BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms

Zhiwei Deng , Zhenbo Yuan , Zhengshan Luo , Yijian Rao

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100188

PDF (3614KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100188 DOI: 10.1016/j.engmic.2024.100188
Review

BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms

Author information +
History +
PDF (3614KB)

Abstract

Owing to their diverse coordination patterns and catalytic mechanisms, non-heme iron-dependent dioxygenases catalyze a variety of biochemical reactions involved in the synthesis of numerous natural products and valuable compounds. Recently, we discovered a novel and atypical non-heme iron-dependent dioxygenase, BTG13, that features a unique coordination center consisting of four histidines and a carboxylated lysine (Kcx). This enzyme catalyzes the C-C bond cleavage of anthraquinone through two unconventional steps, with modified Kcx playing a key role in facilitating these processes, as revealed by molecular dynamics simulations and quantum chemical calculations. Phylogenetic analyses and other studies suggest that BTG13-related metalloenzymes are widespread in various organisms. Here, we highlight the significance of this new class of non-heme iron-dependent oxygenases and their potential as novel tools for practical applications in synthetic biology.

Keywords

BTG13 / Carboxylated lysine / Catalytic mechanism / Coordination pattern / Non-heme iron dioxygenase

Cite this article

Download citation ▾
Zhiwei Deng, Zhenbo Yuan, Zhengshan Luo, Yijian Rao. BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms. Engineering Microbiology, 2025, 5(1): 100188 DOI:10.1016/j.engmic.2024.100188

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of AI in Scientific Writing

The authors declare that no AI was used in scientific writing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Zhiwei Deng: Writing - review & editing, Writing - original draft, Validation, Software, Methodology, Investigation, Formal analysis, Data curation. Zhenbo Yuan: Validation, Resources, Investigation. Zhengshan Luo: Validation, Resources, Formal analysis. Yijian Rao: Writing - review & editing, Supervision, Project administration, Funding acquisition, Conceptualization.

Acknowledgements

This work was funded by the National Natural Science Foundation of China (32270082 and 22207044), the Natural Science Foundation of Jiangsu Province (BK20202002), the Basic Research Program of Jiangsu and the Jiangsu Basic Research Center for Synthetic Biology (BK20233003).

References

[1]

M.M. Abu-Omar, A. Loaiza, N. Hontzeas, Reaction mechanisms of mononuclear nonheme iron oxygenases, Chem. Rev. 105(2005) 2227-2252, doi: 10.1021/cr040653o.

[2]

T.D.H. Bugg, S. Ramaswamy, Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations, Curr. Opin. Chem. Biol. 12(2008) 134-140, doi: 10.1016/j.cbpa.2007.12.007.

[3]

R. Ushimaru, I. Abe, Unusual dioxygen-dependent reactions catalyzed by nonheme iron enzymes in natural product biosynthesis, ACS Catal. 13(2023) 1045-1076, doi: 10.1021/acscatal.2c05247.

[4]

E.I. Solomon, T.C. Brunold, M.I. Davis, J.N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A.J. Skulan, Y.-S. Yang, J. Zhou, Geometric and electronic structure/function correlations in non-heme iron enzymes, Chem. Rev. 100(2000) 235-350, doi: 10.1021/cr9900275.

[5]

K. Ray, F.F. Pfaff, B. Wang, W. Nam, Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions, J. Am. Chem. Soc. 136(2014) 13942-13958, doi: 10.1021/ja507807v.

[6]

A. Karlsson, J.V. Parales, R.E. Parales, D.T. Gibson, H. Eklund, S. Ramaswamy, Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron, Science (1979) 299(2003) 1039-1042, doi: 10.1126/science.1078020.

[7]

E.G. Kovaleva, J.D. Lipscomb, Structural basis for the role of tyrosine 257 of homoprotocatechuate 2,3-dioxygenase in substrate and oxygen activation, Biochemistry 51 (2012) 8755-8763, doi: 10.1021/bi301115c.

[8]

S. Ye, X.a. Wu, L. Wei, D. Tang, P. Sun, M. Bartlam, Z. Rao, An insight into the mechanism of human cysteine dioxygenase: key roles of the thioether-bonded tyrosine-cysteine cofactor, J. Biol. Chem. 282(2007) 3391-3402, doi: 10.1074/jbc.M609337200.

[9]

G. Liu, Y.-L. Zhao, F. He, P. Zhang, X. Ouyang, H. Tang, P. Xu, Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX, Nat. Commun. 12(2021) 1301, doi: 10.1038/s41467-021-21567-9.

[10]

S. Liu, T. Su, C. Zhang, W.-M. Zhang, D. Zhu, J. Su, T. Wei, K. Wang, Y. Huang, L. Guo, et al., Crystal structure of PnpCD, a Two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2 + -dependent dioxygenases J, Biol. Chem. 290 (2015) 24547-24560, doi: 10.1074/jbc.M115.673558.

[11]

A. Mi ł aczewska, E. Kot, J.A. Amaya, T.M. Makris, M. Zaj ąc, J. Korecki, A. Chumakov, B. Trzewik, S. K ędracka-Krok, W. Minor, et al., On the structure and reaction mechanism of human acireductone dioxygenase, Chem. Eur. J. 24(2018) 5225-5237, doi: 10.1002/chem.201704617.

[12]

D.P. Kloer, S. Ruch, S. Al-Babili, P. Beyer, G.E. Schulz, The structure of a retinal-forming carotenoid oxygenase, Science (1979) 308(2005) 267-269, doi: 10.1126/science.1108965.

[13]

S.A. Gillmor, A. Villaseñor, R. Fletterick, E. Sigal, M.F. Browner, The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity, Nat. Struct. Biol. 4(1997) 1003-1009, doi: 10.1038/nsb1297-1003.

[14]

C.J. Knoot, V.M. Purpero, J.D. Lipscomb, Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase, Proc. Natl. Acad. Sci. U.S.A. 112(2015) 388-393, doi: 10.1073/pnas.1419118112.

[15]

M.D. White, E. Flashman, Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology, Curr. Opin. Chem. Biol. 31(2016) 126-135, doi: 10.1016/j.cbpa.2016.02.017.

[16]

E.I. Solomon, S. Goudarzi, K.D. Sutherlin, O2 activation by non-heme iron enzymes, Biochemistry 55 (2016) 6363-6374, doi: 10.1021/acs.biochem.6b00635.

[17]

M.-C. Tang, Y. Zou, K. Watanabe, C.T. Walsh, Y. Tang, Oxidative cyclization in natural product biosynthesis, Chem. Rev. 117(2017) 5226-5333, doi: 10.1021/acs.chemrev.6b00478.

[18]

X. Hou, H. Xu, Z. Deng, Y. Yan, Z. Yuan, X. Liu, Z. Su, S. Yang, Y. Zhang, Y. Rao, Discovery of the biosynthetic pathway of beticolin 1 reveals a novel non-heme irondependent oxygenase for anthraquinone ring cleavage, Angew. Chem. Int. Ed. 61(2022) e202208772, doi: 10.1002/anie.202208772.

[19]

Z. Deng, H. Su, X. Hou, H. Xu, Z. Yuan, X. Sheng, Y. Rao, Mechanistic investigation on c-c bond cleavage of anthraquinone catalyzed by an atypical nonheme irondependent dioxygenase BTG13, ACS Catal. 14(2024) 797-811, doi: 10.1021/acscatal.3c04053.

[20]

F. Qi, W. Zhang, Y. Xue, C. Geng, X. Huang, J. Sun, X. Lu, Bienzyme-catalytic and dioxygenation-mediated anthraquinone ring opening, J. Am. Chem. Soc. 143(2021) 16326-16331, doi: 10.1021/jacs.1c07182.

[21]

D. Ren, Y.-H. Lee, S.-A. Wang, H.-w. Liu, Characterization of the oxazinomycin biosynthetic pathway revealing the key role of a nonheme iron-dependent monooxygenase, J. Am. Chem. Soc. 144(2022) 10968-10977, doi: 10.1021/jacs.2c04080.

[22]

C. Cui, L.-J. Yang, Z.-W. Liu, X. Shu, W.-W. Zhang, Y. Gao, Y.-X. Wang, T. Wang, C.-C. Chen, R.-T. Guo, et al., Substrate specificity of a branch of aromatic dioxygenases determined by three distinct motifs, Nat. Commun. 15(2024) 7682, doi: 10.1038/s41467-024-52101-2.

[23]

X.J. Lv, C.Z. Ai, L.R. Zhang, X.X. Ma, J.J. Zhang, J.P. Zhu, R.X. Tan, Regioselectivity switches between anthraquinone precursor fissions involved in bioactive xanthone biosynthesis, Chem. Sci. 15(2024) 19534-19545, doi: 10.1039/D4SC06369D.

[24]

D. Jimenez-Morales, L. Adamian, D. Shi, J. Liang, Lysine carboxylation: unveiling a spontaneous post-translational modification, Acta Crystallogr. D 70(2014) 48-57, doi: 10.1107/S139900471302364X.

[25]

D.T. King, S. Zhu, D.B. Hardie, J.E. Serrano-Negrón, Z. Madden, S. Kolappan, D.J. Vocadlo, Chemoproteomic identification of CO2-dependent lysine carboxylation in proteins, Nat. Chem. Biol. 18(2022) 782-791, doi: 10.1038/s41589-022-01043-1.

[26]

J. Li, J.B. Cross, T. Vreven, S.O. Meroueh, S. Mobashery, H.B. Schlegel, Lysine carboxylation in proteins: OXA-10 β-lactamase, Proteins Struct. Funct. Bioinf. 61(2005) 246-257, doi: 10.1002/prot.20596.

[27]

w. consortium, Protein Data Bank: the single global archive for 3D macromolecular structure data, Nucleic. Acids. Res. 47(2018) D520-D528, doi: 10.1093/nar/gky949.

[28]

P.E.M. Siegbahn, F. Haeffner, Mechanism for Catechol ring-cleavage by nonheme iron extradiol dioxygenases, J. Am. Chem. Soc. 126(2004) 8919-8932, doi: 10.1021/ja0493805.

[29]

G. Dong, W. Lai, Reaction mechanism of homoprotocatechuate 2,3-Dioxygenase with 4-Nitrocatechol: implications for the role of substrate, J. Phys. Chem. B 118(2014) 1791-1798, doi: 10.1021/jp411812m.

[30]

G.J. Christian, F. Neese, S. Ye, Unravelling the molecular origin of the regiospecificity in extradiol catechol dioxygenases, Inorg. Chem. 55(2016) 3853-3864, doi: 10.1021/acs.inorgchem.5b02978.

[31]

G. Dong, J. Lu, W. Lai, Insights into the mechanism of aromatic ring cleavage of noncatecholic compound 2-aminophenol by aminophenol dioxygenase: a quantum mechanics/molecular mechanics study, ACS. Catal. 6(2016) 3796-3803, doi: 10.1021/acscatal.6b00372.

[32]

J. Wei, Y. Wang, X. Li, X. Zhang, Y. Liu, Mechanistic Insights into pyridine ring degradation catalyzed by 2,5-dihydroxypyridine dioxygenase NicX, Inorg. Chem. 61(2022) 2517-2529, doi: 10.1021/acs.inorgchem.1c03370.

[33]

T. Borowski, V. Georgiev, P.E.M. Siegbahn, Catalytic reaction mechanism of homogentisate dioxygenase: a hybrid dft study, J. Am. Chem. Soc. 127(2005) 17303-17314, doi: 10.1021/ja054433j.

[34]

J. Bai, Q. Hou, W. Zhu, Y. Liu, Mechanical insights into the oxidative cleavage of resveratrol catalyzed by dioxygenase NOV1 from Novosphingobium aromaticivorans: confirmation of dioxygenase mechanism by QM/MM calculations, Catal. Sci. Technol. 9(2019) 444-455, doi: 10.1039/C8CY01885E.

[35]

X. Ouyang, G. Liu, S. Ji, S. Luo, T. Shi, P. Xu, Y.-L. Zhao, H. Tang, Dioxetane and lactone pathways in dioxygenolytic ring cleavage catalyzed by 2,5-dihydroxypyridine dioxygenase, Chem. Catal. 3 (2023) 100480, doi: 10.1016/j.checat.2022.11.019.

[36]

X. Sheng, Q. Hou, Y. Liu, Computational evidence for the importance of lysine carboxylation in the reaction catalyzed by carboxyl transferase domain of pyruvate carboxylase: a QM/MM study, Theor. Chem. Acc. 138(2019) 17, doi: 10.1007/s00214-018-2408-8.

[37]

Y. Li, X. Yu, J. Ho, D. Fushman, N.M. Allewell, M. Tuchman, D. Shi, Reversible posttranslational carboxylation modulates the enzymatic activity of n-acetyl-l -ornithine transcarbamylase, Biochemistry 49(2010) 6887-6895, doi: 10.1021/bi1007386.

[38]

E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora, V. Sustr, M. Klvana, P. Medek, et al., CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures, PLoS Comput. Biol 8(2012) e1002708, doi: 10.1371/journal.pcbi.1002708.

[39]

E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF chimera —a visualization system for exploratory research and analysis, J. Comput. Chem. 25(2004) 1605-1612, doi: 10.1002/jcc.20084.

[40]

R. Anandakrishnan, B. Aguilar, A.V. Onufriev, H ++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic. Acids. Res. 40(2012) W537-W541, doi: 10.1093/nar/gks375.

[41]

K.M.J. de Mattos-Shipley, T.J. Simpson, The ‘emodin family’ of fungal natural products-amalgamating a century of research with recent genomics-based advances, Nat. Prod. Rep. 40(2023) 174-201, doi: 10.1039/D2NP00040G.

[42]

J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A.J. Ballard, J. Bambrick, et al., Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature 630(2024) 493-500, doi: 10.1038/s41586-024-07487-w.

[43]

Y.-M. Chiang, E. Szewczyk, A.D. Davidson, R. Entwistle, N.P. Keller, C.C.C. Wang, B.R. Oakley, Characterization of the aspergillus nidulans monodictyphenone gene cluster, Appl. Environ. Microbiol. 76(2010) 2067-2074, doi: 10.1128/AEM.02187-09.

[44]

K.C. Ehrlich, B. Montalbano, S.M. Boué, D. Bhatnagar, An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin a to sterigmatocystin, Appl. Environ. Microbiol. 71(2005) 8963-8965, doi: 10.1128/AEM.71.12.8963-8965.2005.

[45]

K. Tamura, G. Stecher, S. Kumar, MEGA11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol. 38 (2021) 3022-3027, doi: 10.1093/molbev/msab120.

[46]

G.E. Crooks, G. Hon, J.-M. Chandonia, S.E. Brenner, WebLogo: a sequence logo generator, Genome Res. 14(2004) 1188-1190, doi: 10.1101/gr.849004.

[47]

Y. Wang, J. Li, A. Liu, Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics, J. Biol. Inorg. Chem. 22 (2017) 395-405, doi: 10.1007/s00775-017-1436-5.

AI Summary AI Mindmap
PDF (3614KB)

266

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/