Exploring interspecific interaction variability in microbiota: A review

Zhong Yu , Zhihao Gan , Ahmed Tawfik , Fangang Meng

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (4) : 100178

PDF (2009KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (4) :100178 DOI: 10.1016/j.engmic.2024.100178
Original article
research-article

Exploring interspecific interaction variability in microbiota: A review

Author information +
History +
PDF (2009KB)

Abstract

Interspecific interactions are an important component and a strong selective force in microbial communities. Over the past few decades, there has been a growing awareness of the variability in microbial interactions, and various studies are already unraveling the inner working dynamics in microbial communities. This has prompted scientists to develop novel techniques for characterizing the varying interspecific interactions among microbes. Here, we review the precise definitions of pairwise and high-order interactions, summarize the key concepts related to interaction variability, and discuss the strengths and weaknesses of emerging characterization techniques. Specifically, we found that most methods can accurately predict or provide direct information about microbial pairwise interactions. However, some of these methods inevitably mask the underlying high-order interactions in the microbial community. Making reasonable assumptions and choosing a characterization method to explore varying microbial interactions should allow us to better understand and engineer dynamic microbial systems.

Keywords

Microbial community / Interspecific interaction / Interaction variability / Variability mechanism / Interaction characterization

Cite this article

Download citation ▾
Zhong Yu, Zhihao Gan, Ahmed Tawfik, Fangang Meng. Exploring interspecific interaction variability in microbiota: A review. Engineering Microbiology, 2024, 4(4): 100178 DOI:10.1016/j.engmic.2024.100178

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of AI in Scientific Writing

No generative artificial intelligence (AI) and AI-assisted technologies were used in the writing process.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in his paper.

CRediT authorship contribution statement

Zhong Yu: Writing - review & editing, Writing - original draft, Visualization, Investigation, Funding acquisition, Conceptualization. Zhihao Gan: Writing - original draft, Investigation. Ahmed Tawfik: Writing - review & editing, Funding acquisition. Fangang Meng: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (32161143031 and 52300072).

References

[1]

H.-C. Flemming, S. Wuertz, Bacteria and archaea on Earth and their abundance in biofilms, Nat. Rev. Microbiol. 17 (2019) 247-260.

[2]

D.L. Kirchman, Processes in microbial ecology, University Press, Oxford, 2018.

[3]

K. Faust, J. Raes, Microbial interactions: from networks to models, Nat. Rev. Mi- crobiol. 10 (2012) 538-550.

[4]

E.H. Wintermute, P.A. Silver, Emergent cooperation in microbial metabolism, Mol. Syst. Biol. 6 (2010) 407.

[5]

N.M. Oliveira, R. Niehus, K.R. Foster, Evolutionary limits to cooperation in micro- bial communities, Proc. Natl. Acad. Sci. 111 (2014) 17941-17946.

[6]

X.-F. Zhao, Y.-Q. Hao, D.-Y. Zhang, Q.-G. Zhang, Local biotic interactions drive species-specific divergence in soil bacterial communities, ISME J. 13 (2019) 2846-2855.

[7]

F. Ju, T. Zhang, Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant, ISMe J. 9 (2015) 683.

[8]

A. Zelezniak, S. Andrejev, O. Ponomarova, D.R. Mende, P. Bork, K.R. Patil, Metabolic dependencies drive species co-occurrence in diverse microbial commu- nities, Proc. Natl. Acad. Sci. 112 (2015) 6449-6454.

[9]

S. Freilich, R. Zarecki, O. Eilam, E.S. Segal, C.S. Henry, M. Kupiec, U. Gophna, R. Sharan, E. Ruppin, Competitive and cooperative metabolic interactions in bac- terial communities, Nat. Commun. 2 (2011) 589.

[10]

Z. Yu, Z. Gan, H. Huang, Y. Zhu, F. Meng, Regularized S-map reveals varying bac- terial interactions, Appl. Environ. Microbiol. 86 (2020) e01615-e01620.

[11]

F. Liu, J. Mao, W. Kong, Q. Hua, Y. Feng, R. Bashir, T. Lu, Interaction variabil- ity shapes succession of synthetic microbial ecosystems, Nat. Commun. 11 (2020) 1-13.

[12]

F.C. García, T. Clegg, D.B. O’NeillR, R. Warfield, S. Pawar, G. Yvon-Durocher, The temperature dependence of microbial community respiration is amplified by changes in species interactions, Nat. Microbiol. 8 (2023) 272-283.

[13]

A. Lykidis, C.-L. Chen, S.G. Tringe, A.C. McHardy, A. Copeland, N.C. Kyrpides, P. Hugenholtz, H. Macarie, A. Olmos, O. Monroy, Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium, ISMe J. 5 (2011) 122-130.

[14]

J.B. Xavier, Social interaction in synthetic and natural microbial communities, Mol. Syst. Biol. 7 (2011) 483.

[15]

R.A. Quinn, M.J. Vermeij, A.C. Hartmann, I. Galtier d’Auriac, S. Benler, A. Haas, S. D. Quistad, Y.W. Lim, M. Little, S. Sandin, Metabolomics of reef benthic interac- tions reveals a bioactive lipid involved in coral defence, Proc. R. Soc. B: Biol. Sci. 283 (2016) 20160469.

[16]

A. Rodríguez-Verdugo, M. Ackermann, Rapid evolution destabilizes species inter- actions in a fluctuating environment, ISMe J. 15 (2020) 450-460.

[17]

S.P. Hammarlund, W.R. Harcombe, Refining the stress gradient hypothesis in a microbial community, Proc. Natl. Acad. Sci. (2019) 201910420.

[18]

Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Controllability of complex networks, Nature 473 (2011) 167-173.

[19]

Y.R. Zelnik, N. Galiana, M. Barbier, M. Loreau, E. Galbraith, J.F. Arnoldi, How collectively integrated are ecological communities? Ecol. Lett. 27 (2024) e14358.

[20]

T. Großkopf, O.S. Soyer, Synthetic microbial communities, Curr. Opin. Microbiol. 18 (2014) 72-77.

[21]

O.S. Venturelli, A.V. Carr, G. Fisher, R.H. Hsu, R. Lau, B.P. Bowen, S. Hromada, T, T. Northen, A.P. Arkin, Deciphering microbial interactions in synthetic human gut microbiome communities, Mol. Syst. Biol. 14 (2018) e8157.

[22]

C. Bick, E. Gross, H.A. Harrington, M.T. Schaub, What are higher-order networks? SIAM Rev. 65 (2023) 686-731.

[23]

A. Mougi, Dual species interaction and ecological community stability, Wiley On- line Library, 2024.

[24]

J.T. Wootton, Indirect effects in complex ecosystems: recent progress and future challenges, J. Sea Res. 48 (2002) 157-172.

[25]

L. Fazzino, J. Anisman, J.M. Chacón, R.H. Heineman, W.R. Harcombe, Lytic bac- teriophage have diverse indirect effects in a synthetic cross-feeding community, ISMe J. 14 (2020) 123-134.

[26]

E.D. Kelsic, J. Zhao, K. Vetsigian, R. Kishony, Counteraction of antibiotic pro- duction and degradation stabilizes microbial communities, Nature 521 (2015) 516-519.

[27]

R. Xiang, L. Fu, Y. Wang, H. Sun, X. Shen, in: A Simplex Hypergraph Clustering Method for Detecting Higher-order Modules in Microbial Network, IEEE, 2021, pp. 761-764.

[28]

F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, G. Petri, Networks beyond pairwise interactions: Structure and dynamics, Phys. Rep. 874 (2020) 1-92.

[29]

C. Kost, K.R. Patil, J. Friedman, S.L. Garcia, M. Ralser, Metabolic exchanges are ubiquitous in natural microbial communities, Nat. Microbiol. (2023) 1-9.

[30]

J.D. Palmer, K.R. Foster, Bacterial species rarely work together, Science (1979) 376 (2022) 581-582.

[31]

P. Ghadermazi, S.H.J. Chan, Microbial interactions from a new perspective: rein- forcement learning reveals new insights into microbiome evolution, Bioinformatics.(2024) btae003.

[32]

C.D. Kocher, K.A. Dill, Darwinian evolution as a dynamical principle, Proc. Natl. Acad. Sci. 120 (2023) e2218390120.

[33]

M. de la Cruz Barron, E. van Velzen, U. Klümper, M. Weitere, T.U. Berendonk, D. Kneis, Shifts from cooperative to individual-based predation defense determine microbial predator-prey dynamics, ISMe J. 17 (2023) 775-785.

[34]

M. Verdú, J.M. Alcántara, J.A. Navarro-Cano, M. Goberna, Transitivity and intran- sitivity in soil bacterial networks, ISMe J. 17 (2023) 2135-2139.

[35]

S.E. Darch, S.A. West, K. Winzer, S.P. Diggle,Density-dependent fitness bene- fits in quorum-sensing bacterial populations, Proc. Natl. Acad. Sci. 109 (2012) 8259-8263.

[36]

J. Zhou, Q. Ma, H. Yi, L. Wang, H. Song, Y.-J. Yuan, Metabolome profiling re- veals metabolic cooperation between Bacillus megaterium and Ketogulonicige- nium vulgare during induced swarm motility, Appl. Environ. Microbiol. 77 (2011) 7023-7030.

[37]

A. Ross-Gillespie, A. Gardner, A. Buckling, S.A. West, A.S. Griffin, Density depen- dence and cooperation: theory and a test with bacteria, Evolution: Int. J. Org. Evol. 63 (2009) 2315-2325.

[38]

A. Kouzuma, S. Kato, K. Watanabe, Microbial interspecies interactions: recent find- ings in syntrophic consortia, Front. Microbiol. 6 (2015) 477.

[39]

D. McCloskey, B.Ø. Palsson, A.M. Feist, Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli, Mol. Syst. Biol. 9 (2013) 661.

[40]

H. Majeed, O. Gillor, B. Kerr, M.A. Riley, Competitive interactions in Escherichia coli populations: the role of bacteriocins, ISMe J. 5 (2011) 71-81.

[41]

W.-L. Ng, B.L. Bassler, Bacterial Quorum-Sensing Network Architectures, Annu. Rev. Genet. 43 (2009) 197-222.

[42]

C.H. Tan, K.S. Koh, C. Xie, M. Tay, Y. Zhou, R. Williams, W.J. Ng, S.A. Rice, S. Kjelle- berg, The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules, ISMe J. 8 (2014) 1186-1197.

[43]

P.G. Jayathilake, S. Jana, S. Rushton, D. Swailes, B. Bridgens, T. Curtis, J. Chen, Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms, Front. Microbiol. 8 (2017) 1865.

[44]

J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science (1979) 284 (1999) 1318-1322.

[45]

H.H. Tuson, D.B. Weibel, Bacteria-surface interactions, Soft. Matter. 9 (2013) 4368-4380.

[46]

Y.-H. Li, X. Tian, Quorum sensing and bacterial social interactions in biofilms, Sen- sors 12 (2012) 2519-2538.

[47]

W.J. Moree, V.V. Phelan, C.-H. Wu, N. Bandeira, D.S. Cornett, B.M. Duggan, P. C. Dorrestein, Interkingdom metabolic transformations captured by microbial imaging mass spectrometry, Proc. Natl. Acad. Sci. 109 (2012) 13811-13816.

[48]

W.H. Van der Putten, J.N. Klironomos, D.A. Wardle, Microbial ecology of biological invasions, ISMe J. 1 (2007) 28-37.

[49]

Kevin R. Foster, T. Bell, Competition, Not Cooperation, Dominates Interactions among Culturable Microbial Species, Curr. Biol. 22 (2012) 1845-1850.

[50]

M.F. Traxler, J.D. Watrous, T. Alexandrov, P.C. Dorrestein, R. Kolter, Inter- species interactions stimulate diversification of the Streptomyces coelicolor se- creted metabolome, mBio 4 (2013).

[51]

Y. Tanouchi, R.P. Smith, L. You, Engineering microbial systems to explore ecolog- ical and evolutionary dynamics, Curr. Opin. Biotechnol. 23 (2012) 791-797.

[52]

W.R. Harcombe, J.J. Bull, Impact of Phages on Two-Species Bacterial Communities, Appl. Environ. Microbiol. 71 (2005) 5254-5259.

[53]

P. Yu, J. Mathieu, Y. Yang, P.J.J. Alvarez, Suppression of Enteric Bacteria by Bac- teriophages: Importance of Phage Polyvalence in the Presence of Soil Bacteria, En- viron. Sci. Technol. 51 (2017) 5270-5278.

[54]

X. Tang, Y. Guo, B. Jiang, S. Liu, Metagenomic approaches to understanding bacte- rial communication during the anammox reactor start-up, Water. Res. 136 (2018) 95-103.

[55]

D. Belikova, A. Jochim, J. Power, M.T.G. Holden, S. Heilbronner, Gene accordions” cause genotypic and phenotypic heterogeneity in clonal populations of Staphylo- coccus aureus, Nat. Commun. 11 (2020) 3526.

[56]

E. Denamur, I. Matic, Evolution of mutation rates in bacteria, Mol. Microbiol. 60 (2006) 820-827.

[57]

J.W. Drake, A constant rate of spontaneous mutation in DNA-based microbes, Proc. Natl. Acad. Sci. 88 (1991) 7160-7164.

[58]

M. Lynch, Evolution of the mutation rate, Trends Genet. 26 (2010) 345-352.

[59]

S. Moraïs, M. Mazor, O. Tovar-Herrera, T. Zehavi, A. Zorea, M. Ifrach, D. Bogumil, A. Brandis, J. Walter, N. Elia, Plasmid-encoded toxin defence mediates mutualistic microbial interactions, Nat. Microbiol. (2023) 1-12.

[60]

G. Xie, S. Zhang, X. Zheng, W. Jia, Metabolomics approaches for characterizing metabolic interactions between host and its commensal microbes, Electrophoresis 34 (2013) 2787-2798.

[61]

A. Manzano-Marı n, A. Coeur d’acier, A.-L. Clamens, C. Orvain, C. Cruaud, V. Barbe, E. Jousselin, Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems, ISMe J. 14 (2020) 259-273.

[62]

J.J. Morris, R.E. Lenski, E.R. Zinser, The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss, mBio 3 (2012).

[63]

G. D’Souza, C. Kost, Experimental evolution of metabolic dependency in bacteria, PLoS. Genet. 12 (2016) e1006364.

[64]

C.T.D. Price, A.M. Richards, J.E. Von Dwingelo, H.A. Samara, Y. Abu Kwaik, Amoeba host-L egionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution, Environ. Microbiol. 16 (2014) 350-358.

[65]

D. Lawrence, F. Fiegna, V. Behrends, J.G. Bundy, A.B. Phillimore, T. Bell, T.G. Bar- raclough, Species interactions alter evolutionary responses to a novel environment, PLoS. Biol. 10 (2012) e1001330.

[66]

N.A. Moran, J.P. McCutcheon, A. Nakabachi, Genomics and Evolution of Heritable Bacterial Symbionts, Annu. Rev. Genet. 42 (2008) 165-190.

[67]

J. Davies, D. Davies, Origins and Evolution of Antibiotic Resistance, Microbiol. Mol. Biol. Rev. 74 (2010) 417-433.

[68]

M. Ackermann, Microbial individuality in the natural environment, ISMe J. 7 (2013) 465-467.

[69]

M.T. Sorbara, E.R. Littmann, E. Fontana, T.U. Moody, C.E. Kohout, M. Gjonbalaj, V. Eaton, R. Seok, I.M. Leiner, E.G. Pamer, Functional and Genomic Variation be- tween Human-Derived Isolates of Lachnospiraceae Reveals Inter-and Intra-Species Diversity, Cell Host. Microbe 28 (2020) 134-146.

[70]

V. Dakos, B. Matthews, A.P. Hendry, J. Levine, N. Loeuille, J. Norberg, P. Nosil, M. Scheffer, L. De Meester, Ecosystem tipping points in an evolving world, Nat. Ecol. Evol. 3 (2019) 355-362.

[71]

E. Grman, J.A. Lau, D.R. Schoolmaster Jr., K. , L. Gross, Mechanisms contributing to stability in ecosystem function depend on the environmental context, Ecol. Lett. 13 (2010) 1400-1410.

[72]

D. Dar, N. Dar, L. Cai, D.K. Newman, Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution, Science (1979) 373 (2021) eabi4882.

[73]

P. Piccardi, B. Vessman, S. Mitri, Toxicity drives facilitation between 4 bacterial species, Proc. Natl. Acad. Sci. 116 (2019) 15979-15984.

[74]

D.M. Wloch-Salamon, D. Gerla, R.F. Hoekstra, J. A.G.M.d. Visser, Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast, Proc. R. Soc. B: Biol. Sci. 275 (2008) 535-541.

[75]

M. Wang, X. Liu, Y. Nie, X.-L. Wu, Selfishness driving reductive evolution shapes interdependent patterns in spatially structured microbial communities, ISMe J.(2020) 1-15.

[76]

M. Ghoul, S. Mitri, The ecology and evolution of microbial competition, Trends. Microbiol. 24 (2016) 833-845.

[77]

S. Mitri, K.Richard Foster, The genotypic view of social interactions in microbial communities, Annu. Rev. Genet. 47 (2013) 247-273.

[78]

A.M. Lee, B.E. Sæther, S. Engen, Spatial covariation of competing species in a fluc- tuating environment, Ecology. 101 (2020) e02901.

[79]

C. Paul, M.A. Mausz, G. Pohnert, A co-culturing/metabolomics approach to inves- tigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism, Metabolomics. 9 (2013) 349-359.

[80]

A. Dal Co, S. van Vliet, D.J. Kiviet, S. Schlegel, M. Ackermann, Short-range inter- actions govern the dynamics and functions of microbial communities, Nat. Ecol. Evol. 4 (2020) 366-375.

[81]

M.J.I. Müller, B.I. Neugeboren, D.R. Nelson, A.W. Murray, Genetic drift opposes mutualism during spatial population expansion, Proc. Natl. Acad. Sci. 111 (2014) 1037-1042.

[82]

S.E. Darch, O. Simoska, M. Fitzpatrick, J.P. Barraza, K.J. Stevenson, R.T. Bon- necaze, J.B. Shear, M. Whiteley,Spatial determinants of quorum signaling in a < em>Pseudomonas aeruginosa < /em>infection model, Proc. Natl. Acad. Sci. 115 (2018) 4779-4784.

[83]

S. Kéfi, V. Domínguez-García, I. Donohue, C. Fontaine, E. Thébault, V. Dakos, Ad- vancing our understanding of ecological stability, Ecol. Lett. 22 (2019) 1349-1356.

[84]

M.D. Weiser, S.T. Michaletz, V. Buzzard, Y. Deng, Z. He, L. Shen, B.J. Enquist, R.B. Waide, J. Zhou, M. Kaspari, Toward a theory for diversity gradients: the abun- dance-adaptation hypothesis, Ecography. 41 (2018) 255-264.

[85]

I.D. Ofiţ eru, M. Lunn, T.P. Curtis, G.F. Wells, C.S. Criddle, C.A. Francis, W.T. Sloan, Combined niche and neutral effects in a microbial wastewater treatment commu- nity, Proc. Natl. Acad. Sci. 107 (2010) 15345-15350.

[86]

M.N. Price, G.M. Zane, J.V. Kuehl, R.A. Melnyk, J.D. Wall, A.M. Deutschbauer, A.P. Arkin, Filling gaps in bacterial amino acid biosynthesis pathways with high-- throughput genetics, PLoS. Genet. 14 (2018) e1007147.

[87]

D. Sünderhauf, U. Klümper, W.H. Gaze, E.R. Westra, S. van Houte, Interspecific competition can drive plasmid loss from a focal species in a microbial community, ISMe J. 17 (2023) 1765-1773.

[88]

S. Gude, E. Pinçe, K.M. Taute, A.-B. Seinen, T.S. Shimizu, S.J. Tans, Bacterial coex- istence driven by motility and spatial competition, Nature 578 (2020) 588-592.

[89]

E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: a theoretical anal- ysis, J. Theor. Biol. 30 (1971) 235-248.

[90]

J. Monod, The growth of bacterial cultures, Annu. Rev. Microbiol. 3 (1949) 371-394.

[91]

E.L. van Dijk, H. Auger, Y. Jaszczyszyn, C. Thermes, Ten years of next-generation sequencing technology, Trends Genet. 30 (2014) 418-426.

[92]

M.F.M. Bjorbækmo, A. Evenstad, . Røsæg, A.K. Krabberød, R. Logares, The planktonic protist interactome: where do we stand after a century of research? ISMe J. 14 (2020) 544-559.

[93]

S. Roux, A.K. Hawley, M.T. Beltran, M. Scofield, P. Schwientek, R. Stepanauskas, T. Woyke, S.J. Hallam, M.B. Sullivan, Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell-and meta-genomics, eLife 3 (2014) e03125.

[94]

M.G.I. Langille, J. Zaneveld, J.G. Caporaso, D. McDonald, D. Knights, J.A. Reyes, J. C. Clemente, D.E. Burkepile, R.L. Vega Thurber, R. Knight, R.G. Beiko, C. Hutten- hower, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol. 31 (2013) 814-821.

[95]

G. Yang, S.Q. Jian, H. Cao, C. Wen, B. Hu, M. Peng, L. Peng, J. Yuan, L. Liang, Changes in microbiota along the intestine of grass carp (Ctenopharyngodon idella): Community, interspecific interactions, and functions, Aquaculture 498 (2019) 151-161.

[96]

N. Klitgord, D. Segrè, Environments that induce synthetic microbial ecosystems, PLoS. Comput. Biol. 6 (2010) e1001002.

[97]

W.R. Harcombe, W.J. Riehl, I. Dukovski, B.R. Granger, A. Betts, A.H. Lang, G. Bonilla, A. Kar, N. Leiby, P. Mehta, Metabolic resource allocation in individ- ual microbes determines ecosystem interactions and spatial dynamics, Cell Rep. 7 (2014) 1104-1115.

[98]

B.R. Granger, Y.-C. Chang, Y. Wang, C. DeLisi, D. Segre, Z. Hu, Visualization of metabolic interaction networks in microbial communities using VisANT 5.0, PLoS Comp. Biol 12 (2016) e1004875.

[99]

J.D. Orth, I. Thiele, B.Ø. Palsson, What is flux balance analysis? Nat. Biotechnol. 28 (2010) 245-248.

[100]

G.V. Uritskiy, J. DiRuggiero, J. Taylor, MetaWRAP —a flexible pipeline for genome-resolved metagenomic data analysis, Microbiome 6 (2018) 1-13.

[101]

L. Ye, R. Mei, W.-T. Liu, H. Ren, X.-X. Zhang, Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes, Microbiome 8 (2020) 1-13.

[102]

X. Zhu, S. Campanaro, L. Treu, R. Seshadri, N. Ivanova, P.G. Kougias, N. Kyrpi- des, I. Angelidaki, Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem, Microbiome 8 (2020) 1-14.

[103]

L.-X. Chen, C. Méndez-García, N. Dombrowski, L.E. Servín-Garcidueñas, E.A. Eloe-Fadrosh, B.-Z. Fang, Z.-H. Luo, S. Tan, X.-Y. Zhi, Z.-S. Hua, Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota, ISMe J. 12 (2018) 756-775.

[104]

R.E. Mills, K. Walter, C. Stewart, R.E. Handsaker, K. Chen, C. Alkan, A. Abyzov, S. C. Yoon, K. Ye, R.K. Cheetham, Mapping copy number variation by population-s- cale genome sequencing, Nature 470 (2011) 59-65.

[105]

E.V. Koonin, K.S. Makarova, L. Aravind, Horizontal gene transfer in prokaryotes: quantification and classification, Ann. Rev. Microbiol. 55 (2001) 709-742.

[106]

M. Mulleder, E. Calvani, M.T. Alam, R.K. Wang, F. Eckerstorfer, A. Zelezniak, M. Ralser, Functional Metabolomics Describes the Yeast Biosynthetic Regulome, Cell 167 (2016) 553-565.

[107]

P. Hu, S.C. Janga, M. Babu, J.J. Díaz-Mejía, G. Butland, W. Yang, O. Pogoutse, X. Guo, S. Phanse, P. Wong, Global functional atlas of Escherichia coli encompass- ing previously uncharacterized proteins, PLoS. Biol. 7 (2009) e1000096.

[108]

J. Ramoneda, T.B.N. Jensen, M.N. Price, E.O. Casamayor, N. Fierer, Taxonomic and environmental distribution of bacterial amino acid auxotrophies, Nat. Commun. 14 (2023) 7608.

[109]

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya- suvunakool, R. Bates, A. Ž ídek, A. Potapenko, A. Bridgland, C. Meyer, S.A.A. Kohl, A.J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583-589.

[110]

Y. Gao, J.T. Yurkovich, S.W. Seo, I. Kabimoldayev, A. Dräger, K. Chen, A.V. Sastry, X. Fang, N. Mih, L. Yang, J. Eichner, B.-K. Cho, D. Kim, B.O. Palsson, Systematic dis- covery of uncharacterized transcription factors in Escherichia coli K-12 MG1655, Nucleic. Acids. Res. 46 (2018) 10682-10696.

[111]

E.H. Wintermute, P.A. Silver, Dynamics in the mixed microbial concourse, Genes Dev. 24 (2010) 2603-2614.

[112]

C.S. Richmond, J.D. Glasner, R. Mau, H. Jin, F.R. Blattner, Genome-wide expression profiling in Escherichia coli K-12, Nucleic. Acids. Res. 27 (1999) 3821-3835.

[113]

L.J. Barkal, A.B. Theberge, C.-J. Guo, J. Spraker, L. Rappert, J. Berthier, K.A. Brakke, C.C. Wang, D.J. Beebe, N.P. Keller, Microbial metabolomics in open microscale platforms, Nat. Commun. 7 (2016) 1-11.

[114]

N.I. Wisnoski, M.E. Muscarella, M.L. Larsen, A.L. Peralta, J.T. Lennon, Metabolic insight into bacterial community assembly across ecosystem boundaries, Ecology. 101 (2020) e02968.

[115]

W. Jonkers, A.E. Rodriguez Estrada, K. Lee, A. Breakspear, G. May, H.C. Kistler, Metabolome and Transcriptome of the Interaction between Ustilago maydis and Fusarium verticillioides In Vitro, Appl. Environ. Microbiol. 78 (2012) 3656-3667.

[116]

M. Häntzsch, A. Tolios, F. Beutner, D. Nagel, J. Thiery, D. Teupser, L.M. Holdt, Com- parison of whole blood RNA preservation tubes and novel generation RNA extrac- tion kits for analysis of mRNA and MiRNA profiles, PLoS. One 9 (2014) e113298.

[117]

S.M. Goldsworthy, P.S. Stockton, C.S. Trempus, J.F. Foley, R.R. Maronpot, Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue, Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center 25 (1999) 86-91.

[118]

P.-C. Aubin-Frankowski, J.-P. Vert, Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference, Bioinfor- matics. 36 (2020) 4774-4780.

[119]

P. Ma, H.M. Amemiya, L.L. He, S.J. Gandhi, R. Nicol, R.P. Bhattacharyya, C.S. Smil- lie, D.T. Hung, Bacterial droplet-based single-cell RNA-seq reveals antibiotic-asso- ciated heterogeneous cellular states, Cell 186 (2023) 877-891.

[120]

R.L. Hettich, R. Sharma, K. Chourey, R.J. Giannone, Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and co- operate in complex environmental communities, Curr. Opin. Microbiol. 15 (2012) 373-380.

[121]

K. Zengler, L.S. Zaramela, The social network of microorganisms —how auxotro- phies shape complex communities, Nat. Rev. Microbiol. 16 (2018) 383-390.

[122]

M.T. Mee, J.J. Collins, G.M. Church, H.H. Wang, Syntrophic exchange in synthetic microbial communities, Proc. Natl. Acad. Sci. 111 (2014) E2149-E2156.

[123]

M. Daniels, S. van Vliet, M. Ackermann, Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled ma- rine microbial community, ISMe J. 17 (2023) 406-416.

[124]

E. Van Donk, A. Ianora, M. Vos, Induced defences in marine and freshwater phy- toplankton: a review, Hydrobiologia 668 (2011) 3-19.

[125]

E.R. Brown, M.R. Cepeda, S.J. Mascuch, K.L. Poulson-Ellestad, J. Kubanek, Chem- ical ecology of the marine plankton, Nat. Prod. Rep. 36 (2019) 1093-1116.

[126]

J.W. Allwood, A. Clarke, R. Goodacre, L.A. Mur, Dual metabolomics: a novel ap- proach to understanding plant-pathogen interactions, Phytochemistry 71 (2010) 590-597.

[127]

M.T. Mee, H.H. Wang, Engineering ecosystems and synthetic ecologies, Mol. Biosyst. 8 (2012) 2470-2483.

[128]

O.M. Sokolovskaya, A.N. Shelton, M.E. Taga, Sharing vitamins: Cobamides unveil microbial interactions, Science (1979) 369 (2020) eaba0165.

[129]

E. Mikó, T. Kovács, É. Seb ő, J. Tóth, T. Csonka, G. Ujlaki, A. Sipos, J. Szabó, G. Méhes, P. Bai, Microbiome —microbial metabolome —cancer cell interactions in breast cancer —familiar, but unexplored, Cells 8 (2019) 293.

[130]

J.M. Ridlon, D.-J. Kang, P.B. Hylemon, Bile salt biotransformations by human in- testinal bacteria, J. Lipid Res. 47 (2006) 241-259.

[131]

K.M. Yeon, W.S. Cheong, H.S. Oh, W.N. Lee, B.K. Hwang, C.H. Lee, H. Beyenal, Z. Lewandowski, Quorum Sensing: A New Biofouling Control Paradigm in a Mem- brane Bioreactor for Advanced Wastewater Treatment, Environ. Sci. Technol. 43 (2009) 380-385.

[132]

C.M. Theriot, M.J. Koenigsknecht, P.E. Carlson Jr, G.E. Hatton, A.M. Nelson, B. Li, G.B. Huffnagle, J.Z. Li, V.B. Young, Antibiotic-induced shifts in the mouse gut mi- crobiome and metabolome increase susceptibility to Clostridium difficile infection, Nat. Commun. 5 (2014) 3114.

[133]

J.A. Sorg, A.L. Sonenshein, Bile salts and glycine as cogerminants for Clostridium difficile spores, J. Bacteriol. 190 (2008) 2505-2512.

[134]

G. Cox, K. Koteva, G.D. Wright, An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria, J. An- timicrob. Chemother. 69 (2014) 1844-1855.

[135]

A. McCarron, C. Armstrong, G. Glynn, B. Millar, P. Rooney, C. Goldsmith, J. Xu, J. Moore, Antibacterial effects on acinetobacter species of commonly employed antineoplastic agents used in the treatment of haematological malignancies: an in vitro laboratory evaluation, Br. J. Biomed. Sci. 69 (2012) 14-17.

[136]

L. Huang, L. Wang, X. Hu, S. Chen, Y. Tao, H. Su, J. Yang, W. Xu, V. Vedarethi- nam, S. Wu, B. Liu, X. Wan, J. Lou, Q. Wang, K. Qian, Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma, Nat. Commun. 11 (2020) 3556.

[137]

B.E. Sedio, J.D. Parker, S.M. McMahon, S.J. Wright, Comparative foliar metabolomics of a tropical and a temperate forest community, Ecology. 99 (2018) 2647-2653.

[138]

J. Watrous, P. Roach, T. Alexandrov, B.S. Heath, J.Y. Yang, R.D. Kersten, M. van der Voort, K. Pogliano, H. Gross, J.M. Raaijmakers, Mass spectral molecular networking of living microbial colonies, Proc. Natl. Acad. Sci. 109 (2012) E1743-E1752.

[139]

T. Š antl-Temkiv, K. Finster, T. Dittmar, B.M. Hansen, R. Thyrhaug, N.W. Nielsen, U.G. Karlson, Hailstones: a window into the microbial and chemical inventory of a storm cloud, PLoS. One 8 (2013) e53550.

[140]

C.W. Chang, T. Miki, M. Ushio, P.J. Ke, H.P. Lu, F.K. Shiah, C.h. Hsieh, Recon- structing large interaction networks from empirical time series data, Ecol. Lett. 24 (2021) 2763-2774.

[141]

N. Paczia, A. Nilgen, T. Lehmann, J. Gätgens, W. Wiechert, S. Noack, Extensive ex- ometabolome analysis reveals extended overflow metabolism in various microor- ganisms, Microb. Cell Fact. 11 (2012) 1-14.

[142]

A. Barve, A. Wagner, A latent capacity for evolutionary innovation through exap- tation in metabolic systems, Nature 500 (2013) 203-206.

[143]

N. Segata, D. Boernigen, T.L. Tickle, X.C. Morgan, W.S. Garrett, C. Huttenhower, Computational meta’omics for microbial community studies, Mol. Syst. Biol. 9 (2013) 666.

[144]

J.S. Madsen, H.L. Røder, J. Russel, H. Sørensen, M. Burmølle, S.J. Sørensen, Coexis- tence facilitates interspecific biofilm formation in complex microbial communities, Environ. Microbiol. 18 (2016) 2565-2574.

[145]

S. Yuan, F. Meng, Ecological insights into the underlying evolutionary patterns of biofilm formation from biological wastewater treatment systems: Red or Black Queen Hypothesis? Biotechnol. Bioeng. 117 (2020) 1270-1280.

[146]

D. Padfield, M. Castledine, A. Buckling, Temperature-dependent changes to host—parasite interactions alter the thermal performance of a bacterial host, ISMe J. 14 (2020) 389-398.

[147]

R.I. Amann, B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux, D.A. Stahl, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol. 56 (1990) 1919-1925.

[148]

S. Marino, N.T. Baxter, G.B. Huffnagle, J.F. Petrosino, P.D. Schloss, Mathematical modeling of primary succession of murine intestinal microbiota, Proc. Natl. Acad. Sci. 111 (2014) 439-444.

[149]

B. Ni, M. Ruscalleda, B.F. Smets, Evaluation on the microbial interactions of anaer- obic ammonium oxidizers and heterotrophs in Anammox biofilm, Water. Res. 46 (2012) 4645-4652.

[150]

G.T.-W. Shaw, Y.-Y. Pao, D. Wang, MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles, BMC. Bioinformatics. 17 (2016) 488.

[151]

K. Faust, L. Lahti, D. Gonze, W.M. De Vos, J. Raes, Metagenomics meets time se- ries analysis: unraveling microbial community dynamics, Curr. Opin. Microbiol. 25 (2015) 56-66.

[152]

M. Layeghifard, D.M. Hwang, D.S. Guttman, Disentangling interactions in the mi- crobiome: a network perspective, Trends. Microbiol. 25 (2017) 217-228.

[153]

S.M. Kodera, P. Das, J.A. Gilbert, H.L. Lutz, Conceptual strategies for characterizing interactions in microbial communities, iScience (2022) 103775.

[154]

R. Xu, Z. Yu, S. Zhang, F. Meng, Bacterial assembly in the bio-cake of mem- brane bioreactors: stochastic vs. deterministic processes, Water. Res. 157 (2019) 535-545.

[155]

E. Morriën, S.E. Hannula, L.B. Snoek, N.R. Helmsing, H. Zweers, M. De Hollander, R. L. Soto, M.-L. Bouffaud, M. Buée, W. Dimmers, Soil networks become more con- nected and take up more carbon as nature restoration progresses, Nat. Commun. 8 (2017) 1-10.

[156]

S. Yuan, Z. Yu, S. Pan, J. Huang, F. Meng, Deciphering the succession dynamics of dominant and rare genera in biofilm development process, Sci. Total Environ. 739 (2020) 139961.

[157]

J. Liu, S. Zhu, X. Liu, P. Yao, T. Ge, X.-H. Zhang, Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence re- lationship, ISMe J. 14 (2020) 1463-1478.

[158]

F. Luo, Y. Yang, J. Zhong, H. Gao, L. Khan, D.K. Thompson, J. Zhou, Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory, BMC. Bioinform.. 8 (2007) 1-17.

[159]

F. Luo, J. Zhong, Y. Yang, R.H. Scheuermann, J. Zhou, Application of random ma- trix theory to biological networks, Phys. Lett. A 357 (2006) 420-423.

[160]

J. Zhou, Y. Deng, F. Luo, Z. He, Q. Tu, X. Zhi, Functional molecular ecological networks, mBio 1 (2010) e00169-00110.

[161]

Q. Ruan, D. Dutta, M.S. Schwalbach, J.A. Steele, J.A. Fuhrman, F. Sun, Local simi- larity analysis reveals unique associations among marine bacterioplankton species and environmental factors, Bioinformatics. 22 (2006) 2532-2538.

[162]

J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets, Sci. Adv. 5 (2019) eaau4996.

[163]

J. Friedman, E.J. Alm, Inferring correlation networks from genomic survey data, PLoS. Comput. Biol. 8 (2012) e1002687.

[164]

P.J. Taylor, The construction and turnover of complex community models having generalized Lotka-Volterra dynamics, J. Theor. Biol. 135 (1988) 569-588.

[165]

L. Sidhom, T. Galla, Ecological communities from random generalized Lotka-Volterra dynamics with nonlinear feedback, Phys. Rev. E 101 (2020) 032101.

[166]

J. Mounier, C. Monnet, T. Vallaeys, R. Arditi, A.-S. Sarthou, A. Hélias, F. Irlinger, Microbial interactions within a cheese microbial community, Appl. Environ. Mi- crobiol. 74 (2008) 172-181.

[167]

K.H. Hoffmann, B. Rodriguez-Brito, M. Breitbart, D. Bangor, F. Angly, B. Felts, J. Nulton, F. Rohwer, P. Salamon, Power law rank-abundance models for marine phage communities, FEMS Microbiol. Lett. 273 (2007) 224-228.

[168]

J. Camacho-Mateu, A. Lampo, M. Sireci, M.A. Muñoz, J.A. Cuesta, Sparse species interactions reproduce abundance correlation patterns in microbial communities, Proc. Natl. Acad. Sci. 121 (2024) e2309575121.

[169]

L. Descheemaeker, S. De Buyl, Stochastic logistic models reproduce experimental time series of microbial communities, Elife 9 (2020) e55650.

[170]

J. Grilli, Macroecological laws describe variation and diversity in microbial com- munities, Nat. Commun. 11 (2020) 4743.

[171]

H. Ye, R.J. Beamish, S.M. Glaser, S.C. Grant, C.-h. Hsieh, L.J. Richards, J.T. Schnute, G. Sugihara, Equation-free mechanistic ecosystem forecasting using empirical dy- namic modeling, Proc. Natl. Acad. Sci. 112 (2015) E1569-E1576.

[172]

S.F. Hart, H. Mi, R. Green, L. Xie, J.M.B. Pineda, B. Momeni, W. Shou, Uncovering and resolving challenges of quantitative modeling in a simplified community of interacting cells, PLoS. Biol. 17 (2019) e3000135.

[173]

E. Bairey, E.D. Kelsic, R. Kishony, High-order species interactions shape ecosystem diversity, Nat. Commun. 7 (2016) 12285.

[174]

S. Saavedra, L.P. Medeiros, M. AlAdwani, Structural forecasting of species persis- tence under changing environments, Ecol. Lett. 23 (2020) 1511-1521.

[175]

B. Wei, L. Peng, M.J. Zhang, J.P. Fine, Estimation of causal quantile effects with a binary instrumental variable and censored data, Jour. R. Stat. Soc.: Series B (Stat. Method.) 83 (2021) 559-578.

[176]

E.R. Deyle, R.M. May, S.B. Munch, G. Sugihara, Tracking and forecasting ecosystem interactions in real time, Proc. Biol. Sci. 283 (2016) 20152258.

[177]

C. Song, S. Saavedra, Bridging parametric and nonparametric measures of species interactions unveils new insights of non-equilibrium dynamics, Oikos. 130 (2021) 1027-1034.

[178]

G. Wang, A. Sarkar, P. Carbonetto, M. Stephens, A simple new approach to variable selection in regression, with application to genetic fine mapping, J. R. Stat. Soc.: Series B (Stat. Method.) 82 (2020) 1273-1300.

[179]

H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc.: Ser. B (Stat. Method.) 67 (2005) 301-320.

[180]

E.C. Lamon III, S.R. Carpenter, C.A. Stow, Forecasting PCB concentrations in Lake Michigan salmonids: a dynamic linear model approach, Ecol. Appl. 8 (1998) 659-668.

[181]

S. Cenci, G. Sugihara, S. Saavedra, Regularized S-map for inference and forecasting with noisy ecological time series, Methods Ecol. Evol. 10 (2019) 650-660.

[182]

Z. Yu, Y. Huang, Z. Gan, Y. Meng, F. Meng, State-Space-Based Framework for Pre- dicting Microbial Interaction Variability in Wastewater Treatment Plants, Environ. Sci. Technol. 56 (2022) 12765-12777.

[183]

S. Louca, M.F. Polz, F. Mazel, M.B.N. Albright, J.A. Huber, M.I. O’Connor, M. Acker- mann, A.S. Hahn, D.S. Srivastava, S.A. Crowe, Function and functional redundancy in microbial systems, Nat. Ecol. Evol. 2 (2018) 936-943.

AI Summary AI Mindmap
PDF (2009KB)

635

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/