Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability

Zeynab Rangraz , Mostafa M. Amini , Zohreh Habibi

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (4) : 100176

PDF (3413KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (4) :100176 DOI: 10.1016/j.engmic.2024.100176
Original article
research-article

Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability

Author information +
History +
PDF (3413KB)

Abstract

Surface adsorption is a convenient and readily available method for immobilizing enzymes on metal-organic frameworks (MOFs). Metal-organic framework-5 (MOF-5), isoreticular metal-organic frameworks-3 (IRMOF-3), and multivariate analysis of MOF-5/IRMOF-3 (MMI) with a half-amino group (-NH2) were prepared in this study. Thermomyces lanuginosus lipase (TLL) was chosen as a commercially available enzyme for immobilization on the surfaces of these MOFs. Briefly, 1.5 mg of TLL was added to 10 mg of the MOFs, and after 24 h, 67, 74, and 88% of the TLL was immobilized on MOF-5, IRMOF-3, and MMI, respectively. Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, energy-dispersive X-ray analysis, and Brunauer-Emmett-Teller analysis were used to characterize the resulting biocomposites. TLL@MOF-5, TLL@IRMOF-3, and TLL@MMI exhibited activities of 55, 75, and 110 U/mg, respectively. Investigation of the activity and stability of the prepared biocatalysts showed that TLL immobilized on MMI was 2.34-fold more active than free TLL. TLL@MMI exhibited high stability and activity even under harsh conditions. After 24 h of incubation in a mixture of 50% (v/v) MeOH, TLL@MMI retained 80% of its activity, whereas TLL@MOF-5 and free TLL lost 50 and 60% of their activities, respectively. TLL@MMI was used to synthesize 2-arylidenehydrazinyl-4-arylthiozole derivatives (91-98%) in a one-pot vessel by adding benzaldehydes, phenacyl bromides, and thiosemicarbazide to water. The efficiency of the 4a derivative with free TLL was 43%, whereas that with TLL@MMI was 98%.

Keywords

Biocatalyst / MOF / Enzyme immobilization / Lipase / Thiazoles

Cite this article

Download citation ▾
Zeynab Rangraz, Mostafa M. Amini, Zohreh Habibi. Immobilization of Thermomyces lanuginosus lipase on metal-organic frameworks and investigation of their catalytic properties and stability. Engineering Microbiology, 2024, 4(4): 100176 DOI:10.1016/j.engmic.2024.100176

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported int his paper.

CRediT authorship contribution statement

Zeynab Rangraz: Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Conceptualization. Mostafa M. Amini: Writing - review & editing, Validation, Data curation. Zohreh Habibi: Writing - review & editing, Supervision, Project administration, Funding acquisition.

Acknowledgements

This research was financially supported by Shahid Beheshti University of Tehran which the authors are thankful.

References

[1]

J. Cui, Y. Zhao, R. Liu, C. Zhong, S. Jia, Surfactant-activated lipase hybrid nanoflow- ers with enhanced enzymatic performance, Sci. Rep. 6 (2016) 27928.

[2]

Z. Wang, R. Wang, Z. Geng, X. Luo, J. Jia, S. Pang, X. Fan, M. Bilal, J. Cui, Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinat- ing hybrid nanobiocatalysts, Crit. Rev. Biotechnol. 44 (2024) 674-697.

[3]

J. Cui, Y. Feng, S. Jia, Silica encapsulated catalase@metal-organic framework com- posite: A highly stable and recyclable biocatalyst, Chemical Engineering Journal 351 (2018) 506-514.

[4]

J. Cui, S. Ren, T. Lin, Y. Feng, S. Jia, Shielding effects of Fe3 + -tannic acid nanocoat- ings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere, Chemical Engineering Journal 343 (2018) 629-637.

[5]

J. Cui, L. Cui, S. Jia, Z. Su, S. Zhang, Hybrid cross-linked lipase aggregates with magnetic nanoparticles: a robust and recyclable biocatalysis for the epoxidation of oleic acid, J. Agric. Food Chem. 64 (2016) 7179-7187.

[6]

X. Shen, Y. Du, Z. Du, X. Tang, P. Li, J. Cheng, R. Yan, J. Cui, Construction of en- zyme@glutathione hybrid metal-organic frameworks: glutathione-boosted microen- vironment fine-tuning of biomimetic immobilization for improving catalytic perfor- mance, Mater. Today Chem. 27 (2023) 101326.

[7]

J. Cui, X. Tang, Q. Ma, Y. Chang, Q. Zhang, S. Jia, Cross-linked 𝛼-amylase aggregates on Fe3O4 magnetic nanoparticles modified with polydopamine/polyethyleneimine for efficient hydrolysis of starch, Particuology 90 (2024) 98-105.

[8]

P. Li, J. Jia, Z. Geng, S. Pang, R. Wang, M. Bilal, H. Bian, J. Cui, S. Jia, A dual en- zyme-phosphate hybrid nanoflower for glutamate detection, Particuology 83 (2023) 63-70.

[9]

Y. Feng, Y. Du, G. Kuang, L. Zhong, H. Hu, S. Jia, J. Cui, Hierarchical micro-and mesoporous ZIF-8 with core-shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization, J. Colloid. Interface Sci. 610 (2022) 709-718.

[10]

F.A.P. Lage, J.J. Bassi, M.C.C. Corradini, L.M. Todero, J.H.H. Luiz, A.A. Mendes, Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterifica- tion reaction in a solvent-free system, Enzyme Microb. Technol. 84 (2016) 56-67.

[11]

O. Gherbovet, F. Ferreira, A. Clément, M. Ragon, J. Durand, S. Bozonnet, M. J. O’Donohue, R. Fauré, Regioselective chemoenzymatic syntheses of ferulate con- jugates as chromogenic substrates for feruloyl esterases, Beilstein. J. Org. Chem. 17 (2021) 325-333.

[12]

E. Abreu Silveira, S. Moreno-Perez, A. Basso, S. Serban, R. Pestana-Mamede, P.W. Tardioli, C.S. Farinas, N. Castejon, G. Fernandez-Lorente, J. Rocha-Martin, J. M. Guisan, Biocatalyst engineering of Thermomyces Lanuginosus lipase adsorbed on hydrophobic supports: Modulation of enzyme properties for ethanolysis of oil in solvent-free systems, J. Biotechnol. 289 (2019) 126-134.

[13]

G.D. Yadav, I.V. Borkar, Lipase-catalyzed hydrazinolysis of phenyl benzoate: Kinetic modeling approach, Process Biochemistry 45 (2010) 586-592.

[14]

Y. Yücel, Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology, Biocatal. Agric. Biotechnol. 1 (2012) 39-44.

[15]

A.L.S. Coelho, R.C. Orlandelli, Immobilized microbial lipases in the food indus- try: a systematic literature review, Crit. Rev. Food Sci. Nutr. 61 (2021) 1689-1703.

[16]

F. Rafiee, M. Rezaee, Different strategies for the lipase immobilization on the chi- tosan based supports and their applications, Int. J. Biol. Macromol. 179 (2021) 170-195.

[17]

J. Zhang, X. Chen, P. Lv, W. Luo, Z. Wang, J. Xu, Z. Wang, Bionic-immobilized recombinant lipase obtained via bio-silicification and its catalytic performance in biodiesel production, Fuel 304 (2021) 121594.

[18]

K. Dopierał a, A. Koł odziejczak-Radzimska, K. Prochaska, T. Jesionowski, Immobi- lization of lipase in Langmuir - Blogett film of cubic silsesquioxane on the surface of zirconium dioxide, Appl. Surf. Sci. 573 (2022) 151184.

[19]

X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.C. Zhou, Enzyme-MOF (metal-organic framework) composites, Chem. Soc. Rev. 46 (2017) 3386-3401.

[20]

M.G. Pereira, F.D.A. Facchini, A.M. Polizeli, A.C. Vici, J.A. Jorge, B.C. Pessela, G. Fér- nandez-Lorente, J.M. Guisán, M.d.L.T. de Moraes Polizeli, Stabilization of the lipase of Hypocrea pseudokoningii by multipoint covalent immobilization after chemical modification and application of the biocatalyst in oil hydrolysis, Journal of Molecu- lar Catalysis B: Enzymatic 121 (2015) 82-89.

[21]

H. Li, Y. Sun, Y. Li, J. Du, Alkaline phosphatase activity assay with luminescent metal organic frameworks-based chemiluminescent resonance energy transfer platform, Microchemical Journal 160 (2021) 105665.

[22]

Y.J. Lee, Y.J. Chang, D.J. Lee, J.P. Hsu, Water stable metal-organic framework as adsorbent from aqueous solution: A mini-review, J. Taiwan. Inst. Chem. Eng. 93 (2018) 176-183.

[23]

L. Zhong, Y. Feng, H. Hu, J. Xu, Z. Wang, Y. Du, J. Cui, S. Jia, Enhanced enzy- matic performance of immobilized lipase on metal organic frameworks with super- hydrophobic coating for biodiesel production, J. Colloid. Interface Sci. 602 (2021) 426-436.

[24]

S. Liang, X.L. Wu, J. Xiong, M.H. Zong, W.Y. Lou, Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review, Coord. Chem. Rev. 406 (2020) 213149.

[25]

A.R.M. Silva, J.Y.N.H. Alexandre, J.E.S. Souza, J.G.L. Neto, P.G. de Sousa Júnior, M. V.P. Rocha, J.C.S. dos Santos, The Chemistry and Applications of Metal-Or- ganic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems, Molecules. (2022).

[26]

W. Liang, P. Wied, F. Carraro, C.J. Sumby, B. Nidetzky, C.K. Tsung, P. Falcaro, C. J. Doonan, Metal-organic framework-based enzyme biocomposites, Chem. Rev. 121 (2021) 1077-1129.

[27]

J. Zhang, Z. Wang, W. Zhuang, H. Rabiee, C. Zhu, J. Deng, L. Ge, H. Ying, Am- phiphilic Nanointerface: Inducing the Interfacial Activation for Lipase, ACS. Appl. Mater. Interfaces. 14 (2022) 39622-39636.

[28]

R.C. Rodrigues, J.J. Virgen-Ortíz, J.C.S. dos Santos, Á. Berenguer-Murcia, A.R. Al- cantara, O. Barbosa, C. Ortiz, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solu- tions, Biotechnol. Adv. 37 (2019) 746-770.

[29]

J.M. Palomo, G. Muñoz, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente, J. M. Guisán, Interfacial adsorption of lipases on very hydrophobic support (oc- tadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases, Journal of Molecular Catalysis B: Enzymatic 19-20 (2002) 279-286.

[30]

L. Zhong, Z. Wang, X. Ye, J. Cui, Z. Wang, S. Jia, Molecular simulations guide im- mobilization of lipase on nest-like ZIFs with regulatable hydrophilic/hydrophobic surface, J. Colloid. Interface Sci. 667 (2024) 199-211.

[31]

J.M.F. Silva, K.P. dos Santos, E.S. dos Santos, N.S. Rios, L.R.B. Gonçalves, Immobi- lization of Thermomyces lanuginosus lipase on a new hydrophobic support (Stream- line phenylTM ): Strategies to improve stability and reusability, Enzyme Microb. Tech- nol. 163 (2023) 110166.

[32]

S. Kouser, A. Hezam, M.J.N. Khadri, S.A. Khanum, A review on zeolite imidazole frameworks: synthesis, properties, and applications, Journal of Porous Materials 29 (2022) 663-681.

[33]

M.R.S. Moguei, Z. Habibi, M. Shahedi, M. Yousefi, A. Alimoradi, S. Mobini, M. Mohammadi, Immobilization of Thermomyces lanuginosus lipase through iso- cyanide-based multi component reaction on multi-walled carbon nanotube: appli- cation for kinetic resolution of rac-ibuprofen, Biotechnology Reports 35 (2022) e00759.

[34]

S.H. Ali, A.R. Sayed, Review of the synthesis and biological activity of thiazoles, Synth. Commun. 51 (2021) 670-700.

[35]

Z.X. Niu, Y.T. Wang, S.N. Zhang, Y. Li, X.B. Chen, S.Q. Wang, H.M. Liu, Application and synthesis of thiazole ring in clinically approved drugs, Eur. J. Med. Chem. 250 (2023) 115172.

[36]

B. Gu, Z.E Hu, Z.J. Yang, J. Li, Z.W. Zhou, N. Wang, X.Q. Yu, Probing the Mech- anism of CAL-B-Catalyzed aza-Michael Addition of Aniline Compounds with Acry- lates Using Mutation and Molecular Docking Simulations, ChemistrySelect. 4 (2019) 3848-3854.

[37]

J. Priego, C. Ortíz-Nava, M. Carrillo-Morales, A. López-Munguía, J. Es- calante, E. Castillo, Solvent engineering: an effective tool to direct chemos- electivity in a lipase-catalyzed Michael addition, Tetrahedron. 65 (2009) 536-539.

[38]

B.H. Xie, Z. Guan, Y.H. He, Promiscuous enzyme-catalyzed Michael addition: syn- thesis of warfarin and derivatives, Journal of Chemical Technology & Biotechnology 87 (2012) 1709-1714.

[39]

K. Li, T. He, C. Li, X.W. Feng, N. Wang, X.Q. Yu, Lipase-catalysed direct Mannich reaction in water: utilization of biocatalytic promiscuity for C-C bond formation in a “one-pot” synthesis, Green Chemistry 11 (2009) 777-779.

[40]

S. Kł ossowski, B. Wiraszka, S. Berł oż ecki, R. Ostaszewski, Model Studies on the First Enzyme-Catalyzed Ugi Reaction, Org. Lett. 15 (2013) 566-569.

[41]

B. Arora, P.S. Pandey, M.N. Gupta, Lipase catalyzed Cannizzaro-type reaction with substituted benzaldehydes in water, Tetrahedron. Lett. 55 (2014) 3920-3922.

[42]

X. Tian, S. Zhang, L. Zheng, First Novozym 435 lipase-catalyzed Morita-Baylis-Hill- man reaction in the presence of amides, Enzyme Microb. Technol. 84 (2016) 32-40.

[43]

B.P. Dwivedee, S. Soni, M. Sharma, J. Bhaumik, J.K. Laha, U.C. Banerjee, Promis- cuity of Lipase-Catalyzed Reactions for Organic Synthesis: A Recent Update, Chem- istrySelect. 3 (2018) 2441-2466.

[44]

J. Hafizovic, M. Bjørgen, U. Olsbye, P.D.C. Dietzel, S. Bordiga, C. Prestipino, C. Lam- berti, K.P. Lillerud, The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities, J. Am. Chem. Soc. 129 (2007) 3612-3620.

[45]

H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O. M. Yaghi, Multiple Functional Groups of Varying Ratios in Metal-Organic Frame- works, Science (1979) 327 (2010) 846-850.

[46]

J. Li, Y. Wang, Y. Yu, Q. Li, Functionality proportion and corresponding stability study of multivariate metal-organic frameworks, Chinese Chemical Letters 29 (2018) 837-841.

[47]

R.E. Pemta Tia Deka, and Didik Prasetyoko Crystal Growth of IRMOF-3

[48]

Isoreticular Metal-Organic Frameworks-3) Synthesized using Solvothermal Method, IPTEK, Journal of Proceeding Series 1 (2014).

[49]

M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254.

[50]

J. Boudrant, J.M. Woodley, R. Fernandez-Lafuente, Parameters necessary to define an immobilized enzyme preparation, Process Biochemistry 90 (2020) 66-80.

[51]

T. Roodbar Shojaei, S. Soltani, M. Derakhshani, Chapter 6- Synthesis, properties, and biomedical applications of inorganic bionanomaterials, Fundamentals of Bio- nanomaterials (2022) 139-174 Elsevier.

[52]

P. Sharma, R. Sharma, R. Mukhiya, K. Awasthi, M. Kumar, 16 - Zinc-Oxide based EGFET pH sensors, in: K. Awasthi (Ed.), Nanostructured Zinc Oxide, Elsevier, 2021, pp. 459-481.

[53]

M.B. Binish, P. Binu, V.G. Gopikrishna, M. Mohan, Chapter 15- Potential of anaer- obic bacteria in bioremediation of metal-contaminated marine and estuarine envi- ronment, Microbial Biodegradation and Bioremediation (2022) 305-326 (Second Edition), Elsevier.

[54]

R. Sabouni, H. Kazemian, S. Rohani, A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies, Chemical Engineering Journal 165 (2010) 966-973.

[55]

A. Martinez-Felipe, A.G. Cook, J.P. Abberley, R. Walker, J.M. Storey, C.T. Imrie, An FT-IR spectroscopic study of the role of hydrogen bonding in the formation of liquid crystallinity for mixtures containing bipyridines and 4-pentoxybenzoic acid, RSC. Adv. 6 (2016) 108164-108179.

[56]

D. Zhao, Y. Deng, D. Han, L. Tan, Y. Ding, Z. Zhou, H. Xu, Y. Guo, Exploring struc- tural variations of hydrogen-bonding patterns in cellulose during mechanical pulp refining of tobacco stems, Carbohydr. Polym. 204 (2019) 247-254.

[57]

J. Gomes, J. Batra, V.R. Chopda, P. Kathiresan, A.S. Rathore, Chapter 25- Moni- toring and Control of Bioethanol Production From Lignocellulosic Biomass, Waste Biorefinery (2018) 727-749 Elsevier.

[58]

M. Nasrollahzadeh, M. Atarod, M. Sajjadi, S.M. Sajadi, Z. Issaabadi, Chapter 6- Plan- t-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications, in: S.M.Sajadi, M.Sajjadi, Z.Issaabadi, M.Atarod (Eds.), Interface Science and Technology, Elsevier, 2019, pp. 199-322.

[59]

C. Doonan, R. Riccò, K. Liang, D. Bradshaw, P. Falcaro, Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications, Acc. Chem. Res. 50 (2017) 1423-1432.

[60]

R. Singh, M. Musameh, Y. Gao, B. Ozcelik, X. Mulet, C.M. Doherty, Stable MOF@en- zyme composites for electrochemical biosensing devices, Journal of Materials Chem- istry C 9 (2021) 7677-7688.

[61]

M.A. Molina, J. Díez-Jaén, M. Sánchez-Sánchez, R.M. Blanco, One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water, Catal. Today 390-391 (2022) 265-271.

[62]

J. Peng, E. Wu, X. Lou, Q. Deng, X. Hou, C. Lv, Q. Hu, Anthraquinone removal by a metal-organic framework/polyvinyl alcohol cryogel-immobilized laccase: Effect and mechanism exploration, Chemical Engineering Journal 418 (2021) 129473.

[63]

M. Ashjari, M. Garmroodi, F. Ahrari, M. Yousefi, M. Mohammadi, Soluble enzyme cross-linking via multi-component reactions: a new generation of cross-linked en- zymes, Chemical Communications 56 (2020) 9683-9686.

[64]

N.R. Candeias, B. Assoah, S.P. Simeonov, Production and synthetic modifications of shikimic acid, Chem. Rev. 118 (2018) 10458-10550.

[65]

M. Ashjari, M. Mohammadi, R. Badri, Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: Modula- tion of stability and selectivity, Journal of Molecular Catalysis B: Enzymatic 115 (2015) 128-134.

[66]

W. Liang, H. Xu, F. Carraro, N.K. Maddigan, Q. Li, S.G. Bell, D.M. Huang, A. Tarzia, M. B. Solomon, H. Amenitsch, Enhanced activity of enzymes encapsulated in hy- drophilic metal-organic frameworks, J. Am. Chem. Soc. 141 (2019) 2348-2355.

[67]

F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14 (2014) 5761-5765.

[68]

S.S. Nadar, V.K. Rathod, Sonochemical effect on activity and conformation of com- mercial lipases, Appl. Biochem. Biotechnol. 181 (2017) 1435-1453.

[69]

S.S. Nadar, V.K. Rathod, Immobilization of proline activated lipase within metal organic framework (MOF), Int. J. Biol. Macromol. 152 (2020) 1108-1112.

[70]

Z. Rangraz, M.M. Amini, Z. Habibi, One-Pot Synthesis of 1,3,5-Trisubstitued Pyra- zoles via Immobilized Thermomyces lanuginosus Lipase (TLL) on a Metal-Organic Framework, ACS. Omega 9 (2024) 19089-19098.

[71]

M.S. Alam, J.U. Ahmed, D.U. Lee, Synthesis, antibacterial, antioxidant activity and QSAR studies of novel 2-arylidenehydrazinyl-4-arylthiazole analogues, Chemical and Pharmaceutical Bulletin 62 (2014) 1259-1268.

[72]

Q. Ding, D. Zhu, H. Jin, J. Chen, J. Ding, H. Wu, Eco-Friendly one-pot synthesis of 2, 4-disubstituted thiazoles by grinding under catalyst-and solvent-free conditions, Phosphorus, Sulfur, and Silicon 186 (2011) 220-224.

[73]

L. Lohrey, T.N. Uehara, S. Tani, J. Yamaguchi, H.U. Humpf, K. Itami, 2, 4-and 2, 5- Disubstituted Arylthiazoles: Rapid Synthesis by C-H Coupling and Biological Eval- uation, European. J. Org. Chem. 2014 (2014) 3387-3394.

[74]

G.T. Reddy, G. Kumar, N.G. Reddy, Water-Mediated One-pot Three-Component Syn- thesis of Hydrazinyl-Thiazoles Catalyzed by Copper Oxide Nanoparticles Dispersed on Titanium Dioxide Support: A Green Catalytic Process, Adv. Synth. Catal. 360 (2018) 995-1006.

[75]

S. Bharti, G. Nath, R. Tilak, S. Singh, Synthesis, anti-bacterial and anti-fungal activ- ities of some novel Schiff bases containing 2, 4-disubstituted thiazole ring, Eur. J. Med. Chem. 45 (2010) 651-660.

[76]

H. Nagarajaiah, A.K. Mishra, J.N. Moorthy, Mechanochemical solid-state synthe- sis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid-and base-mediated reactions, Org. Biomol. Chem. 14 (2016) 4129-4135.

[77]

E.S. Ramadan, Synthesis of Biologically Active [4-(4-Bromophenyl)-2-thiazolyl] hy- drazones and their D-Galactose Derivatives, Chin. J. Chem. 28 (2010) 594-600.

AI Summary AI Mindmap
PDF (3413KB)

488

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/