The gut virome and human health: From diversity to personalized medicine

Rahul Harikumar Lathakumari , Leela Kakithakara Vajravelu , Anusha Gopinathan , Poornima Baskar Vimala , Vishnupriya Panneerselvam , Sujith Sri Surya Ravi , Jayaprakash Thulukanam

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100191

PDF (2039KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100191 DOI: 10.1016/j.engmic.2025.100191
Review

The gut virome and human health: From diversity to personalized medicine

Author information +
History +
PDF (2039KB)

Abstract

The human gut virome plays a crucial role in the gut and overall health; its diversity and regulatory functions influence bacterial populations, metabolism, and immune responses. Bacteriophages (phages) and eukaryotic viruses within the gut microbiome contribute to these processes, and recent advancements in sequencing technologies and bioinformatics have greatly expanded our understanding of the gut virome. These advances have led to the development of phage-based therapeutics, diagnostics, and artificial intelligence-driven precision medicine. The emerging field of phageomics shows promise for delivering personalized phage therapies that combat antimicrobial resistance by specifically targeting pathogenic bacteria while preserving beneficial microbes. Moreover, CRISPR-Cas systems delivered via phages have shown success in selectively targeting antibiotic resistance genes and enhancing treatment effectiveness. Phage-based diagnostics are highly sensitive in detecting bacterial pathogens, offering significant benefits for human health and zoonotic disease surveillance. This synthesis of the current knowledge highlights the pivotal role of the gut virome in regulating microbial communities and its transformative potential in personalized medicine, emphasizing its importance in advancing therapeutic and diagnostic strategies for improving health outcomes.

Keywords

Gut virome / Bacteriophage / Dysbiosis / Phage therapy / Fecal virome transplantation / CRISPR-Cas system

Cite this article

Download citation ▾
Rahul Harikumar Lathakumari, Leela Kakithakara Vajravelu, Anusha Gopinathan, Poornima Baskar Vimala, Vishnupriya Panneerselvam, Sujith Sri Surya Ravi, Jayaprakash Thulukanam. The gut virome and human health: From diversity to personalized medicine. Engineering Microbiology, 2025, 5(1): 100191 DOI:10.1016/j.engmic.2025.100191

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Rahul Harikumar Lathakumari: Writing - review & editing, Writing - original draft, Visualization, Validation, Resources, Methodology, Data curation, Conceptualization. Leela Kakithakara Vajravelu: Visualization, Validation, Supervision. Anusha Gopinathan: Visualization, Validation, Supervision. Poornima Baskar Vimala: Formal analysis, Conceptualization. Vishnupriya Panneerselvam: Formal analysis, Conceptualization. Sujith Sri Surya Ravi: Resources, Project administration, Investigation. Jayaprakash Thulukanam: Resources, Project administration, Investigation.

Acknowledgments

Authors would like to thank Dakshina M Nair from Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu for her invaluable insights and suggestions.

References

[1]

K. Tiamani, et al.. The role of virome in the gastrointestinal tract and beyond, FEMS Microbiol. Rev. 46(6) (2022) fuac027 Nov., doi: 10.1093/femsre/fuac027.

[2]

A.N. Shkoporov, et al.. The human gut virome is highly diverse, stable, and individual specific, Cell Host. Microbe 26 (4) (2019) 527-541 e5, doi: 10.1016/j.chom.2019.09.009.

[3]

E. Pargin, et al., The human gut virome: composition, colonization, interactions, and impacts on human health, Front. Microbiol. 14(2023), doi: 10.3389/fmicb.2023.963173.

[4]

R.H. Lathakumari, L.K. Vajravelu, A. Satheesan, S. Ravi, J. Thulukanam, Antibiotics and the gut microbiome: understanding the impact on human health, Med. Microecol. 20 (2024) 100106, doi: 10.1016/j.medmic.2024.100106.

[5]

R.P. Friedland, B. Haribabu, The role for the metagenome in the pathogenesis of COVID-19, EBioMedicine 61 (2020) Nov., doi: 10.1016/j.ebiom.2020.103019.

[6]

T.S. Rasmussen, et al., Overcoming donor variability and risks associated with fecal microbiota transplants through bacteriophage-mediated treatments, Microbiome 12(1) (2024) 119, doi: 10.1186/s40168-024-01820-1.

[7]

N. Ali, C. Vora, A. Mathuria, N. Kataria, I. ManiV. Singh ( Ed.), Chapter four -advances in CRISPR-Cas systems for gut microbiome, Progress in Molecular Biology and Translational Science 208(2024) 59-81, doi: 10.1016/bs.pmbts.2024.07.008.

[8]

A.N. Shkoporov, et al.. The human gut virome is highly diverse, stable, and individual specific, Cell Host. Microbe 26 (4) (2019) 527-541 e5, doi: 10.1016/j.chom.2019.09.009.

[9]

L.F. Camarillo-Guerrero, A. Almeida, G. Rangel-Pineros, R.D. Finn, T.D. Lawley, Massive expansion of human gut bacteriophage diversity, Cell 184 (4) (2021) 1098-1109 e9, doi: 10.1016/j.cell.2021.01.029.

[10]

G. Liang, F.D. Bushman, The human virome: assembly, composition and host interactions, Nat. Rev. Microbiol. 19(8) (2021) 514-527, doi: 10.1038/s41579-021-00536-5.

[11]

A. Reyes, et al.. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition, Proc. Natl. Acad. Sci. 112(38) (2015) 11941-11946 Sep., doi: 10.1073/pnas.1514285112.

[12]

M. Lecuit, M. Eloit, Chapter 21 -the viruses of the gut microbiota,in: M. FlochH., RingelY., WalkerW.Allan (Eds.), The Microbiota in Gastrointestinal Pathophysiology, Academic Press, Boston, 2017, pp. 179-183, doi: 10.1016/B978-0-12-804024-9.00021-5.

[13]

Z. Cao, et al., The gut ileal mucosal virome is disturbed in patients with Crohn’s disease and exacerbates intestinal inflammation in mice, Nat. Commun. 15(1) (2024) 1638, doi: 10.1038/s41467-024-45794-y.

[14]

K. Yang, et al., Alterations in the gut virome in obesity and type 2 diabetes mellitus, Gastroenterology 161 (4) (2021) 1257-1269 e13, doi: 10.1053/j.gastro.2021.06.056.

[15]

Y. Bhattarai, et al., Role of gut microbiota in regulating gastrointestinal dysfunction and motor symptoms in a mouse model of Parkinson’s disease, Gut. Microbes 13(1) (2021) 1866974 Jan., doi: 10.1080/19490976.2020.1866974.

[16]

M.G. Dominguez-Bello, et al.. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns, Proc. Natl. Acad. Sci. 107(26) (2010) 11971-11975 Jun., doi: 10.1073/pnas.1002601107.

[17]

J. Kaczorowska, L. van der Hoek, Human anelloviruses: diverse, omnipresent and commensal members of the virome, FEMS Microbiol. Rev. 44(3) (2020) 305-313 May, doi: 10.1093/femsre/fuaa007.

[18]

S.G. Paquette, Influenza transmission in the mother-infant dyad leads to severe disease, mammary gland infection, and pathogenesis by regulating host responses, PLoS. Pathog. 11(10) (2015) e1005173, doi: 10.1371/journal.ppat.1005173.

[19]

F.-G. Hanisch, G.S. Hansman, V. Morozov, C. Kunz, H. Schroten, Avidity of 𝛼-fucose on human milk oligosaccharides and blood group-unrelated oligo/polyfucoses is essential for potent norovirus-binding targets, J. Biol. Chem. 293(30) (2023) 11955-11965.

[20]

B.A. Siranosian, F.B. Tamburini, G. Sherlock, A.S. Bhatt, Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages, Nat. Commun. 11(1) (2020) 280, doi: 10.1038/s41467-019-14103-3.

[21]

F. Zucker, et al., New microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria, Virus. Evol. 8(2) (2022) veac070 Jul., doi: 10.1093/ve/veac070.

[22]

W.A. Walters, et al.. Longitudinal comparison of the developing gut virome in infants and their mothers, Cell Host. Microbe 31(2) (2023) 187-198 e3Feb., doi: 10.1016/j.chom.2023.01.003.

[23]

T.P. Honap Jr., Biogeographic study of human gut-associated crAssphage suggests impacts from industrialization and recent expansion, PLoS One 15(1) (2020) e0226930, doi: 10.1371/journal.pone.0226930.

[24]

A.C. Gregory, O. Zablocki, A.A. Zayed, A. Howell, B. Bolduc, M.B. Sullivan, The gut virome database reveals age-dependent patterns of virome diversity in the human gut, Cell Host. Microbe 28(5) (2020) 724-740 e8Nov., doi: 10.1016/j.chom.2020.08.003.

[25]

R. Francese, et al., Viruses and human milk: transmission or protection? Adv. Nutr. 14(6) (2023) 1389-1415, doi: 10.1016/j.advnut.2023.08.007.

[26]

S.I.S. Wedekind, N.S. Shenker, Antiviral properties of human milk, Microorganisms 9(4) (2021), doi: 10.3390/microorganisms9040715.

[27]

X. Lai, et al., Identified human breast milk compositions effectively inhibit SARSCoV-2 and variants infection and replication, iScience 25 (4) (2022) Apr., doi: 10.1016/j.isci.2022.104136.

[28]

D. Lembo, V. Cagno, A. Civra, G. Poli, Oxysterols: an emerging class of broad spectrum antiviral effectors, Mol. Aspects. Med. 49(2016) 23-30, doi: 10.1016/j.mam.2016.04.003.

[29]

D. Kato, et al., Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein, Antiviral Res. 88(2) (2010) 236-243, doi: 10.1016/j.antiviral.2010.09.002.

[30]

T. Zuo, et al.. Human-gut-DNA virome variations across geography, ethnicity, and urbanization, Cell Host. Microbe 28(5) (2020) 741-751 e4Nov., doi: 10.1016/j.chom.2020.08.005.

[31]

S. Nishijima, et al., Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort, Nat. Commun. 13(1) (2022) 5252, doi: 10.1038/s41467-022-32832-w.

[32]

J. Li, et al., Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes, PLoS Biol. 20 (8) (2022) Aug., doi: 10.1371/journal.pbio.3001758.

[33]

T. Zuo, et al.. Human-gut-DNA virome variations across geography, ethnicity, and urbanization, Cell Host. Microbe 28 (5) (2020) 741-751 e4, doi: 10.1016/j.chom.2020.08.005.

[34]

M.W. Opere, “Analysing the interplay of environmental virology, public health, and sanitation: a comprehensive review from a Kenyan perspective, ” 2023. doi: 10.3389/fcimb.2023.1256822.

[35]

O. Palmieri, et al., Adherence to gluten-free diet restores alpha diversity in celiac people but the microbiome composition is different to healthy people, Nutrients 14(12) (2022), doi: 10.3390/nu14122452.

[36]

A. Tomova, et al., The effects of vegetarian and vegan diets on gut microbiota, Front. Nutr. 6(2019), doi: 10.3389/fnut.2019.00047.

[37]

E. Lee, J.-E. Lee, Impact of drinking alcohol on gut microbiota: recent perspectives on ethanol and alcoholic beverage, Curr. Opin. Food Sci. 37(2021) 91-97, doi: 10.1016/j.cofs.2020.10.001.

[38]

A. Harper, et al.. Viral infections, the microbiome, and probiotics, Front. Cell Infect. Microbiol. 10(2021), doi: 10.3389/fcimb.2020.596166.

[39]

A.N. Shkoporov, C. Hill, Bacteriophages of the Human gut: the ‘known unknown’ of the microbiome, Cell Host. Microbe 25(2) (2019) 195-209, doi: 10.1016/j.chom.2019.01.017.

[40]

M. Zhang, T. Zhang, M. Yu, Y.-L. Chen, M. Jin, The life cycle transitions of temperate phages: regulating factors and potential ecological implications, Viruses 14(9) (2022), doi: 10.3390/v14091904.

[41]

C. Howard-Varona, K.R. Hargreaves, S.T. Abedon, M.B. Sullivan, Lysogeny in nature: mechanisms, impact and ecology of temperate phages, ISMe J. 11(7) (2017) 1511-1520 Jul., doi: 10.1038/ismej.2017.16.

[42]

T. Borodovich, A.N. Shkoporov, R.P. Ross, C. Hill, Phage-mediated horizontal gene transfer and its implications for the human gut microbiome, Gastroenterol. Rep. (Oxf) 10 (2022) goac012 Jan., doi: 10.1093/gastro/goac012.

[43]

G. Mancuso, A. Midiri, E. Gerace, C. Biondo, Bacterial antibiotic resistance: the most critical pathogens, Pathogens 10(10) (2021), doi: 10.3390/pathogens10101310.

[44]

X.-Q. Luo, et al., Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts, Microbiome 10(1) (2022) 190, doi: 10.1186/s40168-022-01384-y.

[45]

T.L. Brown, O.J. Charity, E.M. Adriaenssens, Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut, Curr. Opin. Microbiol. 70(2022) 102229, doi: 10.1016/j.mib.2022.102229.

[46]

N. Obeng, A.A. Pratama, J.D. van Elsas, The significance of mutualistic phages for bacterial ecology and evolution, Trends Microbiol. 24(6) (2016) 440-449, doi: 10.1016/j.tim.2015.12.009.

[47]

E.B. de Souza, A.R. Pinto, G. Fongaro, Bacteriophages as potential clinical immune modulators, Microorganisms 11(9) (2023), doi: 10.3390/microorganisms11092222.

[48]

W.H. Chin, et al.. Bacteriophages evolve enhanced persistence to a mucosal surface, Proc. Natl. Acad. Sci. 119(27) (2022) e2116197119 Jul., doi: 10.1073/pnas.2116197119.

[49]

J.J. Barr, et al.. Bacteriophage adhering to mucus provide a non-host-derived immunity, Proc. Natl. Acad. Sci. 110(26) (2013) 10771-10776 Jun., doi: 10.1073/pnas.1305923110.

[50]

I.Ul Haq, et al., The breadth of bacteriophages contributing to the development of the phage-based vaccines for COVID-19: an ideal platform to design the multiplex vaccine, Int. J. Mol. Sci. 24(2) (2023), doi: 10.3390/ijms24021536.

[51]

L. Gogokhia, et al.. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis, Cell Host. Microbe 25 (2) (2019) 285-299 e8, doi: 10.1016/j.chom.2019.01.008.

[52]

A. Górski, R. Mi ędzybrodzki, E. Jończyk-Matysiak, M. Żaczek, J. Borysowski, Phage-specific diverse effects of bacterial viruses on the immune system, Future Microbiol. 14(14) (2019) 1171-1174 Sep., doi: 10.2217/fmb-2019-0222.

[53]

Z. Cao, N. Sugimura, E. Burgermeister, M.P. Ebert, T. Zuo, P. Lan, The gut virome: a new microbiome component in health and disease, EBioMedicine 81 (2022) Jul., doi: 10.1016/j.ebiom.2022.104113.

[54]

P. Liu, Y. Hong, B. Yang, P. Shrestha, N. Sajjad, J.-L. Chen, Induction of the antiviral immune response and its circumvention by coronaviruses, Viruses. 12(9) (2020), doi: 10.3390/v12091039.

[55]

C. Valerie, S. Bridgett, Y. Jiangwei, L. Brandi, V. Peter, S.-C. Stacey, Characterizing a murine model for astrovirus using viral isolates from persistently infected immunocompromised mice, J. Virol. 93(13) (2019) 10.1128/jvi.00223-19Jun., doi: 10.1128/jvi.00223-19.

[56]

S. Liu, H. Lu, S. Zhang, Y. Shi, Q. Chen, Phages Against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review, MDPI, 2022 Feb. 01„ doi: 10. 3390/pharmaceutics14020427.

[57]

R.H. Lathakumari, L.K. Vajravelu, A. Satheesan, S. Ravi, J. Thulukanam, Antibiotics and the gut microbiome: understanding the impact on human health, Med. Microecol. 20 (2024) 100106, doi: 10.1016/j.medmic.2024.100106.

[58]

N.L. Ritz, et al., The gut virome is associated with stress-induced changes in behaviour and immune responses in mice, Nat. Microbiol. 9(2) (2024) 359-376, doi: 10.1038/s41564-023-01564-y.

[59]

A.K. DeGruttola, D. Low, A. Mizoguchi, E. Mizoguchi, Current understanding of dysbiosis in disease in human and animal models, Inflamm. Bowel. Dis. 22(5) (2016) 1137-1150 May, doi: 10.1097/MIB.0000000000000750.

[60]

N. Duan, E. Hand, M. Pheko, S. Sharma, A. Emiola, Structure-guided discovery of anti-CRISPR and anti-phage defense proteins, Nat. Commun. 15(1) (2024) 649, doi: 10.1038/s41467-024-45068-7.

[61]

S.S. Alkhalil, The role of bacteriophages in shaping bacterial composition and diversity in the human gut, Front. Microbiol. 14(2023), doi: 10.3389/fmicb.2023.1232413.

[62]

D. Gyriki, et al., Exploring the gut microbiome’s role in inflammatory bowel disease: insights and interventions, J. Pers. Med. 14(5) (2024), doi: 10.3390/jpm14050507.

[63]

L. Gogokhia, et al.. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis, Cell Host. Microbe 25 (2) (Feb. 2019) 285-299 e8, doi: 10.1016/j.chom.2019.01.008.

[64]

M. ur Rahman, et al., Endolysin, a promising solution against antimicrobial resistance, Antibiotics 10(11) (2021), doi: 10.3390/antibiotics10111277.

[65]

S. Federici, D. Kviatcovsky, R. Valdés-Mas, E. Elinav, Microbiome-phage interactions in inflammatory bowel disease, Clin. Microbiol. Infect. 29(6) (2023) 682-688, doi: 10.1016/j.cmi.2022.08.027.

[66]

A.E.V. Quaglio, T.G. Grillo, E.C.S. De Oliveira, L.C. Di Stasi, L.Y. Sassaki, Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer, Baishideng Publishing Group Inc, 2022 Aug. 14„ doi: 10.3748/wjg.v28.i30.4053.

[67]

H.M. Tun, et al., Gut Virome in Inflammatory Bowel Disease and Beyond, BMJ Publishing Group, 2023 Nov. 10„ doi: 10.1136/gutjnl-2023-330001.

[68]

B. Sundaresan, F. Shirafkan, K. Ripperger, K. Rattay, The role of viral infections in the onset of autoimmune diseases, Viruses. 15(3) (2023), doi: 10.3390/v15030782.

[69]

M.F. Cusick, J.E. Libbey, R.S. Fujinami, Molecular mimicry as a mechanism of autoimmune disease, Clin. Rev. Allergy Immunol. 42(1) (2012) 102-111, doi: 10.1007/s12016-011-8294-7.

[70]

A. Górski, R. Mi ędzybrodzki, E. Jo ń czyk-Matysiak, M. Kniotek, S. Letkiewicz, Therapeutic phages as modulators of the immune response: practical implications, Clin. Infect. Dis. 77 (Supplement_5) (2023) S433-S439 Nov., doi: 10.1093/cid/ciad483.

[71]

L. Sun, Y. Su, A. Jiao, X. Wang, B. Zhang, T cells in health and disease, Signal. Transduct. Target. Ther. 8(1) (2023) 235, doi: 10.1038/s41392-023-01471-y.

[72]

G. Zhao, et al.. Intestinal virome changes precede autoimmunity in type I diabetessusceptible children, Proc. Natl. Acad. Sci. 114(30) (2017) E6166-E6175 Jul., doi: 10.1073/pnas.1706359114.

[73]

Y. Tomofuji, et al.. Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease, Ann. Rheum. Dis. 81(2) (2022) 278-288 Feb., doi: 10.1136/annrheumdis-2021-221267.

[74]

B.O. Roep, S. Thomaidou, R. van Tienhoven, A. Zaldumbide, Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system? Nat. Res. (2021), doi: 10.1038/s41574-020-00443-4.

[75]

C. Chen, et al., Alterations of the gut virome in patients with systemic lupus erythematosus, Front. Immunol. 13 (2023) Jan., doi: 10.3389/fimmu.2022.1050895.

[76]

N. Chuaypen, et al., Gut microbiota in patients with non-alcoholic fatty liver disease without type 2 diabetes: stratified by body mass index, Int. J. Mol. Sci. 25(3) (2024), doi: 10.3390/ijms25031807.

[77]

I. Mukhopadhya, J.P. Segal, S.R. Carding, A.L. Hart, G.L. Hold, The gut virome: the ‘missing link’ between gut bacteria and host immunity? Therap. Adv. Gastroenterol. 12 (2019) 1756284819836620 Jan., doi: 10.1177/1756284819836620.

[78]

S. Anjelique, et al., Fecal viral community responses to high-fat diet in mice, mSphere 5(1) (2020) 10.1128/msphere.00833-19 Feb., doi: 10.1128/msphere.00833-19.

[79]

X. Mao, et al., Transfer of modified gut viromes improves symptoms associated with metabolic syndrome in obese male mice, Nat. Commun. 15(1) (2024) 4704, doi: 10.1038/s41467-024-49152-w.

[80]

K. Fujimoto, D. Miyaoka, S. Uematsu, Characterization of the human gut virome in metabolic and autoimmune diseases, BioMed Cent. Ltd (2022), doi: 10.1186/s41232-022-00218-6.

[81]

S. Lang, et al., Intestinal virome signature associated with severity of nonalcoholic fatty liver disease, Gastroenterology 159(5) (2020) 1839-1852 Nov., doi: 10.1053/j.gastro.2020.07.005.

[82]

K. Yang, et al., Alterations in the gut virome in obesity and type 2 diabetes mellitus, Gastroenterology 161(4) (2021) 1257-1269 e13Oct., doi: 10.1053/j.gastro.2021.06.056.

[83]

M. Han, P. Yang, C. Zhong, K. Ning, The human gut virome in hypertension, Front. Microbiol. 9(2018), doi: 10.3389/fmicb.2018.03150.

[84]

F. Di Vincenzo, A. Del Gaudio, V. Petito, L.R. Lopetuso, F. Scaldaferri, Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review, Intern. Emerg. Med. 19(2) (2024) 275-293, doi: 10.1007/s11739-023-03374-w.

[85]

G.G. Kang, N.L. Trevaskis, A.J. Murphy, M.A. Febbraio, Diet-induced gut dysbiosis and inflammation: key drivers of obesity-driven NASH, iScience 26(2023) 105905, doi: 10.1016/j.isci.

[86]

D.R. Msanga, et al., Adenovirus infection is predicted by prolonged duration of diarrhea among Rotavirus-vaccinated children below five years of age in Mwanza, Tanzania, Int. J. Pediatr. (United Kingdom) 2020 (2020), doi: 10.1155/2020/9303216.

[87]

S. Yang, et al., Viral metagenomics reveals diverse viruses in the fecal samples of children with diarrhea, Virol. Sin. 37(1) (2022) 82-93, doi: 10.1016/j.virs.2022.01.012.

[88]

S. Bao, et al., Viral metagenomics of the gut virome of diarrheal children with Rotavirus A infection, Gut. Microbes. 15(1) (2023) 2234653 Dec., doi: 10.1080/19490976.2023.2234653.

[89]

Y.C. Kwe, et al., Gut virome analysis of Cameroonians reveals high diversity of enteric viruses, including potential interspecies transmitted viruses, mSphere 4(1) (2019) 10.1128/msphere.00585-18Jan., doi: 10.1128/msphere.00585-18.

[90]

S. Cordey, et al., Blood virosphere in febrile Tanzanian children, Emerg. Microbes. Infect. 10(1) (2021) 982-993 Jan., doi: 10.1080/22221751.2021.1925161.

[91]

S.X. Ho, et al., Alterations in colorectal cancer virome and its persistence after surgery, Sci. Rep. 14(1) (2024) 2819, doi: 10.1038/s41598-024-53041-z.

[92]

L. El Haddad, J.F. Mendoza, C. Jobin, Bacteriophage-mediated manipulations of microbiota in gastrointestinal diseases, Front. Microbiol. 13(2022), doi: 10.3389/fmicb.2022.1055427.

[93]

S. Siyuan, H. Dongxue, M. Chenchen, J. Shuaiming, Z. Jiachao, Expanding the colorectal cancer biomarkers based on the Human gut phageome, Microbiol. Spectr. 9(3) (2021) e00090-21 Dec., doi: 10.1128/Spectrum.00090-21.

[94]

M.A. Horaira, Md.A. Islam, Md.K. Kibria, Md.J. Alam, S.R. Kabir, Md.N.H. Mollah, Bioinformatics screening of colorectal-cancer causing molecular signatures through gene expression profiles to discover therapeutic targets and candidate agents, BMC Med. Genom. 16(1) (2023) 64, doi: 10.1186/s12920-023-01488-w.

[95]

Z. Wang, W. Dan, N. Zhang, J. Fang, Y. Yang, Colorectal cancer and gut microbiota studies in China, Gut. Microbes. 15(1) (2023) 2236364 Dec., doi: 10.1080/19490976.2023.2236364.

[96]

Z. Wang, N. Li, P. Cai, C. Zhang, G. Cao, J. Yin, Mechanism of HBx carcinogenesis interaction with non-coding RNA in hepatocellular carcinoma, Front. Oncol. 13(2023), doi: 10.3389/fonc.2023.1249198.

[97]

G. Pavia, N. Marascio, G. Matera, A. Quirino, Does the human gut virome contribute to host health or disease? Viruses 15(11) (2023), doi: 10.3390/v15112271.

[98]

H. Nagao-Kitamoto, S. Kitamoto, P. Kuffa, N. Kamada, Pathogenic Role of the Gut Microbiota in Gastrointestinal Diseases, Korean Association for the Study of Intestinal Diseases, 2016, doi: 10.5217/ir.2016.14.2.127.

[99]

H. Ullah, et al., The gut microbiota-brain axis in neurological disorder, Front. Neurosci. 17(2023), doi: 10.3389/fnins.2023.1225875.

[100]

J. Wu, et al., Changes in gut viral and bacterial species correlate with altered 1,2-diacylglyceride levels and structure in the prefrontal cortex in a depressionlike non-human primate model, Transl. Psychiatry 12(1) (2022) 74, doi: 10.1038/s41398-022-01836-x.

[101]

D. Seo, D.M. Holtzman, Current understanding of the Alzheimer’s diseaseassociated microbiome and therapeutic strategies, Exp. Mol. Med. 56(1) (2024) 86-94, doi: 10.1038/s12276-023-01146-2.

[102]

M. Ghorbani, D. Ferreira, S. Maioli, A metagenomic study of gut viral markers in amyloid-positive Alzheimer’s disease patients, Alzheimers. Res. Ther. 15(1) (2023) 141, doi: 10.1186/s13195-023-01285-8.

[103]

A. Gholamzad, et al., Exploring the virome: an integral part of human health and disease, Pathol. Res. Pract. 260 (2024) 155466, doi: 10.1016/j.prp.2024.155466.

[104]

T. Jinato, et al., Alterations in gut virome are associated with cognitive function and minimal hepatic encephalopathy cross-sectionally and longitudinally in cirrhosis, Gut. Microbes. 15(2) (2023) 2288168 Dec., doi: 10.1080/19490976.2023.2288168.

[105]

B. Chelluboina, K. Kieft, A. Breister, K. Anantharaman, R. Vemuganti, Gut virome dysbiosis following focal cerebral ischemia in mice, J. Cereb. Blood Flow Metab. 42(9) (2022) 1597-1602 Jun., doi: 10.1177/0271678.221107702.

[106]

Y. Hui-Lin, et al., Alterations of oral and gut viromes in hypertension and/or periodontitis, mSystems 9(1) (2023) e01169-23, Dec., doi: 10.1128/msystems.01169-23.

[107]

R.K. Seth, et al., Gut DNA virome diversity and its association with host bacteria regulate inflammatory phenotype and neuronal immunotoxicity in experimental Gulf War illness, Viruses 11(10) (2019), doi: 10.3390/v11100968.

[108]

K. Suganya, B.S. Koo, Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions, MDPI AG, 2020 Oct. 02„ doi: 10.3390/ijms21207551.

[109]

Z.-H. Lu, et al.. Alterations in the composition of intestinal DNA virome in patients with COVID-19, Front. Cell Infect. Microbiol. 11(2021), doi: 10.3389/fcimb.2021.790422.

[110]

A. Piazzesi, et al.. The pediatric gut bacteriome and virome in response to SARSCoV-2 infection, Front. Cell Infect. Microbiol. 14(2024), doi: 10.3389/fcimb.2024.1335450.

[111]

J. Cao, et al., Integrated gut virome and bacteriome dynamics in COVID-19 patients, Gut. Microbes 13(1) (2021) 1887722 Jan., doi: 10.1080/19490976.2021.1887722.

[112]

V.M. Martín Giménez, J. Modrego, D. Gómez-Garre, W. Manucha, N. de las Heras, Gut microbiota dysbiosis in COVID-19: modulation and approaches for prevention and therapy, Int. J. Mol. Sci. 24(15) (2023), doi: 10.3390/ijms241512249.

[113]

J. Cao, et al., Integrated gut virome and bacteriome dynamics in COVID-19 patients, Gut. Microbes. 13(1) (2021) 1887722 Jan., doi: 10.1080/19490976.2021.1887722.

[114]

Y. Ding, M. Wan, Z. Li, X. Ma, W. Zhang, M. Xu, Comparison of the gut virus communities between patients with Crohn’s disease and healthy individuals, Front. Microbiol. 14(2023), doi: 10.3389/fmicb.2023.1190172.

[115]

H.M. Tun, et al., Gut Virome in Inflammatory Bowel Disease and Beyond, BMJ Publishing Group, 2023 Nov. 10„ doi: 10.1136/gutjnl-2023-330001.

[116]

A.W. Campbell, Autoimmunity and the Gut, Hindawi Publishing Corporation, 2014, doi: 10.1155/2014/152428.

[117]

K. Fujimoto, D. Miyaoka, S. Uematsu, Characterization of the human gut virome in metabolic and autoimmune diseases, Inflamm. Regen. 42(1) (2022) 32, doi: 10.1186/s41232-022-00218-6.

[118]

L. Spencer, B. Olawuni, P. Singh, Gut virome: role and distribution in health and gastrointestinal diseases, Front. Cell Infect. Microbiol. 12(2022), doi: 10.3389/fcimb.2022.836706.

[119]

X. Liu, et al.. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence, Neural Regen. Res. 19(4) (2024) [Online]. Available: https://journals.lww.com/nrronline/fulltext/2024/04000/correlation_between_the_gut_microbiome_and.28.aspx.

[120]

J. Cao, et al., Integrated gut virome and bacteriome dynamics in COVID-19 patients, Gut. Microbes 13(1) (2021) 1-21, doi: 10.1080/19490976.2021.1887722.

[121]

L. Chen, X. Hou, H. Chu, The novel role of phage particles in chronic liver diseases, Microorganisms 11(5) (2023), doi: 10.3390/microorganisms11051181.

[122]

L. Chunxi, L. Haiyue, L. Yanxia, P. Jianbing, S. Jin, The gut microbiota and Respiratory diseases: new evidence, J. Immunol. Res. 2020(1) (2020) 2340670 Jan., doi: 10.1155/2020/2340670.

[123]

B. De Pessemier, L. Grine, M. Debaere, A. Maes, B. Paetzold, C. Callewaert, Gut-Skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions, Microorganisms 9(2) (2021), doi: 10.3390/microorganisms9020353.

[124]

L.A. Draper, et al., Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation, BMC Biol. 18(1) (2020) 173, doi: 10.1186/s12915-020-00906-0.

[125]

D. Huang, et al., Adaptive strategies and ecological roles of phages in habitats under physicochemical stress, Trends Microbiol. 32(9) (2024) 902-916, doi: 10.1016/j.tim.2024.02.002.

[126]

D. Lin, B. Hu, P. Li, Y. Zhao, Y. Xu, D. Wu, Roles of the intestinal microbiota and microbial metabolites in acute GVHD, Exp. Hematol. Oncol. 10(1) (2021) 49, doi: 10.1186/s40164-021-00240-3.

[127]

N.L. Ritz, et al., The gut virome is associated with stress-induced changes in behaviour and immune responses in mice, Nat. Microbiol. 9(2) (2024) 359-376, doi: 10.1038/s41564-023-01564-y.

[128]

X. Mao, et al., Transfer of modified gut viromes improves symptoms associated with metabolic syndrome in obese male mice, Nat. Commun. 15(1) (2024) 4704, doi: 10.1038/s41467-024-49152-w.

[129]

L.A. Draper, et al., Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation, BMC Biol. 18(1) (2020) 173, doi: 10.1186/s12915-020-00906-0.

[130]

Y. Abbas, et al.. Fecal microbiota transplantation: current challenges and future landscapes, Clin. Microbiol. Rev. 37(2) (2024) e00060-22 May, doi: 10.1128/cmr.00060-22.

[131]

Y. Ma, J. Liu, C. Rhodes, Y. Nie, F. Zhang, Ethical issues in fecal microbiota transplantation in practice, Am. J. Bioethics 17(5) (2017) 34-45 May, doi: 10.1080/15265161.2017.1299240.

[132]

S.J. Jo, J. Kwon, S.G. Kim, S.-J. Lee, The biotechnological application of bacteriophages: what to do and where to go in the middle of the post-antibiotic era, Microorganisms 11(9) (2023), doi: 10.3390/microorganisms11092311.

[133]

Z. Hibstu, H. Belew, Y. Akelew, H.M. Mengist, Phage Therapy: A Different Approach to Fight Bacterial Infections, Dove Medical Press Ltd, 2022, doi: 10.2147/BTT.S381237.

[134]

C. Brives, J. Pourraz, Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures, Palgrave Commun. 6(1) (2020) 100, doi: 10.1057/s41599-020-0478-4.

[135]

D.M. Nair, L.K. Vajravelu, J. Thulukanam, V. Paneerselvam, P.B. Vimala, R.H. Lathakumari, Tackling hepatitis B Virus with CRISPR/Cas9: advances, challenges, and delivery strategies, Virus Genes 60(6) (2024) 592-602, doi: 10.1007/s11262-024-02105-3.

[136]

A. Nath, et al., Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome, Biomed. Pharmacotherapy 151 (2022) 113122, doi: 10.1016/j.biopha.2022.113122.

[137]

M.U. Javed, M.T. Hayat, H. Mukhtar, K. Imre, CRISPR-Cas 9 system: a prospective pathway toward combatting antibiotic resistance, Antibiotics 12(6) (2023), doi: 10.3390/antibiotics12061075.

[138]

B.A. Adler, et al., Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing, Nat. Microbiol. 7(12) (2022) 1967-1979, doi: 10.1038/s41564-022-01258-x.

[139]

B. Al-Shayeb, et al., Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors, Cell 185(24) (2022) 4574-4586 e16Nov., doi: 10.1016/j.cell.2022.10.020.

[140]

B. Panahi, B. Dehganzad, Y. Nami, CRISPR-Cas systems feature and targeting phages diversity in lacticaseibacillus rhamnosus strains, Front. Microbiol. 14(2023), doi: 10.3389/fmicb.2023.1281307.

[141]

J. Fujiki, B. Schnabl, Phage therapy: targeting intestinal bacterial microbiota for the treatment of liver diseases, JHEP Rep. 5(12) (2023) Dec., doi: 10.1016/j.jhepr.2023.100909.

[142]

M. Beinhauerova, I. Slana, Phage amplification assay for detection of mycobacterial infection: a review, Microorganisms. 9(2) (2021), doi: 10.3390/microorganisms9020237.

[143]

X. Ouyang, et al., Mycobacteriophages in diagnosis and alternative treatment of mycobacterial infections, Front. Microbiol. 14(2023), doi: 10.3389/fmicb.2023.1277178.

[144]

S. Mattila, P. Ruotsalainen, M. Jalasvuori, On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy, Front. Microbiol. 6(2015), doi: 10.3389/fmicb.2015.01271.

[145]

A. Fauconnier, Regulating phage therapy, EMBo Rep. 18(2) (2017) 198-200- 200Feb., doi: 10.15252/embr.201643250.

[146]

Y.E. Gencay, et al., Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice, Nat. Biotechnol. 42(2) (2024) 265-274, doi: 10.1038/s41587-023-01759-y.

[147]

Y. Li, K. Yang, H. Duan, Y. Du, J. Ye, Phage-based peptides for pancreatic cancer diagnosis and treatment: alternative approach, Front. Microbiol. 14(2023), doi: 10.3389/fmicb.2023.1231503.

[148]

M. Ragothaman, S.Y. Yoo, Engineered phage-based cancer vaccines: current advances and future directions, Vaccines. ( Basel) 11 (5) (2023), doi: 10.3390/vaccines11050919.

[149]

C. Chang, et al., Engineered M13 phage as a novel therapeutic bionanomaterial for clinical applications: from tissue regeneration to cancer therapy, Mater. Today Bio 20 (2023) 100612, doi: 10.1016/j.mtbio.2023.100612.

[150]

J. Kulpakko, V. Juusti, A. Rannikko, P.E. Hänninen, Detecting disease associated biomarkers by luminescence modulating phages, Sci. Rep. 12(1) (2022) 2433, doi: 10.1038/s41598-022-06433-y.

[151]

V. Juusti, A. Rannikko, A. Laurila, M. Sundvall, P. Hänninen, J. Kulpakko, Phage biosensor for the classification of metastatic urological cancers from urine, Life 14(5) (2024), doi: 10.3390/life14050600.

[152]

R.H. Lathakumari, L.K. Vajravelu, J. Thulukanam, A.K. Narasimhan, Next-gen nano biosensor technologies to monitor carbapenem resistance for personalized medicine, Indian J. Microbiol. (2024), doi: 10.1007/s12088-024-01337-z.

[153]

H.J. Jones, C.G. Shield, B.M.C. Swift, The application of bacteriophage diagnostics for bacterial pathogens in the agricultural supply chain: from farm-to-fork, PHAGE 1(4) (2020) 176-188 Dec., doi: 10.1089/phage.2020.0042.

[154]

Md. S. Islam, J. Fan, F. Pan, The power of phages: revolutionizing cancer treatment, Front. Oncol. 13(2023), doi: 10.3389/fonc.2023.1290296.

[155]

G.-Y. Liu, et al., Antimicrobial resistance crisis: could artificial intelligence be the solution? Mil. Med. Res. 11(1) (2024) 7, doi: 10.1186/s40779-024-00510-1.

[156]

N. Bajiya, A. Dhall, S. Aggarwal, G.P.S. Raghava, Advances in the field of phagebased therapy with special emphasis on computational resources, Brief. Bioinform. 24(1) (2023) bbac574 Jan., doi: 10.1093/bib/bbac574.

[157]

N. Auslander, A.B. Gussow, S. Benler, Y.I. Wolf, E.V Koonin, Seeker: alignment-free identification of bacteriophage genomes by deep learning, Nucl. Acids. Res. 48(21) (2020) e121-e121, Dec., doi: 10.1093/nar/gkaa856.

[158]

K. Kieft, Z. Zhou, K. Anantharaman, VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences, Microbiome 8(1) (2020) 90, doi: 10.1186/s40168-020-00867-0.

[159]

J. Guo, et al., VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses, Microbiome 9(1) (2021) 37, doi: 10.1186/s40168-020-00990-y.

[160]

K. Sirén, A. Millard, B. Petersen, M.T.P. Gilbert, M.R.J. Clokie, T. Sicheritz-Pontén, Rapid discovery of novel prophages using biological feature engineering and machine learning, NAR. Genom. Bioinform. 3(1) (2021) lqaa109 Mar., doi: 10.1093/nargab/lqaa109.

[161]

N. Bajiya, A. Dhall, S. Aggarwal, G.P.S. Raghava, Advances in the field of phagebased therapy with special emphasis on computational resources, Brief. Bioinform. 24(1) (2023) bbac574 Jan., doi: 10.1093/bib/bbac574.

[162]

V.A. Cantu, et al., PhANNs, a fast and accurate tool and web server to classify phage structural proteins, PLoS Comput. Biol. 16(11) (2020) Nov., doi: 10.1371/journal.pcbi.1007845.

[163]

T.Y T, et al., Component parts of bacteriophage virions accurately defined by a machine-learning approach built on evolutionary features, mSystems 6(3) (2021) 10.1128/msystems.00242-21May, doi: 10.1128/msystems.00242-21.

[164]

S. Ahmad, et al., SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins, Sci. Rep. 12(1) (2022) 4106, doi: 10.1038/s41598-022-08173-5.

[165]

W. Wang, et al., A network-based integrated framework for predicting virus- prokaryote interactions, NAR Genom. Bioinform. 2(2) (2020) lqaa044 Jun., doi: 10.1093/nargab/lqaa044.

[166]

K. McNair, B.A. Bailey, R.A. Edwards, PHACTS, a computational approach to classifying the lifestyle of phages, Bioinformatics 28(5) (2012) 614-618 Mar., doi: 10.1093/bioinformatics/bts014.

[167]

A.J. Hockenberry, C.O. Wilke, BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains, PeerJ. 9(2021) May, doi: 10.7717/peerj.11396.

[168]

J. Shang, X. Tang, Y. Sun, PhaTYP: predicting the lifestyle for bacteriophages using BERT, Brief. Bioinform. 24(1) (2023) bbac487 Jan., doi: 10.1093/bib/bbac487.

AI Summary AI Mindmap
PDF (2039KB)

627

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/