7]

Z. Xue, P.L. Sharpe, S.P. Hong, N.S. Yadav, D. Xie, D.R. Short, H.G. Damude, R.A. Rupert, J.E. Seip, J. Wang, D.W. Pollak, M.W. Bostick, M.D. Bosak, D.J. Ma- cool, D.H. Hollerbach, H. Zhang, D.M. Arcilla, S.A. Bledsoe, K. Croker, E.F. McCord, B. D. Tyreus, E.N. Jackson, Q. Zhu, Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica, Nat. Biotechnol. 31 (2013) 734-740.

[8]

K. Gemperlein, D. Dietrich, M. Kohlstedt, G. Zipf, H.S. Bernauer, C. Wittmann, S. C. Wenzel, R. Müller, Polyunsaturated fatty acid production by Yarrowia lipolyt- ica employing designed myxobacterial PUFA synthases, Nat. Commun. 10 (2019) 4055.

[9]

Z. Yang, H. Edwards, P. Xu, CRISPR-Cas12a/Cpf1-assisted precise, efficient and mul- tiplexed genome-editing in Yarrowia lipolytica, Metab. Eng. Commun. 10 (2020) e00112.

[10]

A. Ramesh, T. Ong, J.A. Garcia, J. Adams, I. Wheeldon, Guide RNA engineering en- ables dual purpose CRISPR-Cpf1 for simultaneous gene editing and gene regulation in Yarrowia lipolytica, ACS Synth. Biol. 9 (2020) 967-971.

[11]

C.M. Schwartz, M.S. Hussain, M. Blenner, I. Wheeldon, Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica, ACS Synth. Biol. 5 (2016) 356-359.

[12]

S. Gao, Y. Tong, Z. Wen, L. Zhu, M. Ge, D. Chen, Y. Jiang, S. Yang, Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system, J. Ind. Mi- crobiol. Biotechnol. 43 (2016) 1085-1093.

[13]

C. Holkenbrink, M.I. Dam, K.R. Kildegaard, J. Beder, J. Dahlin, D. Doménech Belda, I. Borodina, EasyCloneYALI: cRISPR/Cas9-based synthetic toolbox for engineering of the yeast Yarrowia lipolytica, Biotechnol. J. 13 (2018) e1700543.

[14]

Z. Cui, H. Zheng, J. Zhang, Z. Jiang, Z. Zhu, X. Liu, Q. Qi, J. Hou, A CRISPR/Cas9-mediated, homology-independent tool developed for targeted genome integration in Yarrowia lipolytica, Appl. Environ. Microbiol. 87 (2021).

[15]

N.J. Morse, J.M. Wagner, K.B. Reed, M.R. Gopal, L.H. Lauffer, H.S. Alper, T7 Poly- merase expression of guide RNAs in vivo allows exportable CRISPR-Cas9 editing in multiple yeast hosts, ACS Synth. Biol. 7 (2018) 1075-1084.

[16]

D. Gao, S. Smith, M. Spagnuolo, G. Rodriguez, M. Blenner, Dual CRISPR-Cas9 cleav- age mediated gene excision and targeted integration in Yarrowia lipolytica, Biotech- nol. J. 13 (2018) e1700590.

[17]

J. Gao, N. Gao, X. Zhai, Y.J. Zhou, Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha, iScience 24 (2021) 102168.

[18]

Q. Ji, J. Mai, Y. Ding, Y. Wei, R. Ledesma-Amaro, X.-J. Ji, Improving the homologous recombination efficiency of Yarrowia lipolytica by grafting heterologous component from Saccharomyces cerevisiae, Metab. Eng. Commun. 11 (2020) e00152.

[19]

D.C. Chen, J.M. Beckerich, C. Gaillardin, One-step transformation of the dimorphic yeast yarrowia lipolytica, Appl. Microbiol. Biotechnol. 48 (1997) 232-235.

[20]

Y. Gao, Y. Zhao, Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing, J. Integr. Plant Biol. 56 (2014) 343-349.

[21]

J. Acker, C. Ozanne, R. Kachouri-Lafond, C. Gaillardin, C. Neuvéglise, C. Marck, Dicistronic tRNA-5S rRNA genes in Yarrowia lipolytica: an alternative TFIIIA-in- dependent way for expression of 5S rRNA genes, Nucleic. Acids. Res. 36 (2008) 5832-5844.

[22]

K. Xie, B. Minkenberg, Y. Yang, Boosting CRISPR/Cas9 multiplex editing capabil- ity with the endogenous tRNA-processing system, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 3570-3575.

[23]

S.D. Kor, N. Chowdhury, A.K. Keot, K. Yogendra, C. Chikkaputtaiah, P.S. Reddy, RNA pol III promoters-key players in precisely targeted plant genome editing, Front. Genet. 13 (2022) 989199.

[24]

L. Vernis, A. Abbas, M. Chasles, C.M. Gaillardin, C. Brun, J.A. Huberman, P. Fournier, An origin of replication and a centromere are both needed to establish a replicative plasmid in the yeast Yarrowia lipolytica, Mol. Cell. Biol. 17 (1997) 1995-2004.

[25]

L. Liu, P. Otoupal, A. Pan, H.S. Alper, Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function, FEMS Yeast Res. 14 (2014) 1124-1127.

[26]

Y. Zhang, J. Wang, Z. Wang, Y. Zhang, S. Shi, J. Nielsen, Z. Liu, A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae, Nat. Commun. 10 (2019) 1053.

[27]

H. Liu, Y. Zhou, Y. Song, Q. Zhang, Y. Kan, X. Tang, Q. Xiao, Q. Xiang, H. Liu, Y. Luo, R. Bao, Structural and dynamics studies of the Spcas9 variant provide insights into the regulatory role of the REC1 domain, ACS Catal. 12 (2022) 8687-8697.

[28]

Q.H. Chen, Y.D. Qian, Y.J. Niu, C.Y. Hu, Y.H. Meng, Characterization of an efficient CRISPR-iCas9 system in Yarrowia lipolytica for the biosynthesis of carotenoids, Appl. Microbiol. Biotechnol. 107 (2023) 6299-6313.

AI Summary AI Mindmap
PDF (1696KB)

357

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/