Complexity of antibiotic resistance and its impact on gut microbiota dynamics

H. Shayista , M.N. Nagendra Prasad , S. Niranjan Raj , Ashwini Prasad , S. Lakshmi , H.K. Ranjini , K. Manju , Ravikumara , Raghuraj Singh Chouhan , Olga Y. Khohlova , Olga V. Perianova , Syed Baker

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100187

PDF (2896KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100187 DOI: 10.1016/j.engmic.2024.100187
Review

Complexity of antibiotic resistance and its impact on gut microbiota dynamics

Author information +
History +
PDF (2896KB)

Abstract

The present review explores the influence of the gut microbiota on antibiotic resistance dynamics, particularly those associated with dysbiosis. The improper use of antibiotics can induce resistance in pathogens through various pathways, which is a topic of increasing interest within the scientific community. This review highlights the importance of microbial diversity, gut metabolism, and inflammatory responses against the dysbiosis due to the action of antibiotics. Additionally, it examines how secondary metabolites secreted by pathogens can serve as biomarkers for the early detection of antibiotic resistance. Although significant progress has been made in this field, key research gaps persist, including the need for a deeper understanding of the long-term effects of antibiotic-induced dysbiosis and the specific mechanisms driving the evolution of resistance in gut bacteria. Based on these considerations, this review systematically analyzed studies from PubMed, Web of Science, Embase, Cochrane Library, and Scopus up to July 2024. This study aimed to explore the dynamics of the interactions between gut microbiota and antibiotic resistance, specifically examining how microbial composition influences the development of resistance mechanisms. By elucidating these relationships, this review provides insights into management strategies for drug resistance and improves our understanding of microbial contributions to host health.

Keywords

Antibiotic resistance / Gut microbiota / Dysbiosis / Homeostasis / Metabolites

Cite this article

Download citation ▾
H. Shayista, M.N. Nagendra Prasad, S. Niranjan Raj, Ashwini Prasad, S. Lakshmi, H.K. Ranjini, K. Manju, Ravikumara, Raghuraj Singh Chouhan, Olga Y. Khohlova, Olga V. Perianova, Syed Baker. Complexity of antibiotic resistance and its impact on gut microbiota dynamics. Engineering Microbiology, 2025, 5(1): 100187 DOI:10.1016/j.engmic.2024.100187

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

H. Shayista: Writing - original draft. M.N. Nagendra Prasad: Writing - review & editing, Project administration, Formal analysis. S. Niranjan Raj: Writing - review & editing, Formal analysis. Ashwini Prasad: Visualization. S. Lakshmi: Resources. H.K. Ranjini: Data curation. K. Manju: Data curation. Ravikumara: Resources. Raghuraj Singh Chouhan: Methodology. Olga Y. Khohlova: Methodology. Olga V. Perianova: Resources. Syed Baker: Writing - review & editing, Visualization, Project administration, Methodology, Investigation, Conceptualization.

Data Availability Statement

The data used to support the findings of this study have been included in the article.

Acknowledgments

All authors express their gratitude to Karnataka State Open University for providing the necessary facilities to carry out this work. The authors also extend their heartfelt thanks to the Editor and reviewers for their constructive feedback, which has significantly contributed to uplifting the manuscript's standards and aligning it with the journal's guidelines.

The Authors would like to thank Karnataka State Open University, Mysore for providing the infrastructure to carry out the present study.

References

[1]

P. Hugon, J.-C. Lagier, P. Colson, F. Bittar, D. Raoult, Repertoire of human gut microbes, Microb. Pathog. 106(2017) 103-112, doi: 10.1016/j.micpath.2016.06.020.

[2]

H.J. Flint, K.P. Scott, S.H. Duncan, P. Louis, E. Forano, Microbial degradation of complex carbohydrates in the gut, Gut. Microbes. 3(2012) 289-306, doi: 10.4161/gmic.19897.

[3]

G. den Besten, K. van Eunen, A.K. Groen, K. Venema, D.-J. Reijngoud, B.M. Bakker, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J. Lipid Res. 54(2013) 2325-2340, doi: 10.1194/jlr.r036012.

[4]

S. Mondot, T. De Wouters, J. Doré, P. Lepage, The human gut microbiota and its dysfunctions, Digest. Dis. 31(2013) 278-285, doi: 10.1159/000354678.

[5]

S. Sirisinha, The potential impact of gut on your health: Current status and future challenges, Asian Pac. J. Allergy Immunol. (2016), doi: 10.12932/ap0803.

[6]

A. Muthaiyan, Determinants of the gut microbiota, gut microbiota and its impact on health and diseases. (2020) 19-62. 10.1007/978-3-030-47384-6_2.

[7]

S. Carding, K. Verbeke, D.T. Vipond, B.M. Corfe, L.J. Owen, Dysbiosis of the gut microbiota in disease, Microbial. Ecol. Health Dis. 26(2015), doi: 10.3402/mehd.v26.26191.

[8]

S.R. Modi, J.J. Collins, D.A. Relman, Antibiotics and the gut microbiota, J. Clin. Investig. 124(2014) 4212-4218, doi: 10.1172/jci72333.

[9]

M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D.R. Mende, et al., Enterotypes of the human gut microbiota, Nat. 473(2011) 174-180, doi: 10.1038/nature09944.

[10]

N.M. Koropatkin, E.A. Cameron, E.C. Martens, How glycan metabolism shapes the human gut microbiota, Nat. Rev. Microbiol. 10(5) (2012) 323-335 10 (2012), doi: 10.1038/nrmicro2746.

[11]

F. Shanahan, The host-microbe interface within the gut, Best Pract. Res. Clin. Gastroenterol. 16(2002) 915-931, doi: 10.1053/bega.2002.0342.

[12]

S.A. Nasseri, A.C. Lazarski, I.L. Lemmer, C.Y. Zhang, E. Brencher, H.-M. Chen, et al., Functional metagenomics reveals an alternative, broad-specificity pathway for metabolism of carbohydrates in human gut commensal bacteria. (2024). 10.1101/2024. 03.25.586180.

[13]

S. Schloissnig, M. Arumugam, S. Sunagawa, M. Mitreva, J. Tap, A. Zhu, A. Waller, D.R. Mende, J.R. Kultima, J. Martin, K. Kota, S.R. Sunyaev, G.M. Weinstock, P. Bork, Genomic variation landscape of the human gut microbiota, Nat. 493(7430) (2012) 45-50 493 (2012), doi: 10.1038/nature11711.

[14]

F. Sommer, J.M. Anderson, R. Bharti, J. Raes, P. Rosenstiel, The resilience of the intestinal microbiota influences health and disease, Nat. Rev. Microbiol. 15(10) (2017) 630-638 15 (2017), doi: 10.1038/nrmicro.2017.58.

[15]

M.G. Rooks, W.S. Garrett, Gut microbiota, metabolites and host immunity, Nat. Rev. Immunol. 16(6) (2016) 341-352 16 (2016), doi: 10.1038/nri.2016.42.

[16]

L. Janeckova, K. Kostovcikova, J. Svec, M. Stastna, H. Strnad, M. Kolar, et al., Unique gene expression signatures in the intestinal mucosa and organoids derived from germ-free and monoassociated mice, Int. J. Mol. Sci. 20(2019) 1581, doi: 10.3390/ijms20071581.

[17]

L. Krych, C.H. Hansen, A.K. Hansen, F.W. van den Berg, D.S. Nielsen, Quantitatively different, yet qualitatively alike: A meta-analysis of the mouse core gut microbiota with a view towards the human gut microbiota, PLoS. One 8(2013), doi: 10.1371/journal.pone.0062578.

[18]

I. Khan, Y. Bai, L. Zha, N. Ullah, H. Ullah, S.R. Shah, et al., Mechanism of the gut microbiota colonization resistance and enteric pathogen infection, Front. Cell Infect. Microbiol. 11(2021), doi: 10.3389/fcimb.2021.716299.

[19]

T.D. Lawley, A.W. Walker, Intestinal colonization resistance, Immunol. 138(2013) 1-11, doi: 10.1111/J.1365-2567.2012.03616.X.

[20]

M.A. Salam, M.Y. Al-Amin, M.T. Salam, J.S. Pawar, N. Akhter, A.A. Rabaan, M.A.A. Alqumber, Antimicrobial resistance: a growing serious threat for global public health, Healthcare 11(2023) 1946 11 (2023) 1946., doi: 10.3390/HEALTHCARE11131946.

[21]

K. Hansson, A. Brenthel, Imagining a post-antibiotic era: A cultural analysis of crisis and antibiotic resistance, Med. Humanit. 48(2022) 381-388, doi: 10.1136/medhum-2022-012409.

[22]

C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G.Robles Aguilar, A. Gray, et al., Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis, Lancet 399(2022) 629-655, doi: 10.1016/s0140-6736(21)02724-0.

[23]

D. Chinemerem Nwobodo, M.C. Ugwu, C. Oliseloke Anie, M.T. Al-Ouqaili, J. Chinedu Ikem, U. Victor Chigozie, et al., Antibiotic resistance: The challenges and some emerging strategies for tackling a Global Menace, J. Clin. Lab. Anal. 36(2022), doi: 10.1002/jcla.24655.

[24]

Antimicrobial resistance, (n.d.). https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed April 27, 2024).

[25]

S.K. Ahmed, S. Hussein, K. Qurbani, R.H. Ibrahim, A. Fareeq, K.A. Mahmood, M.G. Mohamed, Antimicrobial resistance: Impacts, challenges, and future prospects, J. Med. Surg. Public Health 2 (2024) 100081, doi: 10.1016/J.GLMEDI.2024.100081.

[26]

F.E.A. Raouf, E. Benyagoub, M.K. Alkhudhairy, S. Akrami, M. Saki, Extendedspectrum beta-lactamases among Klebsiella pneumoniae from Iraqi patients with community-acquired pneumonia, Rev. Assoc. Med. Bras. 68(2022) (1992) 833-837, doi: 10.1590/1806-9282.20220222.

[27]

M. Saki, M. Amin, M. Savari, M. Hashemzadeh, S.S. Seyedian, Beta-lactamase determinants and molecular typing of carbapenem-resistant classic and hypervirulent Klebsiella pneumoniae clinical isolates from southwest of Iran, Front. Microbiol. 13(2022) 1029686, doi: 10.3389/FMICB.2022.1029686.

[28]

M. Saki, A. Farajzadeh Sheikh, S. Seyed-Mohammadi, A. Asareh Zadegan Dezfuli, M. Shahin, M. Tabasi, H. Veisi, R. Keshavarzi, P. Khani, Occurrence of plasmidmediated quinolone resistance genes in Pseudomonas aeruginosa strains isolated from clinical specimens in southwest Iran: a multicentral study, Sci. Rep. 12(1) (2022) 1-8 12 (2022), doi: 10.1038/s41598-022-06128-4.

[29]

A. Farajzadeh Sheikh, M. Moradi Bandbal, M. Saki, Emergence of multidrugresistant Shigella species harboring extended-spectrum beta-lactamase genes in pediatric patients with diarrhea from southwest of Iran, Mol. Biol. Rep. 47(2020) 7097-7106, doi: 10.1007/S11033-020-05776-X.

[30]

K. Garbacz, M. Wierzbowska, E. Kwapisz, M. Kosecka-Strojek, M. Bronk, M. Saki, J. Mi ędzobrodzki, Distribution and antibiotic-resistance of different Staphylococcus species identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) isolated from the oral cavity, J. Oral Microbiol. 13(2021), doi: 10.1080/20002297.2021.1983322.

[31]

G.T. Yalew, S. Muthupandian, K. Hagos, L. Negash, G. Venkatraman, Y.M. Hagos, H.N. Meles, H.H. Weldehaweriat, H.O.M. Al-Dahmoshi, M. Saki, Prevalence of bacterial vaginosis and aerobic vaginitis and their associated risk factors among pregnant women from northern Ethiopia: A cross-sectional study, PLoS One 17(2022) e0262692, doi: 10.1371/JOURNAL.PONE.0262692.

[32]

S. Levy, Microbial resistance to antibiotics, Lancet 320(1982) 83-88, doi: 10.1016/s0140-6736(82)91701-9.

[33]

Q. Zhao, Y. Chen, W. Huang, H. Zhou, W. Zhang, Drug-microbiota interactions: an emerging priority for precision medicine, Signal. Transduct. Target. Ther. 8(1) (2023) 1-27 8 (2023), doi: 10.1038/s41392-023-01619-w.

[34]

L. Xu, A. Surathu, I. Raplee, A. Chockalingam, S. Stewart, L. Walker, et al., The effect of antibiotics on the gut microbiota: a metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice, BMC Genomics 21(2020), doi: 10.1186/s12864-020-6665-2.

[35]

M.P. Francino, Antibiotics and the human gut microbiota: dysbioses and accumulation of resistances, Front. Microbiol. 6(2016), doi: 10.3389/fmicb.2015.01543.

[36]

A.E. Pérez-Cobas, M.J. Gosalbes, A. Friedrichs, H. Knecht, A. Artacho, K. Eismann, et al., Gut microbiota disturbance during antibiotic therapy: A multi-omic approach, Gut 62(2012) 1591-1601, doi: 10.1136/gutjnl-2012-303184.

[37]

I. Raplee, L. Walker, L. Xu, A. Surathu, A. Chockalingam, S. Stewart, et al., Emergence of nosocomial associated opportunistic pathogens in the gut microbiota after antibiotic treatment, Antimicrob. Resist. Infect. Control 10(2021), doi: 10.1186/s13756-021-00903-0.

[38]

Q. Zhang, L. Cheng, J. Wang, M. Hao, H. Che, Antibiotic-induced gut microbiota dysbiosis damages the intestinal barrier, increasing food allergy in adult mice, Nutrients 13(2021) 3315, doi: 10.3390/nu13103315.

[39]

D. Dahiya, P.S. Nigam, Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota —brain axis and cognition: Restoration by intake of probiotics and Synbiotics, Int. J. Mol. Sci. 24(2023) 3074, doi: 10.3390/ijms24043074.

[40]

S. Garneau-Tsodikova, K.J. Labby, Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives, Medchemcomm 7(2016) 11-27, doi: 10.1039/c5md00344j.

[41]

L. Pradier, S. Bedhomme, Ecology, more than antibiotics consumption, is the major predictor for the global distribution of aminoglycoside-modifying enzymes, Elife (2023) 12, doi: 10.7554/elife.77015.

[42]

H. Shao, C. Zhang, N. Xiao, Z. Tan, Gut microbiota characteristics in mice with antibiotic-associated diarrhea, BMC Microbiol. 20(2020), doi: 10.1186/s12866-020-01999-x.

[43]

M. Sparo, G. Delpech, N. García Allende, Impact on public health of the spread of high-level resistance to gentamicin and vancomycin in enterococci, Front. Microbiol. 9(2018), doi: 10.3389/fmicb.2018.03073.

[44]

S.S. Tang, A. Apisarnthanarak, L.Y. Hsu, Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria, Adv. Drug Deliv. Rev. 78(2014) 3-13, doi: 10.1016/j.addr.2014.08.003.

[45]

L.M. Lima, B.N.M. da Silva, G. Barbosa, E.J. Barreiro, β-lactam antibiotics: An overview from a medicinal chemistry perspective, Eur. J. Med. Chem. 208 (2020) 112829, doi: 10.1016/J.EJMECH.2020.112829.

[46]

D.T. Davies, M. Everett, Designing inhibitors of β-lactamase enzymes to overcome carbapenem resistance in gram-negative bacteria, Acc. Chem. Res. 54(2021) 2055-2064, doi: 10.1021/acs.accounts.0c00863.

[47]

A. Zapun, C. Contreras-Martel, T. Vernet, Penicillin-binding proteins and β-lactam resistance, FEMS Microbiol. Rev. 32(2008) 361-385, doi: 10.1111/j.1574-6976.2007.00095.x.

[48]

S. Lu, Q. Huang, B. Wei, Y. Chen, Effects of β-lactam antibiotics on gut microbiota colonization and metabolites in late preterm infants, Curr. Microbiol. 77(2020) 3888-3896, doi: 10.1007/s00284-020-02198-7.

[49]

L. Liu, Q. Wang, H. Lin, R. Das, S. Wang, H. Qi, et al., Amoxicillin increased functional pathway genes and beta-lactam resistance genes by pathogens bloomed in intestinal microbiota using a simulator of the human intestinal microbial ecosystem, Front. Microbiol. 11(2020), doi: 10.3389/fmicb.2020.01213.

[50]

A.E. Livanos, T.U. Greiner, P. Vangay, W. Pathmasiri, D. Stewart, S. McRitchie, et al., Antibiotic-mediated gut microbiota perturbation accelerates development of type 1 diabetes in mice, Nat. Microbiol. 1 (2016), doi: 10.1038/nmicrobiol.2016.140.

[51]

V. de Lastours, B. Fantin, Impact of fluoroquinolones on human microbiota. Focus on the emergence of antibiotic resistance, Future Microbiol. 10(2015) 1241-1255, doi: 10.2217/fmb.15.40.

[52]

S.-H. Jeong, Y.-K. Song, J.-H. Cho, Risk assessment of ciprofloxacin, flavomycin, olaquindox and colistin sulfate based on microbiological impact on human gut biota, Regul. Toxicol. Pharmacol. 53(2009) 209-216, doi: 10.1016/j.yrtph.2009.01.004.

[53]

R.K. Brar, U. Jyoti, R.K. Patil, H.C. Patil, Fluoroquinolone antibiotics: An overview, Adesh Univ. J. Med. Sci. Res. 2(2020) 26-30, doi: 10.25259/aujmsr_12_2020.

[54]

S.-K. Park, K.-J. Kim, S.-O. Lee, D.-H. Yang, K.W. Jung, B.D. Ye, et al., Ciprofloxacin usage and bacterial resistance patterns in Crohn’s disease patients with abscesses, J. Clin. Gastroenterol. 48(2014) 703-707, doi: 10.1097/mcg.0000000000000024.

[55]

S. Zhu, H. Li, J. Liang, C. Lv, K. Zhao, M. Niu, et al., Assessment of oral ciprofloxacin impaired gut barrier integrity on gut bacteria in mice, Int. Immunopharmacol. 83 (2020) 106460, doi: 10.1016/j.intimp.2020.106460.

[56]

Charlotta Edlund G. Beyer M. Hiem, Comparative effects of moxifloxacin and clarithromycin on the normal intestinal microflora, Scand. J. Infect. Dis. 32(2000) 81-85, doi: 10.1080/00365540050164272.

[57]

N. Vázquez-Laslop, A.S. Mankin, How macrolide antibiotics work, Trends. Biochem. Sci. 43(2018) 668-684, doi: 10.1016/j.tibs.2018.06.011.

[58]

R. Leclercq, Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications, Clin. Infect. Dis. 34(2002) 482-492, doi: 10.1086/324626.

[59]

Y. Nakajima, Mechanisms of bacterial resistance to macrolide antibiotics, J. Infect. Chemotherapy 5(1999) 61-74, doi: 10.1007/s101560050011.

[60]

H. Pickering, J.D. Hart, S. Burr, R. Stabler, K. Maleta, K. Kalua, et al., Impact of azithromycin mass drug administration on the antibiotic-resistant gut microbiota in children: A randomized, controlled trial, Gut. Pathog. 14(2022), doi: 10.1186/s13099-021-00478-6.

[61]

V. Milanovi ć, A. Osimani, F. Cardinali, A. Litta-Mulondo, C. Vignaroli, B. Citterio, et al., Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovolacto vegetarians and omnivores, PLoS One 14(2019), doi: 10.1371/journal.pone.0220549.

[62]

R.H. Lathakumari, L.K. Vajravelu, A. Satheesan, S. Ravi, J. Thulukanam, Antibiotics and the gut microbiota: Understanding the impact on human health, Med. Microecol. 20 (2024) 100106, doi: 10.1016/j.medmic.2024.100106.

[63]

J. Chopyk, A.G. Cobián Güemes, C. Ramirez-Sanchez, H. Attai, M. Ly, M.B. Jones, et al., Common antibiotics, azithromycin and amoxicillin, affect gut metagenomics within a household, BMC Microbiol. 23(2023), doi: 10.1186/s12866-023-02949-z.

[64]

J.M. Choo, A.M. Martin, S.L. Taylor, E. Sun, F.M. Mobegi, T. Kanno, et al., The impact of long-term macrolide exposure on the gut microbiota and its implications for metabolic control, Microbiol. Spectr. 11(2023), doi: 10.1128/spectrum.00831-23.

[65]

J. Jaroszewski, N. Mamun, K. Czaja, Bidirectional interaction between tetra-cyclines and gut microbiome, Antibiotics 12(2023) 1438, doi: 10.3390/antibiotics12091438.

[66]

B.S. Speer, N.B. Shoemaker, A.A. Salyers, Bacterial resistance to tetracycline: Mechanisms, transfer, and clinical significance, Clin. Microbiol. Rev. 5(1992) 387-399, doi: 10.1128/cmr.5.4.387.

[67]

R.E. de Cristobal, Multidrug resistance pump acrAB-tolC is required for highlevel, tet(A)-mediated tetracycline resistance in Escherichia coli, J. Antimicrobial Chemotherapy 58(2006) 31-36, doi: 10.1093/jac/dkl172.

[68]

M. Beheshti, A. Ardebili, F. Beheshti, A.R. Lari, A. Siyadatpanah, A. Pournajaf, et al., Tetracycline resistance mediated by Tet efflux pumps in clinical isolates of Acinetobacter baumannii, Rev. Do Instituto Medicina Tropical São Paulo 62(2020), doi: 10.1590/s1678-9946202062088.

[69]

S.B. Levy, Active efflux, a common mechanism for biocide and antibiotic resistance, J. Appl. Microbiol. 92(2002), doi: 10.1046/j.1365-2672.92.5s1.4.x.

[70]

J. Aires, F. Doucet-Populaire, M.J. Butel, Tetracycline resistance mediated by tet (W), tet (M), and tet (O) genes of Bifidobacterium isolates from humans, Appl. Environ. Microbiol. 73(2007) 2751-2754, doi: 10.1128/aem.02459-06.

[71]

W. Yang, I.F. Moore, K.P. Koteva, D.C. Bareich, D.W. Hughes, G.D. Wright, TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics, J. Biol. Chem. 279(2004) 52346-52352, doi: 10.1074/jbc.m409573200.

[72]

O.L. Akinbowale, H. Peng, M.D. Barton, Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia, J. Appl. Microbiol. 103(2007) 2016-2025, doi: 10.1111/j.1365-2672.2007.03445.x.

[73]

L.E. de Vries, Y. Vallès, Y. Agersø, P.A. Vaishampayan, A. García-Montaner, J.V. Kuehl, et al., The gut as reservoir of antibiotic resistance: Microbial diversity of tetracycline resistance in mother and infant, PLoS. One 6(2011), doi: 10.1371/journal.pone.0021644.

[74]

M.C. Roberts, Update on acquired tetracycline resistance genes, FEMS Microbiol. Lett. 245(2005) 195-203, doi: 10.1016/j.femsle.2005.02.034.

[75]

F. Granados-Chinchilla, C. Rodríguez, Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and Health Implications, J. Anal. Methods Chem. (2017) 1-24 2017, doi: 10.1155/2017/1315497.

[76]

P. Jetty, S. Gaddam, S.S. Padi, Emergence of third generation tetracyclines: New magic bullets to tackle antibiotic resistance in the post-antibiotic era, Asian J. Res. Infect. Dis. 13(2023) 1-14, doi: 10.9734/ajrid/2023/v13i4271.

[77]

N. Karami, F. Nowrouzian, I. Adlerberth, A.E. Wold, Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota, Antimicrob. Agents Chemother 50(2006) 156-161, doi: 10.1128/aac.50.1.156-161.2006.

[78]

J. Yin, X.-X. Zhang, B. Wu, Q. Xian, Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of Mouse Gut, Ecotoxicology 24(2015) 2125-2132, doi: 10.1007/s10646-015-1540-7.

[79]

M. Aguilera, M. Cerdà-Cuéllar, V. Martínez, Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice, Gut Microbes. 6(2015) 10-23, doi: 10.4161/19490976.2014.990790.

[80]

L. Jostins, S. Ripke, R.K. Weersma, R.H. Duerr, D.P. McGovern, K.Y. Hui, et al., Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease, Nature 491(2012) 119-124, doi: 10.1038/nature11582.

[81]

N.M. Swer, B.S. Venkidesh, T.S. Murali, K.D. Mumbrekar, Gut microbiota-derived metabolites and their importance in neurological disorders, Mol. Biol. Rep. 50(2022) 1663-1675, doi: 10.1007/s11033-022-08038-0.

[82]

M. Li, B.C.A.M. van Esch, G.T.M. Wagenaar, J. Garssen, G. Folkerts, P.A.J. Henricks, Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells, Eur. J. Pharmacol. 831(2018) 52-59, doi: 10.1016/j.ejphar.2018.05.003.

[83]

K.P. Scott, S.H. Duncan, H.J. Flint, Dietary fibre and the gut microbiota, Nutr. Bull. 33(2008) 201-211, doi: 10.1111/j.1467-3010.2008.00706.x.

[84]

P.G. Farup, K. Rudi, K. Hestad, Faecal short-chain fatty acids -A diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol. 16(2016), doi: 10.1186/s12876-016-0446-z.

[85]

P.B. Mortensen, M.R. Clausen, Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease, Scand. J. Gastroenterol. 31(1996) 132-148, doi: 10.3109/00365529609094568.

[86]

E. Niccolai, S. Baldi, F. Ricci, E. Russo, G. Nannini, M. Menicatti, et al., Evaluation and comparison of short chain fatty acids composition in gut diseases, World J. Gastroenterol. 25(2019) 5543-5558, doi: 10.3748/wjg.v25.i36.5543.

[87]

S.S. Praveenraj, S. Sonali, N. Anand, H.A. Tousif, C. Vichitra, M. Kalyan, et al., The role of a gut microbial-derived metabolite, trimethylamine N-oxide (TMAO), in neurological disorders, Mol. Neurobiol. 59(2022) 6684-6700, doi: 10.1007/s12035-022-02990-5.

[88]

K.H. Mutengo, S.K. Masenga, A. Mweemba, W. Mutale, A. Kirabo, Gut microbiota dependant trimethylamine N-oxide and hypertension, Front. Physiol. 14(2023), doi: 10.3389/fphys.2023.1075641.

[89]

G. Livshits, A. Kalinkovich, Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis, Ageing Res. Rev. 56 (2019) 100980, doi: 10.1016/j.arr.2019.100980.

[90]

J.Y. Chiang, Bile acid metabolism and signaling, Compr. Physiol. (2013) 1191-1212, doi: 10.1002/cphy.c120023.

[91]

A.B. Larabi, H.L.P. Masson, A.J. Bäumler, Bile acids as modulators of gut microbiota composition and function, Gut. Microbes. 15 (2023) 2172671 PMID: 36740850; PMCID: PMC9904317, doi: 10.1080/19490976.2023.2172671.

[92]

M. Andreescu, Molecular insights into the role of gut microbiota in antibiotic therapy selection and resistance mitigation, Cureus 15(2023) PMID: 38089944; PMCID: PMC10714069, doi: 10.7759/cureus.50318.

[93]

S.A. Joyce, C.G.M. Gahan, Disease-associated changes in bile acid profiles and links to altered gut microbiota, Digest. Dis. 35(2017) 169-177, doi: 10.1159/000450907.

[94]

J. Tsuei, T. Chau, D. Mills, Y.-J.Y. Wan, Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer, Exp. Biol. Med. 239(2014) 1489-1504, doi: 10.1177/1535370214538743.

[95]

M. Carabotti, A. Scirocco, M.A. Maselli, C. Severi, The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems, Ann. Gastroenterol. 28 (2015) 203-209 PMID: 25830558; PMCID: PMC4367209.

[96]

Y. Chen, J. Xu, Y. Chen, Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders, Nutrients 13 (2021) 2099 PMID: 34205336; PMCID: PMC8234057, doi: 10.3390/nu13062099.

[97]

Z.H. Geng, Y. Zhu, Q.L. Li, C. Zhao, P.H. Zhou, Enteric nervous system: The bridge between the gut microbiota and neurological disorders, Front. Aging Neurosci. 14 (2022) 810483 PMID: 35517052; PMCID: PMC9063565, doi: 10.3389/fnagi.2022.810483.

[98]

B. Bartocci, A. Dal Buono, R. Gabbiadini, A. Busacca, A. Quadarella, A. Repici, E. Mencaglia, L. Gasparini, A. Armuzzi, Mental illnesses in inflammatory bowel diseases: mens sana in corpore sano, Medicina (Kaunas) 59 (2023) 682 PMID: 37109640; PMCID: PMC10145199, doi: 10.3390/medicina59040682.

[99]

T. Shah, Z. Baloch, Z. Shah, X. Cui, X. Xia, The intestinal microbiota: Impacts of antibiotics therapy, colonization resistance, and diseases, Int. J. Mol. Sci. 22 (2021) 6597 PMID: 34202945; PMCID: PMC8235228, doi: 10.3390/ijms22126597.

[100]

K. Hou, Z.X. Wu, X.Y. Chen, et al., Microbiota in health and diseases, Signal. Transd. Targeted Therapy 7(2022) 135, doi: 10.1038/s41392-022-00974-4.

[101]

Y. Holota, T. Dovbynchuk, I. Kaji, I. Vareniuk, N. Dzyubenko, T. Chervinska, et al., The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity, PLoS One 14(2019), doi: 10.1371/journal.pone.0220642.

[102]

A.A. Kadry, M.A. El-Antrawy, A.M. El-Ganiny, Impact of short chain fatty acids (scfas) on antimicrobial activity of new β-lactam/β-lactamase inhibitor combinations and on virulence of escherichia coli isolates, J. Antibiot. ( Tokyo) 76(2023) 225-235, doi: 10.1038/s41429-023-00595-1.

[103]

S.-L. Gu, Y. Gong, J. Zhang, Y. Chen, Z. Wu, Q. Xu, et al., Effect of the short-term use of fluoroquinolone and β-lactam antibiotics on mouse gut microbiota, Infect. Drug Resist. 13(2020) 4547-4558, doi: 10.2147/idr.s281274.

[104]

C. Behr, H. Kamp, E. Fabian, G. Krennrich, W. Mellert, E. Peter, et al., Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats, Arch. Toxicol. 91(2017) 3439-3454, doi: 10.1007/s00204-017-1949-2.

[105]

J.M. Choo, A.M. Martin, S.L. Taylor, E. Sun, F.M. Mobegi, T. Kanno, et al., The impact of long-term macrolide exposure on the gut microbiome and its implications for metabolic control, Microbiol. Spectr. 11(2023), doi: 10.1128/spectrum.00831-23.

[106]

A. Nowi ń ski, M. Ufnal, Trimethylamine N -oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition 46 (2018) 7-12, doi: 10.1016/j.nut.2017.08.001.

[107]

A.M. Rüb, A. Tsakmaklis, S.K. Gräfe, M.-C. Simon, M.J. Vehreschild, I. Wuethrich, Biomarkers of human gut microbiota diversity and dysbiosis, Biomark. Med. 15(2021) 139-150, doi: 10.2217/bmm-2020-0353.

[108]

H. Shayista, M.N.N. Prasad, S.N. Raj, H.K. Ranjini, K. Manju, S. Baker, Mechanistic overview of gut microbiota and mucosal pathogens with respect to cardiovascular diseases, Microbiology 5 (2024) 100160, doi: 10.1016/j.microb.2024.100160.

[109]

K. Kruger, Y. Myeonghyun, N. van der Wielen, D.E. Kok, G.J. Hooiveld, S. Keshtkar, et al., Evaluation of inter-and intra-variability in gut health markers in healthy adults using an optimised faecal sampling and processing method, Sci. Rep. 14(2024), doi: 10.1038/s41598-024-75477-z.

[110]

W.H.W. Tang, Z. Wang, B.S. Levison, R.A. Koeth, E.B. Britt, X. Fu, et al., Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk, N. Engl. J. Med. 368(2013) 1575-1584, doi: 10.1056/nejmoa1109400.

[111]

P. Louis, H.J. Flint, Formation of propionate and butyrate by the human colonic microbiota, Environ. Microbiol. 19(2016) 29-41, doi: 10.1111/1462-2920.13589.

[112]

J.K. Nicholson, E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, et al., Host-gut microbiota metabolic interactions, Science (1979) 336(2012) 1262-1267, doi: 10.1126/science.1223813.

[113]

W. Zhu, J.C. Gregory, E. Org, J.A. Buffa, N. Gupta, Z. Wang, et al., Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk, Cell 165(2016) 111-124, doi: 10.1016/j.cell.2016.02.011.

[114]

A.K. Yadav, D. Verma, R.K. Sajwan, M. Poddar, S.K. Yadav, A.K. Verma, et al., Nanomaterial-based electrochemical Nanodiagnostics for human and gut metabolites diagnostics: Recent advances and challenges, Biosensors 12(2022) 733, doi: 10.3390/bios12090733.

[115]

L. Zhang, F. Xie, H. Tang, X. Zhang, J. Hu, X. Zhong, et al., Gut microbial metabolite tmao increases peritoneal inflammation and peritonitis risk in peritoneal dialysis patients, Transl. Res. 240(2022) 50-63, doi: 10.1016/j.trsl.2021.10.001.

[116]

J. Lloyd-Price, G. Abu-Ali, C. Huttenhower, The healthy human microbiome, Genome Med. 8(2016), doi: 10.1186/s13073-016-0307-y.

[117]

Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. DuGar, et al., Gut Flora Metabolism of phosphatidylcholine promotes cardiovascular disease, Nature 472(2011) 57-63, doi: 10.1038/nature09922.

[118]

A. Koh, F. De Vadder, P. Kovatcheva-Datchary, F. Bäckhed, From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites, Cell 165(2016) 1332-1345, doi: 10.1016/j.cell.2016.05.041.

[119]

A. Lerner, T. Matthias, R. Aminov, Potential effects of horizontal gene exchange in the human gut, Front. Immunol. 8(2017), doi: 10.3389/fimmu.2017.01630.

[120]

X. Zeng, J. Lin, Factors influencing horizontal gene transfer in the intestine, Anim. Health Res. Rev. 18(2017) 153-159, doi: 10.1017/s1466252317000159.

[121]

C. Li, J. Chen, S.C. Li, Understanding horizontal gene transfer network in human gut microbiota, Gut. Pathog. 12(2020), doi: 10.1186/s13099-020-00370-9.

[122]

R.S. McInnes, G.E. McCallum, L.E. Lamberte, W. van Schaik, Horizontal transfer of antibiotic resistance genes in the human gut microbiota, Curr. Opin. Microbiol. 53(2020) 35-43, doi: 10.1016/j.mib.2020.02.002.

[123]

D. Hughes, D.I. Andersson, Evolutionary trajectories to antibiotic resistance, Annu. Rev. Microbiol. 71(2017) 579-596, doi: 10.1146/annurev-micro-090816-093813.

[124]

I. Chopra, A.J. O’Neill, K. Miller, The role of mutators in the emergence of antibiotic-resistant bacteria, Drug Resist. Updates 6(2003) 137-145, doi: 10.1016/s1368-7646(03)00041-4.

[125]

D. Lin, K. Chen, J. Guo, L. Ye, R. Li, E.W. Chan, et al., Contribution of biofilm formation genetic locus, pgaabcd, to antibiotic resistance development in gut microbiota, Gut. Microbes. 12(2020) 1842992, doi: 10.1080/19490976.2020.1842992.

[126]

K. Lewis, Multidrug tolerance of biofilms and Persister cells, Curr. Top. Microbiol. Immunol. (2008) 107-131, doi: 10.1007/978-3-540-75418-3_6.

[127]

S. Nath, A. Sinha, Y.S. Singha, A. Dey, N. Bhattacharjee, B. Deb, Prevalence of antibiotic-resistant, toxic metal-tolerant and biofilm-forming bacteria in hospital surroundings, Environ. Anal. Health Toxicol. 35(2020), doi: 10.5620/eaht.2020018.

[128]

L. Wu, X. Xie, Y. Li, T. Liang, H. Zhong, J. Ma, et al., Metagenomics-based analysis of the age-related cumulative effect of antibiotic resistance genes in gut microbiota, Antibiotics 10(2021) 1006, doi: 10.3390/antibiotics10081006.

[129]

N. Lu, Y. Hu, L. Zhu, X. Yang, Y. Yin, F. Lei, et al., DNA microarray analysis reveals that antibiotic resistance-gene diversity in human gut microbiota is age related, Sci. Rep. 4(2014), doi: 10.1038/srep04302.

[130]

R. Wiest, Bacterial translocation, Biosci. Microflora 24(2005) 61-90, doi: 10.12938/bifidus.24.61.

[131]

C. Wang, Q. Li, J. Ren, Microbiota-immune interaction in the pathogenesis of gutderived infection, Front. Immunol. 10(2019), doi: 10.3389/fimmu.2019.01873.

[132]

S. Jin, D. Wetzel, M. Schirmer, Deciphering mechanisms and implications of bacterial translocation in human health and disease, Curr. Opin. Microbiol. 67(2022) 102147, doi: 10.1016/j.mib.2022.102147.

[133]

L.C.-H. Yu, Y.-A. Shih, L.-L. Wu, Y.-D. Lin, W.-T. Kuo, W.-H. Peng, et al., Enteric dysbiosis promotes antibiotic-resistant bacterial infection: Systemic dissemination of resistant and commensal bacteria through epithelial transcytosis, Am. J. Physiol. -Gastrointestinal Liver Physiol. 307(2014), doi: 10.1152/ajpgi.00070.2014.

[134]

C.L. Wells, M.A. Maddaus, R.L. Simmons, Proposed mechanisms for the translocation of intestinal bacteria, Clin. Infect. Dis. 10(1988) 958-979, doi: 10.1093/clinids/10.5.958.

[135]

K.A. Knoop, K.G. McDonald, D.H. Kulkarni, R.D. Newberry, Antibiotics promote inflammation through the translocation of native commensal colonic bacteria, Gut 65(2015) 1100-1109, doi: 10.1136/gutjnl-2014-309059.

[136]

S. Baker, Raj.S. Niranjan, K. Manju, H.K. Ranjini, H. Shayista, Efficacy of breast milk components against microbial pathogens to combat drug-resistance, Microbe 1 (2023) 100010, doi: 10.1016/J.MICROB.2023.100010.

AI Summary AI Mindmap
PDF (2896KB)

441

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/