BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms
Zhiwei Deng , Zhenbo Yuan , Zhengshan Luo , Yijian Rao
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100188
BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms
Owing to their diverse coordination patterns and catalytic mechanisms, non-heme iron-dependent dioxygenases catalyze a variety of biochemical reactions involved in the synthesis of numerous natural products and valuable compounds. Recently, we discovered a novel and atypical non-heme iron-dependent dioxygenase, BTG13, that features a unique coordination center consisting of four histidines and a carboxylated lysine (Kcx). This enzyme catalyzes the C-C bond cleavage of anthraquinone through two unconventional steps, with modified Kcx playing a key role in facilitating these processes, as revealed by molecular dynamics simulations and quantum chemical calculations. Phylogenetic analyses and other studies suggest that BTG13-related metalloenzymes are widespread in various organisms. Here, we highlight the significance of this new class of non-heme iron-dependent oxygenases and their potential as novel tools for practical applications in synthetic biology.
BTG13 / Carboxylated lysine / Catalytic mechanism / Coordination pattern / Non-heme iron dioxygenase
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
/
| 〈 |
|
〉 |