Terminal deoxynucleotidyl transferase: Properties and applications

Chengjie Zhang , Hizar Subthain , Fei Guo , Peng Fang , Shanmin Zheng , Mengzhe Shen , Xianger Jiang , Zhengquan Gao , Chunxiao Meng , Shengying Li , Lei Du

Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100179

PDF (5461KB)
Engineering Microbiology ›› 2025, Vol. 5 ›› Issue (1) : 100179 DOI: 10.1016/j.engmic.2024.100179
Review

Terminal deoxynucleotidyl transferase: Properties and applications

Author information +
History +
PDF (5461KB)

Abstract

Terminal deoxynucleotidyl transferase (TdT), a unique DNA polymerase, can elongate DNA by adding deoxynucleotides to the 3′ terminal of a DNA chain in a template-independent manner. Owing to their remarkable DNA synthesis activity, TdTs have promoted the development of numerous nucleic acid-based methods, tools, and associated applications, attracting broad interest from both academia and industry. This review summarizes and discusses the recent research on TdTs, including their biochemical characteristics, enzyme engineering, and practical applications. New insights and perspectives on the future development of TdTs are provided.

Keywords

Terminal deoxynucleotidyl transferase / Template-independent DNA synthesis / Synthetic biology / Enzyme engineering

Cite this article

Download citation ▾
Chengjie Zhang, Hizar Subthain, Fei Guo, Peng Fang, Shanmin Zheng, Mengzhe Shen, Xianger Jiang, Zhengquan Gao, Chunxiao Meng, Shengying Li, Lei Du. Terminal deoxynucleotidyl transferase: Properties and applications. Engineering Microbiology, 2025, 5(1): 100179 DOI:10.1016/j.engmic.2024.100179

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Given his role as Executive Editor, Dr. Shengying Li had no involvement in the peer-review of this article, and had no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Dr. Yoshizumi Ishino.

CRediT authorship contribution statement

Chengjie Zhang: Writing - review & editing, Writing - original draft. Hizar Subthain: Writing - review & editing. Fei Guo: Writing - review & editing. Peng Fang: Writing - review & editing. Shanmin Zheng: Writing - review & editing. Mengzhe Shen: Writing - review & editing. Xianger Jiang: Writing - review & editing. Zhengquan Gao: Writing - review & editing. Chunxiao Meng: Writing - review & editing. Shengying Li: Writing - review & editing, Supervision. Lei Du: Writing - review & editing, Supervision.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA0911500), Shandong Provincial Natural Science Foundation (ZR2020ZD23), National Natural Science Foundation of China (32370032, 32170088), and Taishan Young Scholars (tsqn202312032).

References

[1]

F.J. Bollum, Thermal conversion of nonpriming deoxyribonucleic acid to primer, J. Biol. Chem. 234(1959) 2733-2734, doi: 10.1016/S0021-9258(18)69770-4.

[2]

F.J. Bollum, Calf thymus polymerase, J. Biol. Chem. 235(1960) 2399-2403, doi: 10.1016/S0021-9258(18)64634-4.

[3]

F.J. Bollum, Terminal deoxynucleotidyl transferase, in: P.D. Boyer (Ed.), The Enzymes, Academic Press, 1974, pp. 145-171.

[4]

I. Boubakour-Azzouz, P. Bertrand, A. Claes, B.S. Lopez, F. Rougeon, Terminal deoxynucleotidyl transferase requires KU80 and XRCC4 to promote N-addition at non-V(D)J chromosomal breaks in non-lymphoid cells, Nucleic Acids Res 40 (2012) 8381-8391, doi: 10.1093/nar/gks585.

[5]

E.A. Motea, A.J. Berdis, Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase, Biochim. Biophys. Acta 1804 (2010) 1151-1166, doi: 10.1016/j.bbapap.2009.06.030.

[6]

M.R. Lieber, The polymerases for V(D)J recombination, Immunity 25(2006) 7-9, doi: 10.1016/j.immuni.2006.07.007.

[7]

M. Eisenstein, Enzymatic DNA synthesis enters new phase, Nat. Biotechnol. 38(2020) 1113-1115, doi: 10.1038/s41587-020-0695-9.

[8]

E. Yoo, D. Choe, J. Shin, S. Cho, B.K. Cho, Mini review: enzyme-based DNA synthesis and selective retrieval for data storage, Comput. Struct. Biotechnol. J. 19(2021) 2468-2476, doi: 10.1016/j.csbj.2021.04.057.

[9]

J. Ashley, I.G. Potts, F.J. Olorunniji, Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology, ChemBioChem (2022) e202200510, doi: 10.1002/cbic.202200510.

[10]

A.F. Moon, M. Garcia-Diaz, V.K. Batra, W.A. Beard, K. Bebenek, T.A. Kunkel, S.H. Wilson, L.C. Pedersen, The X family portrait: structural insights into biological functions of X family polymerases, DNA Repair (Amst.) 6(2007) 1709-1725, doi: 10.1016/j.dnarep.2007.05.009.

[11]

R.J. Bienstock, W.A. Beard, S.H. Wilson, Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members, DNA Repair (Amst.) 22(2014) 77-88, doi: 10.1016/j.dnarep.2014.07.003.

[12]

J. Gouge, S. Rosario, F. Romain, P. Beguin, M. Delarue, Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism, J. Mol. Biol. 425(2013) 4334-4352, doi: 10.1016/j.jmb.2013.07.009.

[13]

S. Palluk, D.H. Arlow, T. de Rond, S. Barthel, J.S. Kang, R. Bector, H.M. Baghdassarian, A.N. Truong, P.W. Kim, A.K. Singh, N.J. Hillson, J.D. Keasling, De novo DNA synthesis using polymerase-nucleotide conjugates, Nat. Biotechnol. 36(2018) 645-650, doi: 10.1038/nbt.4173.

[14]

J.M. Perkel, The race for enzymatic DNA synthesis heats up, Nature 566(2019) 565, doi: 10.1038/d41586-019-00682-0.

[15]

S.M. Minhaz Ud-Dean, A theoretical model for template-free synthesis of long DNA sequence, Syst. Synth. Biol. 2(2008) 67-73, doi: 10.1007/s11693-009-9023-x.

[16]

P. Wang, Y. Wan, S. Deng, S. Yang, Y. Su, C. Fan, A. Aldalbahi, X. Zuo, Aptamerinitiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers, Biosens. Bioelectron. 86(2016) 536-541, doi: 10.1016/j.bios.2016.07.025.

[17]

T. Zhao, Q. Chen, Y. Wen, X. Bian, Q. Tao, G. Liu, J. Yan, A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy, Food Chem 377(2022) 132072, doi: 10.1016/j.foodchem.2022.132072.

[18]

K. Abnous, A.K. Abdolabadi, M. Ramezani, M. Alibolandi, M.A. Nameghi, T. Zavvar, Z. Khoshbin, P. Lavaee, S.M. Taghdisi, N.M. Danesh, A highly sensitive electrochemical aptasensor for cocaine detection based on CRISPR-Cas12a and terminal deoxynucleotidyl transferase as signal amplifiers, Talanta 241 (2022) 123276, doi: 10.1016/j.talanta.2022.123276.

[19]

F.J. Bollum, Terminal deoxynucleotidyl transferase as a hematopoietic cell marker, Blood 54(1979) 1203-1215, doi: 10.1182/blood.V54.6.1203.1203.

[20]

Y. Wang, L. Li, Z. Dong, Y. Yu, A. Zhou, X. Zhao, J. Zhang, Ultrasensitive electrochemical detection of hepatitis C virus core antigen using terminal deoxynucleotidyl transferase amplification coupled with DNA nanowires, Mikrochim. Acta 188(2021) 285, doi: 10.1007/s00604-021-04939-2.

[21]

H. Lee, D.J. Wiegand, K. Griswold, S. Punthambaker, H. Chun, R.E. Kohman, G.M. Church, Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage, Nat. Commun. 11(2020) 5246, doi: 10.1038/s41467-020-18681-5.

[22]

M. Delarue, J.B. Boule, J. Lescar, N. Expert-Bezancon, N. Jourdan, N. Sukumar, F. Rougeon, C. Papanicolaou, Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase, EMBO J 21(2002) 427-439, doi: 10.1093/emboj/21.3.427.

[23]

M.R. Sawaya, H. Pelletier, A. Kumar, S.H. Wilson, J. Kraut, Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism, Science 264(1994) 1930-1935, doi: 10.1126/science.7516581.

[24]

G.A. Cisneros, L. Perera, M. García-Díaz, K. Bebenek, T.A. Kunkel, L.G. Pedersen, Catalytic mechanism of human DNA polymerase lambda with Mg2 + and Mn2 + from ab initio quantum mechanical/molecular mechanical studies, DNA Repair (Amst.) 7 (2008) 1824-1834, doi: 10.1016/j.dnarep.2008.07.007.

[25]

B. Yang, K.N. Gathy, M.S. Coleman, Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotidyl transferase, J. Biol. Chem. 269(1994) 11859-11868, doi: 10.1016/S0021-9258(17) 32652-2.

[26]

M.R. Sawaya, R. Prasad, S.H. Wilson, J. Kraut, H. Pelletier, Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism, Biochemistry 36(1997) 11205-11215, doi: 10.1021/bi9703812.

[27]

J. Ito, D.K. Braithwaite, Compilation and alignment of DNA-polymerase sequences, Nucleic Acids Res 19(1991) 4045-4057, doi: 10.1093/nar/19.15.4045.

[28]

L. Holm, C. Sander, DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily, Trends Biochem. Sci. 20(1995) 345-347, doi: 10.1016/s0968-0004(00)89071-4.

[29]

S. Aoufouchi, E. Flatter, A. Dahan, A. Faili, B. Bertocci, S. Storck, F. Delbos, L. Cocea, N. Gupta, J.C. Weill, C.A. Reynaud, Two novel human and mouse DNA polymerases of the polX family, Nucleic Acids Res 28(2000) 3684-3693, doi: 10.1093/nar/28.18.3684.

[30]

J.D. Fowler, Z. Suo, Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase, Chem. Rev. 106(2006) 2092-2110, doi: 10.1021/cr040445w.

[31]

M. Prostova, E. Shilkin, A.A. Kulikova, A. Makarova, S. Ryazansky, A. Kulbachinskiy, Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases, Nucleic Acids Res 50(2022) 6398-6413, doi: 10.1093/nar/gkac461.

[32]

S.M. Daskalova, X. Bai, S.M. Hecht, Study of the lyase activity of human DNA polymerase β using analogues of the intermediate schiff base complex, Biochemistry 57(2018) 2711-2722, doi: 10.1021/acs.biochem.8b00308.

[33]

J. Yamtich, J.B. Sweasy, DNA polymerase family X: function, structure, and cellular roles, Biochim. Biophys. Acta 1804 (2010) 1136-1150, doi: 10.1016/j.bbapap.2009.07.008.

[34]

W.A. Beard, S.H. Wilson, Structure and mechanism of DNA polymerase β Biochemistry 53(2014) 2768-2780, doi: 10.1021/bi500139h.

[35]

S. Nakane, H. Ishikawa, N. Nakagawa, S. Kuramitsu, R. Masui, The structural basis of the kinetic mechanism of a gap-filling X-family DNA polymerase that binds Mg(2 + )-dNTP before binding to DNA, J. Mol. Biol. 417 (2012) 179-196, doi: 10.1016/j.jmb.2012.01.025.

[36]

M. Blasius, I. Shevelev, E. Jolivet, S. Sommer, U. Hübscher, DNA polymerase X from Deinococcus radiodurans possesses a structure-modulated 3 ′→5 ′ exonuclease activity involved in radioresistance, Mol. Microbiol. 60 (2006) 165-176, doi: 10.1111/j.1365-2958.2006.05077.x.

[37]

P.J. Rothwell, G. Waksman, Structure and mechanism of DNA polymerases, Adv. Protein Chem. 71(2005) 401-440, doi: 10.1016/s0065-3233(04)71011-6.

[38]

F. Romain, I. Barbosa, J. Gouge, F. Rougeon, M. Delarue, Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region, Nucleic Acids Res 37 (2009) 4642-4656, doi: 10.1093/nar/gkp460.

[39]

Y.-S. Law, N.A. Muthaliff, Y. Wei, F. Lin, H. Zhao, E.L. Ang, Biochemical investigation and engineering of a tardigrade X family DNA polymerase for templateindependent DNA synthesis, ACS Catal 14(2024) 12318-12330, doi: 10.1021/acscatal.4c00756.

[40]

D. Baltimore, Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes, Nature 248(1974) 409-411, doi: 10.1038/248409a0.

[41]

L.M. Chang, Development of terminal deoxynucleotidyl transferase activity in embryonic calf thymus gland, Biochem. Biophys. Res. Commun. 44(1971) 124-131, doi: 10.1016/s0006-291x(71)80167-5.

[42]

D.G. Schatz, M.A. Oettinger, M.S. Schlissel, V (D) J recombination: molecular biology and regulation, Annu. Rev. Immunol. 10(1992) 359-383, doi: 10.1146/annurev.iy.10.040192.002043.

[43]

D. Jung, F.W. Alt, Unraveling V(D)J recombination: insights into gene regulation, Cell 116(2004) 299-311, doi: 10.1016/s0092-8674(04)00039-x.

[44]

M.S. Schlissel, Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination, Mol. Cell. Biol. 18(1998) 2029-2037, doi: 10.1128/mcb.18.4.2029.

[45]

M.M. Purugganan, S. Shah, J.F. Kearney, D.B. Roth, Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase, Nucleic Acids Res 29 (2001) 1638-1646, doi: 10.1093/nar/29.7.1638.

[46]

S.V. Desiderio, G.D. Yancopoulos, M. Paskind, E. Thomas, M.A. Boss, N. Landau, F.W. Alt, D. Baltimore, Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells, Nature 311(1984) 752-755, doi: 10.1038/311752a0.

[47]

J. Ashley, A.L. Schaap-Johansen, M. Mohammadniaei, M. Naseri, P. Marcatili, M. Prado, Y. Sun, Terminal deoxynucleotidyl transferase-mediated formation of protein binding polynucleotides, Nucleic Acids Res 49(2021) 1065-1074, doi: 10.1093/nar/gkaa1263.

[48]

S. Gilfillan, A. Dierich, M. Lemeur, C. Benoist, D. Mathis, Mice lacking TdT: mature animals with an immature lymphocyte repertoire, Science 261(1993) 1175-1178, doi: 10.1126/science.8356452.

[49]

T. Komori, A. Okada, V. Stewart, F.W. Alt, Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes, Science 261(1993) 1171-1175, doi: 10.1126/science.8356451.

[50]

D. Ghosh, S.C. Raghavan, 20 years of DNA polymerase 𝜇, the polymerase that still surprises, FEBS J 288(2021) 7230-7242, doi: 10.1111/febs.15852.

[51]

M.S. Krangel, Gene segment selection in V(D)J recombination: accessibility and beyond, Nat. Immunol. 4(2003) 624-630, doi: 10.1038/ni0703-624.

[52]

S.A. Nick McElhinny, J.M. Havener, M. Garcia-Diaz, R. Juárez, K. Bebenek, B.L. Kee, L. Blanco, T.A. Kunkel, D.A. Ramsden, A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining, Mol. Cell 19(2005) 357-366, doi: 10.1016/j.molcel.2005.06.012.

[53]

K.N. Mahajan, L. Gangi-Peterson, D.H. Sorscher, J. Wang, K.N. Gathy, N.P. Mahajan, W.H. Reeves, B.S. Mitchell, Association of terminal deoxynucleotidyl transferase with Ku, Proc. Natl. Acad. Sci. U.S.A. 96(1999) 13926-13931, doi: 10.1073/pnas.96.24.13926.

[54]

O. Koiwai, T. Yokota, T. Kageyama, T. Hirose, S. Yoshida, K. Arai, Isolation and characterization of bovine and mouse terminal deoxynucleotidyltransferase cDNAs expressible in mammalian cells, Nucleic Acids Res 14(1986) 5777-5792, doi: 10.1093/nar/14.14.5777.

[55]

N. Doyen, M.F. d’Andon, L.A. Bentolila, Q.T. Nguyen, F. Rougeon, Differential splicing in mouse thymus generates two forms of terminal deoxynucleotidyl transferase, Nucleic Acids Res 21(1993) 1187-1191, doi: 10.1093/nar/21.5.1187.

[56]

K. Takahara, N. Hayashi, K. Fujita-Sagawa, T. Morishita, Y. Hashimoto, A. Noda, Alternative splicing of bovine terminal deoxynucleotidyl transferase cDNA, Biosci. Biotechnol. Biochem. 58(1994) 786-787, doi: 10.1271/bbb.58.786.

[57]

T.H. Thai, J.F. Kearney, Distinct and opposite activities of human terminal deoxynucleotidyltransferase splice variants, J. Immunol. 173(2004) 4009-4019, doi: 10.4049/jimmunol.173.6.4009.

[58]

T.H. Thai, M.M. Purugganan, D.B. Roth, J.F. Kearney, Distinct and opposite diversifying activities of terminal transferase splice variants, Nat. Immunol. 3(2002) 457-462, doi: 10.1038/ni788.

[59]

T.H. Thai, J.F. Kearney, Isoforms of terminal deoxynucleotidyltransferase: developmental aspects and function, Adv. Immunol. 86(2005) 113-136, doi: 10.1016/s0065-2776(04)86003-6.

[60]

K.I. Kato, J.M. Goncalves, G.E. Houts, F.J. Bollum, Deoxynucleotidepolymerizing enzymes of calf thymus gland. II. Properties of the terminal deoxynucleotidyltransferase, J. Biol. Chem. 242(1967) 2780-2789, doi: 10.1016/S0021-9258(18)99635-3.

[61]

L. Tang, L.A. Navarro Jr. A. Chilkoti, S. Zauscher, High-molecular-weight polynucleotides by transferase-catalyzed living chain-growth polycondensation, Angew. Chem. Int. Ed. 56(2017) 6778-6782, doi: 10.1002/anie.201700991.

[62]

M.R. Deibel Jr., M. S. Coleman, Biochemical properties of purified human terminal deoxynucleotidyltransferase, J. Biol. Chem. 255(1980) 4206-4212, doi: 10.1016/S0021-9258(19)85653-3.

[63]

A.A. Kuznetsova, S.I. Senchurova, A.A. Gavrilova, T.E. Tyugashev, E.S. Mikushina, N.A. Kuznetsov, Substrate specificity diversity of human terminal deoxynucleotidyl transferase may be a naturally programmed feature facilitating its biological function, Int. J. Mol. Sci. 25(2024), doi: 10.3390/ijms25020879.

[64]

A.A. Kuznetsova, T.E. Tyugashev, I.V. Alekseeva, N.A. Timofeyeva, O.S. Fedorova, N.A. Kuznetsov, Insight into the mechanism of DNA synthesis by human terminal deoxynucleotidyltransferase, Life Sci. Alliance 5(2022), doi: 10.26508/lsa.202201428.

[65]

F.J. Bollum, Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase, J. Biol. Chem. 237(1962) 1945-1949, doi: 10.1016/S0021-9258(19)73964-7.

[66]

E. Schaudy, J. Lietard, M.M. Somoza, Sequence preference and initiator promiscuity for de novo DNA synthesis by terminal deoxynucleotidyl transferase, ACS Synth. Biol. 10(2021) 1750-1760, doi: 10.1021/acssynbio.1c00142.

[67]

D. Tauraite, J. Jakubovska, J. Dabuzinskaite, M. Bratchikov, R. Meskys, Modified nucleotides as substrates of terminal deoxynucleotidyl transferase, Molecules 22(2017) 672, doi: 10.3390/molecules22040672.

[68]

I. Sarac, M. Hollenstein, Terminal deoxynucleotidyl transferase in the synthesis and modification of nucleic acids, ChemBioChem 20(2019) 860-871, doi: 10.1002/cbic.201800658.

[69]

M.L. Winz, E.C. Linder, T. André, J. Becker, A. Jäschke, Nucleotidyl transferase assisted DNA labeling with different click chemistries, Nucleic Acids Res. 43(2015) e110, doi: 10.1093/nar/gkv544.

[70]

A.S. Mathews, H. Yang, C. Montemagno, Photo-cleavable nucleotides for primer free enzyme mediated DNA synthesis, Org. Biomol. Chem. 14(2016) 8278-8288, doi: 10.1039/c6ob01371f.

[71]

B. Zhao, Z. Gong, Z. Ma, D. Wang, Y. Jin, Simple and sensitive microRNA labeling by terminal deoxynucleotidyl transferase, Acta Biochim. Biophys. Sin. 44(2012) 129-135, doi: 10.1093/abbs/gmr115.

[72]

V. Rosemeyer, A. Laubrock, R. Seibl, Nonradioactive 3 ′ -end-labeling of RNA molecules of different lengths by terminal deoxynucleotidyltransferase, Anal. Biochem. 224 (1995) 446-449, doi: 10.1006/abio.1995.1068.

[73]

B. Qin, Q. Wang, Y. Wang, F. Han, H. Wang, S. Jiang, H. Yu, Enzymatic synthesis of TNA protects DNA nanostructures, Angew. Chem. Int. Ed. 63(2024) e202317334, doi: 10.1002/anie.202317334.

[74]

M. Flamme, S. Hanlon, I. Marzuoli, K. Püntener, F. Sladojevich, M. Hollenstein, Evaluation of 3 ′ -phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides, Commun. Chem. 5(2022) 68, doi: 10.1038/s42004-022-00685-5.

[75]

R. Roychoudhury, E. Jay, R. Wu, Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase, Nucleic Acids Res 3(1976) 863-877, doi: 10.1093/nar/3.4.863.

[76]

J.B. Boule, F. Rougeon, C. Papanicolaou, Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides, J. Biol. Chem. 276(2001) 31388-31393, doi: 10.1074/jbc.M105272200.

[77]

W.H. Eschenfeldt, R.S. Puskas, S.L. Berger, Homopolymeric tailing, Meth. Enzymol. 152(1987) 337-342, doi: 10.1016/0076-6879(87)52040-7.

[78]

G. Deng, R. Wu, An improved procedure for utilizing terminal transferase to add homopolymers to the 3 ′ termini of DNA, Nucleic Acids Res 9(1981) 4173-4188, doi: 10.1093/nar/9.16.4173.

[79]

L.M.S. Chang, F.J. Bollum, Multiple roles of divalent-cation in the terminal deoxynucleotidyltransferase reaction, J. Biol. Chem. 265(1990) 17436-17440, doi: 10.1016/S0021-9258(18)38181-X.

[80]

X. Lu, J. Li, C. Li, Q. Lou, K. Peng, B. Cai, Y. Liu, Y. Yao, L. Lu, Z. Tian, H. Ma, W. Wang, J. Cheng, X. Guo, H. Jiang, Y. Ma, Enzymatic DNA synthesis by engineering terminal deoxynucleotidyl transferase, ACS Catal 12(2022) 2988-2997, doi: 10.1021/acscatal.1c04879.

[81]

S. Barthel, S. Palluk, N.J. Hillson, J.D. Keasling, D.H. Arlow, Enhancing terminal deoxynucleotidyl transferase activity on substrates with 3 ′ terminal structures for enzymatic de novo DNA synthesis, Genes (Basel) 11 (2020) 102, doi: 10.3390/genes11010102.

[82]

Me Gottesma, Es Canellak, The terminal nucleotidyltransferase of calf thymus nuclei, J. Biol. Chem. 241(1966) 4339-4352, doi: 10.1016/S0021-9258(18) 99727-9.

[83]

L.M. Chang, F.J. Bollum, Molecular biology of terminal transferase, CRC Crit. Rev. Biochem. 21(1986) 27-52, doi: 10.3109/10409238609113608.

[84]

T.P. Chirpich, The effect of different buffers on terminal deoxynucleotidyl transferase activity, Biochim. Biophys. Acta 518(1978) 535-538, doi: 10.1016/0005-2787(78)90172-7.

[85]

D.C. Knapp, S. Serva, J. D’Onofrio, A. Keller, A. Lubys, A. Kurg, M. Remm, J.W. Engels, Fluoride-cleavable, fluorescently labelled reversible terminators: synthesis and use in primer extension, Chemistry (Easton) 17(2011) 2903-2915, doi: 10.1002/chem.201001952.

[86]

J.B. Boulé, E. Johnson, F. Rougeon, C. Papanicolaou, High-level expression of murine terminal deoxynucleotidyl transferase in Escherichia coli grown at low temperature and overexpressing argU tRNA, Mol. Biotechnol. 10(1998) 199-208, doi: 10.1007/bf02740839.

[87]

E.O. Ukladov, T.E. Tyugashev, N.A. Kuznetsov, Computational modeling study of the molecular basis of dNTP selectivity in human terminal deoxynucleotidyl transferase, Biomolecules 14(2024), doi: 10.3390/biom14080961.

[88]

L. Hu, Z. Zhang, C. Li, M. Han, M. Hao, X. Zhang, N. Ahmed, J. Luo, X. Lu, J. Sun, H. Jiang, High-throughput screening for oligonucleotide detection by ADE-OPI-MS, Anal. Chem. 96(2024) 12040-12048, doi: 10.1021/acs.analchem.4c02110.

[89]

J.W. Efcavitch, J.L. Tubbs, P. Sinha, B. Stec, Modified Template-Independent Enzymes For Polydeoxynucleotide Synthesis, Molecular Assemblies Inc, 2020 US 10059929 B2.

[90]

J.P.S. Chua, M.K. Go, T. Osothprarop, S. McDonald, A.G. Karabadzhak, W.S. Yew, S. Peisajovich, S. Nirantar, Evolving a thermostable terminal deoxynucleotidyl transferase, ACS Synth. Biol. 9(2020) 1725-1735, doi: 10.1021/acssynbio.0c00078.

[91]

T. Nelson, D. Brutlag, Addition of homopolymers to the 3 ′ -ends of duplex DNA with terminal transferase, Meth. Enzymol. 68(1979) 41-50, doi: 10.1016/0076-6879(79)68005-9.

[92]

R. Roychoudhury, R. Wu, Terminal transferase-catalyzed addition of nucleotides to the 3 ′ termini of DNA, Meth. Enzymol. 65(1980) 43-62, doi: 10.1016/s0076-6879(80)65009-5.

[93]

D.A. Jackson, R.H. Symons, P. Berg, Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69 (1972) 2904-2909, doi: 10.1073/pnas.69.10.2904.

[94]

P.E. Lobban, A.D. Kaiser, Enzymatic end-to end joining of DNA molecules, J. Mol. Biol. 78(1973) 453-471, doi: 10.1016/0022-2836(73)90468-3.

[95]

A. Otsuka, Recovery of DNA fragments inserted by the "tailing" method: regeneration of PstI restriction sites, Gene 13(1981) 339-346, doi: 10.1016/0378-1119(81)90013-5.

[96]

G.R. Deng, R. Wu, Terminal transferase: use in the tailing of DNA and for invitro mutagenesis, Meth. Enzymol. 100(1983) 96-116, doi: 10.1016/0076-6879(83)00047-6.

[97]

H. Yang, L. Zhu, X. Wang, Y. Song, Y. Dong, W. Xu, Extension characteristics of TdT and its application in biosensors, Crit. Rev. Biotechnol. (2023) 1-15, doi: 10.1080/07388551.2023.2270772.

[98]

S. Tian, Y. Yuan, F. Luo, C. Lin, J. Wang, B. Qiu, Z. Lin, W. Wang, Dual selfamplification homogeneous electrochemiluminescence biosensor for terminal deoxynucleotidyl transferase activity based on controlling the surface morphology and charge of reporter nanoparticles, Anal. Chem. 95(2023) 18603-18610, doi: 10.1021/acs.analchem.3c04579.

[99]

J. Xu, H. Yang, Z. Sui, X. Yuan, L. Jia, L. Guo, One-pot isothermal amplification permits recycled activation of CRISPR/Cas12a for sensing terminal deoxynucleotidyl transferase activity, Chem. Commun. 60(2024) 4683-4686, doi: 10.1039/d4cc00825a.

[100]

R.B. Stoughton, Applications of DNA microarrays in biology, Annu. Rev. Biochem. 74(2005) 53-82, doi: 10.1146/annurev.biochem.74.082803.133212.

[101]

J.M. Lee, H. Cho, Y. Jung, Fabrication of a structure-specific RNA binder for array detection of label-free microRNA, Angew. Chem. Int. Ed. 49(2010) 8662-8665, doi: 10.1002/anie.201004000.

[102]

V. Tjong, H. Yu, A. Hucknall, A. Chilkoti, Direct fluorescence detection of RNA on microarrays by surface-initiated enzymatic polymerization, Anal. Chem. 85(2013) 426-433, doi: 10.1021/ac303132j.

[103]

V. Tjong, H. Yu, A. Hucknall, S. Rangarajan, A. Chilkoti, Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization, Anal. Chem. 83(2011) 5153-5159, doi: 10.1021/ac200946t.

[104]

C.M. Niemeyer, M. Adler, R. Wacker, Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification, Trends Biotechnol 23(2005) 208-216, doi: 10.1016/j.tibtech.2005.02.006.

[105]

A.V. Hoffbrand, K. Ganeshaguru, G. Janossy, M.F. Greaves, D. Catovsky, R.K. Woodruff, Terminal deoxynucleotidyl-transferase levels and membrane phenotypes in diagnosis of acute leukaemia, Lancet 2(1977) 520-523, doi: 10.1016/s0140-6736(77)90662-6.

[106]

R. McCaffrey, T.A. Harrison, R. Parkman, D. Baltimore, Terminal deoxynucleotidyl transferase activity in human leukemic cells and in normal human thymocytes, N. Engl. J. Med. 292(1975) 775-780, doi: 10.1056/nejm197504102921504.

[107]

F.J. Bollum, Antibody to terminal deoxynucleotidyl transferase, Proc. Natl. Acad. Sci. U.S.A. 72(1975) 4119-4122, doi: 10.1073/pnas.72.10.4119.

[108]

S. Ding, A. Kan, X. Liu, C. Huang, N. Zhang, W. Jiang, A strand-elongation initiated DNAzyme walker for terminal deoxynucleotidyl transferase activity detection, Sens. Actuators B Chem. 344 (2021) 130204, doi: 10.1016/j.snb.2021.130204.

[109]

H.A. Cole, J.M. Tabor-Godwin, J.J. Hayes, Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets, J. Biol. Chem. 285(2010) 2876-2885, doi: 10.1074/jbc.M109.073544.

[110]

S.S. Parikh, G. Walcher, G.D. Jones, G. Slupphaug, H.E. Krokan, G.M. Blackburn, J.A. Tainer, Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects, Proc. Natl. Acad. Sci. U.S.A. 97(2000) 5083-5088, doi: 10.1073/pnas.97.10.5083.

[111]

K. Imai, G. Slupphaug, W.I. Lee, P. Revy, S. Nonoyama, N. Catalan, L. Yel, M. Forveille, B. Kavli, H.E. Krokan, H.D. Ochs, A. Fischer, A. Durandy, Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination, Nat. Immunol. 4(2003) 1023-1028, doi: 10.1038/ni974.

[112]

J.H. Hoeijmakers, Genome maintenance mechanisms for preventing cancer, Nature 411(2001) 366-374, doi: 10.1038/35077232.

[113]

Y.C. Du, S.Y. Wang, Y.X. Wang, J.Y. Ma, D.X. Wang, A.N. Tang, D.M. Kong, Terminal deoxynucleotidyl transferase combined CRISPR-Cas12a amplification strategy for ultrasensitive detection of uracil-DNA glycosylase with zero background, Biosens. Bioelectron. 171 (2021) 112734, doi: 10.1016/j.bios.2020.112734.

[114]

K. Wang, Y. Wei, W. Liu, L. Liu, Z. Guo, C. Fan, L. Wang, J. Hu, B. Li, Mechanical stress-dependent autophagy component release via extracellular nanovesicles in tumor cells, ACS Nano 13(2019) 4589-4602, doi: 10.1021/acsnano.9b00587.

[115]

Y. Yoshioka, N. Kosaka, Y. Konishi, H. Ohta, H. Okamoto, H. Sonoda, R. Nonaka, H. Yamamoto, H. Ishii, M. Mori, K. Furuta, T. Nakajima, H. Hayashi, H. Sugisaki, H. Higashimoto, T. Kato, F. Takeshita, T. Ochiya, Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen, Nat. Commun. 5(2014) 3591, doi: 10.1038/ncomms4591.

[116]

S.A. Melo, L.B. Luecke, C. Kahlert, A.F. Fernandez, S.T. Gammon, J. Kaye, V.S. LeBleu, E.A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M.F. Fraga, D. Piwnica-Worms, R. Kalluri, Glypican 1 identifies cancer exosomes and detects early pancreatic cancer, Nature 523 (2015) 177-182, doi: 10.1038/nature14581.

[117]

L. Huang, D.B. Wang, N. Singh, F. Yang, N. Gu, X.E. Zhang, A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes, Nanoscale 10(2018) 20289-20295, doi: 10.1039/c8nr07720g.

[118]

L. Wang, Y. Pan, Y. Liu, Z. Sun, Y. Huang, J. Li, J. Yang, Y. Xiang, G. Li, Fabrication of an aptamer-coated liposome complex for the detection and profiling of exosomes based on terminal deoxynucleotidyl transferase-mediated signal amplification, ACS Appl. Mater. Interfaces 12(2020) 322-329, doi: 10.1021/acsami.9b18869.

[119]

C. Bancroft, T. Bowler, B. Bloom, C.T. Clelland, Long-term storage of information in DNA, Science 293(2001) 1763-1765, doi: 10.1126/science.293.5536.1763c.

[120]

R.N. Grass, R. Heckel, M. Puddu, D. Paunescu, W.J. Stark, Robust chemical preservation of digital information on DNA in silica with error-correcting codes, Angew. Chem. Int. Ed. 54(2015) 2552-2555, doi: 10.1002/anie.201411378.

[121]

L. Organick, S.D. Ang, Y.J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, M.Z. Racz, G. Kamath, P. Gopalan, B. Nguyen, C.N. Takahashi, S. Newman, H.Y. Parker, C. Rashtchian, K. Stewart, G. Gupta, R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, K. Strauss, Random access in large-scale DNA data storage, Nat. Biotechnol. 36(2018) 242-248, doi: 10.1038/nbt.4079.

[122]

W. Chen, M. Han, J. Zhou, Q. Ge, P. Wang, X. Zhang, S. Zhu, L. Song, Y. Yuan, An artificial chromosome for data storage, Natl. Sci. Rev. 8(2021) nwab028, doi: 10.1093/nsr/nwab028.

[123]

L.F. Song, Z.H. Deng, Z.Y. Gong, L.L. Li, B.Z. Li, Large-scale de novo oligonucleotide synthesis for whole-genome synthesis and data storage: challenges and opportunities, Front. Bioeng. Biotechnol. 9(2021) 689797, doi: 10.3389/fbioe.2021.689797.

[124]

D. Baek, S.-Y. Joe, H. Shin, C. Park, S. Jo, H. Chun, Recent progress in high-throughput enzymatic DNA synthesis for data storage, Biochip J (2024), doi: 10.1007/s13206-024-00146-2.

[125]

M. Yu, X. Tang, Z. Li, W. Wang, S. Wang, M. Li, Q. Yu, S. Xie, X. Zuo, C. Chen, High-throughput DNA synthesis for data storage, Chem. Soc. Rev. (2024), doi: 10.1039/d3cs00469d.

[126]

M.H. Raza, S. Desai, S. Aravamudhan, R. Zadegan, An outlook on the current challenges and opportunities in DNA data storage, Biotechnol. Adv. 66 (2023) 108155, doi: 10.1016/j.biotechadv.2023.108155.

[127]

N. Bhan, A. Callisto, J. Strutz, J. Glaser, R. Kalhor, E.S. Boyden, G. Church, K. Kording, K.E.J. Tyo, Recording temporal signals with minutes resolution using enzymatic DNA synthesis, J. Am. Chem. Soc. 143(2021) 16630-16640, doi: 10.1021/jacs.1c07331.

[128]

H.H. Lee, R. Kalhor, N. Goela, J. Bolot, G.M. Church, Terminator-free templateindependent enzymatic DNA synthesis for digital information storage, Nat. Commun. 10(2019) 2383, doi: 10.1038/s41467-019-10258-1.

[129]

M.H. Caruthers, The chemical synthesis of DNA/RNA: our gift to science, J. Biol. Chem. 288(2013) 1420-1427, doi: 10.1074/jbc.X112.442855.

[130]

S.L. Beaucage, M.H. Caruthers, Deoxynucleoside phosphoramidites -a new class of key intermediates for deoxypolynucleotide synthesis, Tetrahedron Lett 22(1981) 1859-1862, doi: 10.1016/s0040-4039(01)90461-7.

[131]

X. Deng, H. Li, Y. Song, Inkjet printing-based high-throughput DNA synthesis, Giant 17 (2024) 100222, doi: 10.1016/j.giant.2023.100222.

[132]

J.W. Efcavitch, S. Siddiqi, Methods and Apparatus For Synthesizing Nucleic Acids, Molecular Assemblies, Inc., 2018 US 10041110.

[133]

M.A. Jensen, R.W. Davis, Template-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challenges, Biochemistry 57(2018) 1821-1832, doi: 10.1021/acs.biochem.7b00937.

[134]

K.L. Fearon, B.L. Hirschbein, C.Y. Chiu, M.R. Quijano, G. Zon, Phosphorothioate oligodeoxynucleotides: large-scale synthesis and analysis, impurity characterization, and the effects of phosphorus stereochemistry, Ciba Found. Symp. 209(1997) 19-31, doi: 10.1002/9780470515396.ch3.

[135]

D. Verardo, B. Adelizzi, D.A. Rodriguez-Pinzon, N. Moghaddam, E. Thomée, T. Loman, X. Godron, A. Horgan, Multiplex enzymatic synthesis of DNA with single-base resolution, Sci. Adv. 9(2023) eadi0263, doi: 10.1126/sciadv.adi0263.

[136]

Y. Ma, Z. Zhang, B. Jia, Y. Yuan, Automated high-throughput DNA synthesis and assembly, Heliyon 10 (2024) e26967, doi: 10.1016/j.heliyon.2024.e26967.

[137]

X. Li, Z. Du, S. Lin, J. Tian, H. Tian, W. Xu, ExoIII and TdT dependent isothermal amplification (ETDA) colorimetric biosensor for ultra-sensitive detection of Hg2 +, Food Chem 316 (2020) 126303, doi: 10.1016/j.foodchem.2020.126303.

[138]

S. Liu, W. Wei, X. Sun, L. Wang, Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification, Biosens. Bioelectron. 83(2016) 33-38, doi: 10.1016/j.bios.2016.04.026.

[139]

H. Needleman, Lead poisoning, Annu. Rev. Med. 55(2004) 209-222, doi: 10.1146/annurev.med.55.091902.103653.

AI Summary AI Mindmap
PDF (5461KB)

1190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/