Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review

Wenya Su , Wenjia Wang , Ling Li , Mengge Zhang , Hai Xu , Chengzhang Fu , Xiuhua Pang , Mingyu Wang

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100165

PDF (1061KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100165 DOI: 10.1016/j.engmic.2024.100165
Original article
research-article

Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review

Author information +
History +
PDF (1061KB)

Abstract

Tigecycline serves as a critical “final-resort” antibiotic for treating bacterial infections caused by multidrug-resistant bacteria for which treatment options are severely limited. The increasing prevalence of tigecycline resistance, particularly among Gram-negative bacteria, is a major concern. Various mechanisms have been identified as contributors to tigecycline resistance, including upregulation of nonspecific Resistance Nodulation Division (RND) efflux pumps due to mutations in transcriptional regulators, enzymatic modification of tigecycline by monooxygenase enzymes, and mutations affecting tigecycline binding sites. This review aims to consolidate our understanding of tigecycline resistance mechanisms in Gram-negative bacteria and offer insights and perspectives for further drug development.

Keywords

Gram-negative bacteria / Tigecycline / Tigecycline resistance / Resistance mechanisms / RND efflux pump

Cite this article

Download citation ▾
Wenya Su, Wenjia Wang, Ling Li, Mengge Zhang, Hai Xu, Chengzhang Fu, Xiuhua Pang, Mingyu Wang. Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review. Engineering Microbiology, 2024, 4(3): 100165 DOI:10.1016/j.engmic.2024.100165

登录浏览全文

4963

注册一个新账户 忘记密码

Funding

This work was supported by the National Key Research and De- velopment Program of China [grant number 2022YFE0199800], Key R&D Program of Shandong Province [grant number 2020CXGC011305], Shandong Provincial Natural Science Foundation [grant number ZR2020MH308], and the National Natural Science Foundation of China [grant number 82,271,658].

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Wenya Su: Writing - original draft, Visualization, Investigation. Wenjia Wang: Writing - review & editing, Investigation. Ling Li: Writing - review & editing, Investigation. Mengge Zhang: Writing - review & editing, Investigation. Hai Xu: Writing - review & editing, Conceptualization. Chengzhang Fu: Writing - review & editing. Xiuhua Pang: Writing - review & editing, Supervision, Project administration, Conceptualization. Mingyu Wang: Writing - review & editing, Visualization, Supervision, Project administration, Investigation, Funding acquisition, Conceptualization.

References

[1]

C.L. Ventola, The antibiotic resistance crisis: part 1: causes and threats, P. T. 40 (2015) 277-283.

[2]

J.K. Bender, V. Cattoir, K. Hegstad, E. Sadowy, T.M. Coque, H. Westh, A.M. Ham- merum, K. Schaffer, K. Burns, S. Murchan, C. Novais, A.R. Freitas, L. Peixe, M. Del Grosso, A. Pantosti, G. Werner, Update on prevalence and mechanisms of resis- tance to linezolid, tigecycline and daptomycin in enterococci in Europe: towards a common nomenclature, Drug Resist. Updat. 40 (2018) 25-39.

[3]

J.X. Zheng, Z.W. Lin, X. Sun, W.H. Lin, Z. Chen, Y. Wu, G.B. Qi, Q.W. Deng, D. Qu, Z.J. Yu, Overexpression of OqxAB and MacAB efflux pumps contributes to erava- cycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae, Emerg. Microbes. Infect. 7 (2018) 139.

[4]

G. Volkers, J.M. Damas, G.J. Palm, S. Panjikar, C.M. Soares, W. Hinrichs, Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetra- cycline-degrading monooxygenase TetX, Acta Crystallogr. D. Biol. Crystallogr. 69 (2013) 1758-1767.

[5]

W.R. Yang, I.F. Moore, K.P. Koteva, D.C. Bareich, D.W. Hughes, G.D. Wright, TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibi- otics, J. Biol. Chem. 279 (2004) 52346-52352.

[6]

J. Sun, C. Chen, C.Y. Cui, Y. Zhang, X. Liu, Z.H. Cui, X.Y. Ma, Y.J. Feng, L.X. Fang, X. L. Lian, R.M. Zhang, Y.Z. Tang, K.X. Zhang, H.M. Liu, Z.H. Zhuang, S.D. Zhou, J.N. Lv, H. Du, B. Huang, F.Y. Yu, B. Mathema, B.N. Kreiswirth, X.P. Liao, L. Chen, Y.H. Liu, Plasmid-encoded tet (X) genes that confer high-level tigecycline resistance in Escherichia coli, Nat. Microbiol. 4 (2019) 1457-1464.

[7]

T. He, R. Wang, D.J. Liu, T.R. Walsh, R. Zhang, Y. Lv, Y.B. Ke, Q.J. Ji, R.C. Wei, Z.H. Liu, Y.B. Shen, G. Wang, L.C. Sun, L. Lei, Z.Q. Lv, Y. Li, M.D. Pang, L.Y. Wang, Q. L. Sun, Y.L. Fu, H.W. Song, Y.X. Hao, Z.Q. Shen, S.L. Wang, G.X. Chen, C.M. Wu, J.Z. Shen, Y. Wang, Emergence of plasmid-mediated high-level tigecycline resis- tance genes in animals and humans, Nat. Microbiol. 4 (2019) 1450-1456.

[8]

Y. Guo, R. Han, B. Jiang, L. Ding, F. Yang, B. Zheng, Y. Yang, S. Wu, D. Yin, D. Zhu, F. Hu, China Antimicrobial Surveillance Network Study, In vitro activity of new 𝛽-lactam-𝛽 -lactamase inhibitor combinations and comparators against clinical iso- lates of Gram-negative bacilli: results from the China antimicrobial surveillance network (CHINET) in 2019, Microbiol. Spectr. 10 (2022) e0185422.

[9]

V. Seputiene, J. Povilonis, J. Armalyte, K. Suziedelis, A. Pavilonis, E. Suziedeliene, Tigecycline - how powerful is it in the fight against antibiotic-resistant bacteria? Medicina (B Aires) 46 (2010) 240-248.

[10]

D.M. Livermore, Tigecycline: what is it, and where should it be used? J. Antimicrob. Chemother 56 (2005) 611-614.

[11]

P. Fomin, S. Koalov, A. Cooper, T. Babinchak, N. Dartois, N. De Vane, N. Castaing, J. Tellado, S. Grp, The efficacy and safety of tigecycline for the treatment of compli- cated intra-adominal infections the European experience, J. Chemother. 20 (2008) 12-19.

[12]

J. Breedt, J. Teras, J. Gardovskis, F.J. Maritz, T. Vaasna, D.P. Ross, M. Gioud-Paquet, N. Dartois, E.J. Ellis-Grosse, E. Loh, T.c.S. Grp, Safety and efficacy of tigecycline in treatment of skin and skin structure infections: results of a dou- ble-blind phase 3 comparison study with vancomycin-aztreonam, Antimicrob. Agents Chemother 49 (2005) 4658-4666.

[13]

K. Vasilev, G. Reshedko, R. Orasan, M. Sanchez, J. Teras, T. Babinchak, G. Dukart, A. Cooper, N. Dartois, H. Gandjini, R. Orrico, E. Ellis-Grosse, G. Study, A Phase 3, open-label, non-comparative study of tigecycline in the treatment of patients with selected serious infections due to resistant Gram-negative organisms including En- terobacter species, Acinetobacter baumannii and Klebsiella pneumoniae, J. Antimicrob. Chemother 62 (2008) i29-i40.

[14]

K. Arias, S.G. Robinson, S.S. Lyngaas, S.S. Cherala, M. Hartzell, S. Mei, A. Vilic, J.K. Girel, A. Kuemmell, J.S. Vrettos, J. Zielinski, K. Liechti, L.H. Jin, Minocycline and tigecycline form higher-order Ca2+ complexes of stronger affinity than tetra- cycline, Inorg. Chim. Acta 441 (2016) 181-191.

[15]

J. Zhu, J.N. Lv, Z.C. Zhu, T. Wang, X.F. Xie, H.F. Zhang, L. Chen, H. Du, Identifi- cation of TMexCD-TOprJ-producing carbapenem-resistant Gram-negative bacteria from hospital sewage, Drug Resist Update 70 (2023) 100989.

[16]

V. Radisic, D.H. Grevskott, B.T. Lunestad, L. Ovreas, N.P. Marathe, Sewage-based surveillance shows presence of Klebsiella pneumoniae resistant against last resort antibiotics in the population in Bergen, Norway, Int. J. Hyg. Envir. Heal. 248 (2023) 114075.

[17]

Y. Li, P.P. Wang, X. Xiao, R.C. Li, Z.Q. Wang, Genomic characterization of tigecy- cline-resistant tet (X4)-positive E. coli in slaughterhouses, Vet. Microbiol. 276 (2023) 249-251.

[18]

C. Narvaez-Bravo, M. Toufeer, S.J. Weese, M.S. Diarra, A.E. Deckert, R. Reid-Smith, M. Aslam, Prevalence of methicillin-resistant Staphylococcus aureus in Canadian commercial pork processing plants, J. Appl. Microbiol. 120 (2016) 770-780.

[19]

M. Veleba, P.G. Higgins, G. Gonzalez, H. Seifert, T. Schneiders, Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae, Antimicrob. Agents Chemother 56 (2012) 4450-4458.

[20]

X.J. Wang, H.B. Chen, Y.W. Zhang, Q. Wang, C.H. Zhao, H.N. Li, W.Q. He, F.F. Zhang, Z.W. Wang, S.G. Li, H. Wang, Genetic characterisation of clinical Kleb- siella pneumoniae isolates with reduced susceptibility to tigecycline: role of the global regulator RamA and its local repressor RamR, Int. J. Antimicrob. Agents 45 (2015) 635-640.

[21]

G. Volkers, G.J. Palm, M.S. Weiss, G.D. Wright, W. Hinrichs, Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase, FEBS Lett. 585 (2011) 1061-1066.

[22]

L. Lv, M. Wan, C. Wang, X. Gao, Q. Yang, S.R. Partridge, Y. Wang, Z. Zong, Y. Doi, J. Shen, P. Jia, Q. Song, Q. Zhang, J. Yang, X. Huang, M. Wang, J.H. Liu, Emer- gence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae, MBio 11 (2020) e02930 -19.

[23]

K. Beabout, T.G. Hammerstrom, A.M. Perez, B.F. Magalhaes, A.G. Prater, T.P. Clements, C.A. Arias, G. Saxer, Y. Shamoo, The ribosomal S10 protein is a gen- eral target for decreased tigecycline susceptibility, Antimicrob. Agents Chemother 59 (2015) 5561-5566.

[24]

K. Peng, Q. Wang, Y. Li, M. Wang, C. Kurekci, R. Li, Z. Wang, Molecular mechanisms and genomic basis of tigecycline-resistant Enterobacterales from swine slaughter- houses, Microbiol. Res. 264 (2022) 127151.

[25]

B.R. María, A. Casanova-Higes, C.M. Marín-Alcalá, R.C. Mainar-Jaime, Salmonella shedding in slaughter pigs and the use of esterified formic acid in the drinking water as a potential abattoir-based mitigation measure, Animals 12 (2022) 1620.

[26]

V. Radisic, D.H. Grevskott, N. Junghardt, L. Øvreås, N.P. Marathe, Multidrug-resis- tant Enterococcus faecium strains enter the Norwegian marine environment through treated sewage, Microbiologyopen. 13 (2024) e1397.

[27]

W. Li, Z. Yang, J. Hu, B. Wang, H. Rong, Z. Li, Y. Sun, Y. Wang, X. Zhang, M. Wang, H. Xu, Evaluation of culturable ‘last-resort’ antibiotic resistant pathogens in hospi- tal wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence, J. Hazard. Mater. 438 (2022) 129477.

[28]

V.M. Maria Elena, G.L. Miguel, C.J. Patricia, C.Q. Berta Alicia, V.A. Consuelo, B. D.V. Miriam, P.D.L. Alfredo, A.A. Celia Mercedes, Multidrug-Resistant Staphylo- coccus sp. and Enterococcus sp. in municipal and hospital wastewater: a longitudinal study, Microorganisms. 12 (2024) 645.

[29]

S. Samer, H.A. Alrub, Antimicrobial resistance, virulence factors, and pathotypes of Escherichia coli isolated from drinking water sources in Jordan, Pathogens 8 (2019) 86.

[30]

F. McAleese, P. Petersen, A. Ruzin, P.M. Dunman, E. Murphy, S.J. Projan, P.A. Brad- ford, A novel MATE family efflux pump contributes to the reduced susceptibil- ity of laboratory-derived Staphylococcus aureus mutants to tigecycline, Antimicrob. Agents Chemother 49 (2005) 1865-1871.

[31]

H. Hua, P. Wan, X. Luo, Y. Lu, X. Li, W. Xiong, Z. Zeng, Tigecycline resistance-as- sociated mutations in the MepA efflux pump in Staphylococcus aureus, Microbiol. Spectr. 11 (2023) e00634 -23.

[32]

C.A. Elkins, H. Nikaido, Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops, J. Bacteriol. 184 (2002) 6490-6498.

[33]

T. Hirata, A. Saito, K. Nishino, N. Tamura, A. Yamaguchi, Effects of efflux trans- porter genes on susceptibility of Escherichia coli to tigecycline (GAR-936), Antimi- crob. Agents Chemother 48 (2004) 2179-2184.

[34]

D. Ma, M. Alberti, C. Lynch, H. Nikaido, J.E. Hearst, The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals, Mol. Microbiol. 19 (1996) 101-112.

[35]

A. Koutsolioutsou, S. Pena-Llopis, B. Demple, Constitutive soxR mutations con- tribute to multiple-antibiotic resistance in clinical Escherichia coli isolates, Antimi- crob. Agents Chemother 49 (2005) 2746-2752.

[36]

M.N. Alekshun, S.B. Levy, Regulation of chromosomally mediated multiple an- tibiotic resistance: the mar regulon, Antimicrob. Agents Chemother 41 (1997) 2067-2075.

[37]

Y.S. Li, D.Z. Li, Y.L. Liang, J.L. Cui, K. He, D.D. He, J.H. Liu, G.Z. Hu, L. Yuan, Characterization of a tigecycline-resistant and blaCTX-M -bearing Klebsiella pneumo- niae strain from a peacock in a Chinese zoo, Appl. Environ. Microb. 89 (2023) e0176422.

[38]

Z.K. Sheng, F.P. Hu, W.X. Wang, Q.L. Guo, Z.J. Chen, X.G. Xu, D.M. Zhu, M. G. Wang, Mechanisms of tigecycline resistance among Klebsiella pneumoniae clin- ical isolates, Antimicrob. Agents Chemother 58 (2014) 6982-6985.

[39]

M. Hentschke, M. Wolters, I. Sobottka, H. Rohde, M. Aepfelbacher, ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecy- cline, Antimicrob. Agents Chemother 54 (2010) 2720-2723.

[40]

L. Villa, C. Feudi, D. Fortini, A. Garcia-Fernandez, A. Carattoli, Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance, Antimicrob. Agents Chemother 58 (2014) 1707-1712.

[41]

X. Zhong, H.T. Xu, D.K. Chen, H.J. Zhou, X. Hu, G. Cheng, First Emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital, PLoS. One 9 (2014) e115185.

[42]

F. He, Y. Fu, Q. Chen, Z. Ruan, X.T. Hua, H. Zhou, Y.S. Yu, Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae, PLoS. One 10 (2015).

[43]

M.H. Miao, W. Cao, H.X. Wang, J.T. Yan, M. Wang, Y. Zheng, X.F. Xie, X. Zhang, H.F. Zhang, H. Du, ramR is not involved in the regulation of ramA associated an- tibiotic resistance in Salmonella enterica serovar Typhi, Microb. Pathog. 111 (2017) 198-202.

[44]

L.E. Nielsen, E.C. Snesrud, F. Onmus-Leone, Y.I. Kwak, R. Aviles, E.D. Steele, D. E. Sutter, P.E. Waterman, E.P. Lesho, IS 5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae, Antimicrob. Agents Chemother 58 (2014) 6151-6156.

[45]

X.Z. Li, H. Nikaido, K. Poole, Role of MexA-MexB-OprM in antibiotic efflux in Pseu- domonas aeruginosa, Antimicrob. Agents Chemother 39 (1995) 1948-1953.

[46]

K. Poole, N. Gotoh, H. Tsujimoto, Q.X. Zhao, A. Wada, T. Yamasaki, S. Neshat, J.I. Yamagishi, X.Z. Li, T. Nishino, Overexpression of the mexC-mexD-oprJ efflux operon in nfxB -type multidrug-resistant strains of Pseudomonas aeruginosa, Mol. Microbiol. 21 (1996) 713-724.

[47]

T. Kohler, S.F. Epp, L.K. Curty, J.C. Pechere, Characterization of MexT, the regula- tor of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa, J. Bacteriol. 181 (1999) 6300-6305.

[48]

N. Masuda, E. Sakagawa, S. Ohya, N. Gotoh, H. Tsujimoto, T. Nishino, Contribu- tion of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother 44 (2000) 2242-2246.

[49]

J.R. Aires, T. Kohler, H. Nikaido, P. Plesiat, Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides, Antimicrob. Agents Chemother 43 (1999) 2624-2628.

[50]

C.R. Dean, M.A. Visalli, S.J. Projan, P.E. Sum, P.A. Bradford, Efflux-mediated re- sistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1, Antimicrob. Agents Chemother 47 (2003) 972-978.

[51]

C.Z. Wang, X. Gao, Q.W. Yang, L.C. Lv, M. Wan, J. Yang, Z.P. Cai, J.H. Liu, A novel transferable Resistance-Nodulation-Division pump gene cluster, tmexCD2-toprJ2, confers tigecycline resistance in Raoultella ornithinolytica, Antimicrob. Agents Chemother 65 (2021) e02229 -20.

[52]

Q. Wang, K. Peng, Y. Liu, X. Xiao, Z.Q. Wang, R.C. Li, Characterization of TMexCD3-TOprJ3, an RND-type efflux system conferring resistance to tigecycline in Proteus mirabilis, and its associated integrative conjugative element, Antimicrob. Agents Chemother 65 (2021) e0271220.

[53]

J. Yang, Z.Y. Zeng, J.F. Hu, Z.H. Liu, J.R. Gu, X.J. Chen, Z.L. Sun, J.Y. Li, Emergence of the resistance-nodulation-division efflux pump tmexCD3-toprJ3 gene confers re- sistance to tigecycline in Pseudomonas juntendi and Proteus terrae isolated from a pig farm in China, Vet. Med. Sci. 8 (2022) 2460-2465.

[54]

X.M. Yang, L.W. Ye, E.W.C. Chan, R. Zhang, S. Chen, Characterization of an In- cFIB/IncHI1B plasmid encoding efflux pump TMexCD1-TOprJ1 in a clinical tige- cycline- and carbapenem-resistant Klebsiella pneumoniae strain, Antimicrob. Agents Chemother 65 (2021) e02340 -20.

[55]

S. Magnet, P. Courvalin, T. Lambert, Resistance-nodulation-cell division-type ef- flux pump involved in aminoglycoside resistance in A. baumannii strain BM4454, Antimicrob. Agents Chemother 45 (2001) 3375-3380.

[56]

S. Coyne, N. Rosenfeld, T. Lambert, P. Courvalin, B. Perichon, Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii, Antimicrob. Agents Chemother 54 (2010) 4389-4393.

[57]

P.E. Fournier, D. Vallenet, V. Barbe, S. Audic, H. Ogata, L. Poirel, H. Richet, C. Robert, S. Mangenot, C. Abergel, P. Nordmann, J. Weissenbach, D. Raoult, J.M. Claverie, Comparative genomics of multidrug resistance in Acinetobacter bau- mannii, PLoS. Genet. 2 (2006) 62-72.

[58]

N. Rosenfeld, C. Bouchier, P. Courvalin, B. Perichon, Expression of the resistance-n- odulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator, Antimicrob. Agents Chemother 56 (2012) 2504-2510.

[59]

M. Hornsey, M.J. Ellington, M. Doumith, S. Hudson, D.M. Livermore, N. Wood- ford, Tigecycline resistance in Serratia marcescens associated with up-regulation of the SdeXY-HasF efflux system also active against ciprofloxacin and cefpirome, J. Antimicrob. Chemother 65 (2010) 479-482.

[60]

J. Xu, Z.L. Zhu, Y.M. Chen, W.Z. Wang, F. He, The plasmid-borne tet (A) gene is an important factor causing tigecycline resistance in ST11 carbapenem-resistant Klebsiella pneumoniae under selective pressure, Front. Microbiol. 12 (2021) 644949.

[61]

X.X. Du, F. He, Q.C. Shi, F. Zhao, J. Xu, Y. Fu, Y.S. Yu, The rapid emergence of tigecycline resistance in blaKPC-2 harboring Klebsiella pneumoniae, as mediated in vivo by mutation in tetA during tigecycline treatment, Front. Microbiol. 9 (2018) 648.

[62]

T. Akiyama, J. Presedo, A.A. Khan, The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates, Int. J. Antimicrob. Agents 42 (2013) 133-140.

[63]

J.E. Owuna, S.O. Obiekezie, Y.B. Ngwai, D. Ishaleku, M.O. Adamu, Antibiotic sus- ceptibility profile and molecular detection of tetA genes in tetracycline resistant Salmonella species isolated from different water sources in Keffi, Nasarawa State, Nigeria, South Asia J. Res. Microbiol. 6 (2020) 27-41.

[64]

Z.R. Wang, H.N. Li, J.G. Zhang, X.J. Wang, Y.W. Zhang, H. Wang, Identification of a novel plasmid-mediated tigecycline resistance-related gene, tet (Y), in Acinetobacter baumannii, J. Antimicrob. Chemother 77 (2022) 58-68.

[65]

C.L. Tooke, P. Hinchliffe, E.C. Bragginton, C.K. Colenso, V.H.A. Hirvonen, Y. Take- bayashi, J. Spencer, 𝛽-Lactamases and 𝛽-Lactamase Inhibitors in the 21st Century, J. Mol. Biol. 431 (2019) 3472-3500.

[66]

L.Y. Wang, D.J. Liu, Y. Lv, L.Q. Cui, Y. Li, T.M. Li, H.W. Song, Y.X. Hao, J.Z. Shen, Y. Wang, T.R. Walsh, Novel plasmid-mediated tet (X5) Gene conferring resistance to tigecycline, eravacycline, and omadacycline in a clinical Acinetobacter baumannii isolate, Antimicrob. Agents Chemother 64 (2020) e01326 -19.

[67]

D.D. He, L.L. Wang, S.Y. Zhao, L.P. Liu, J.H. Liu, G.Z. Hu, Y. Pan, A novel tigecycline resistance gene, tet (X6), on an SXT/R391 integrative and conjugative element in a Proteus genomospecies 6 isolate of retail meat origin, J. Antimicrob. Chemother 75 (2020) 1159-1164.

[68]

A.M. Soliman, H. Ramadan, H. Zarad, Y. Sugawara, L.S. Yu, M. Sugai, T. Shi- mamoto, L.M. Hiott, J.G. Frye, C.R. Jackson, T. Shimamoto, Coproduction of Tet(X7) conferring high-level tigecycline resistance, fosfomycin FosA4, and col- istin Mcr-1.1 in Escherichia coli strains from chickens in Egypt, Antimicrob. Agents Chemother 65 (2021) e02084 -20.

[69]

Q. Cheng, Y. Cheung, C. Liu,C., E.W.C. Chan, K.Y. Wong, R. Zhang, S. Chen, Func- tional and phylogenetic analysis of TetX variants to design a new classification system, Commun. Biol. 5 (2022).

[70]

M. Haeili, Y. Shoghi, M. Moghimi, A. Ghodousi, M. Omrani, D.M. Cirillo, Genomic features of in vitro selected mutants of Escherichia coli with decreased susceptibility to tigecycline, J. Glob. Antimicrob. Resist. 31 (2022) 32-37.

[71]

S. Bratu, D. Landman, A. George, J. Salvani, J. Quale, Correlation of the expres- sion of acrB and the regulatory genes marA, soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York City, J. Antimicrob. Chemother 64 (2009) 278-283.

[72]

A. Ruzin, M.A. Visalli, D. Keeney, P.A. Bradford, Influence of transcriptional ac- tivator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae, Antimicrob. Agents Chemother 49 (2005) 1017-1022.

[73]

S. Roy, S. Datta, R. Viswanathan, A.K. Singh, S. Basu, Tigecycline susceptibil- ity in Klebsiella pneumoniae and Escherichia coli causing neonatal septicaemia (2007-10) and role of an efflux pump in tigecycline non-susceptibility, J. Antimi- crob. Chemother 68 (2013) 1036-1042.

[74]

L. Fang, Q. Chen, K. Shi, X. Li, Q. Shi, F. He, J. Zhou, Y. Yu, X. Hua, Step-wise increase in tigecycline resistance in Klebsiella pneumoniae associated with mutations in ramR, lon and rpsJ, PLoS. One 11 (2016) e0165019.

[75]

D. Keeney, A. Ruzin, F. McAleese, E. Murphy, P.A. Bradford, MarA-mediated over- expression of the AcrAB efflux pump results in decreased susceptibility to tigecy- cline in Escherichia coli, J. Antimicrob. Chemother 61 (2008) 46-53.

[76]

K.L. Griffith, I.M. Shah, R.E. Wolf, Proteolytic degradation of Escherichia coli tran- scription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons, Mol. Microbiol. 51 (2004) 1801-1816.

[77]

R. Chollet, J. Chevalier, C. Bollet, J.M. Pages, A. Davin-Regli, RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes, Antimicrob. Agents Chemother 48 (2004) 2518-2523.

[78]

M. Veleba, S. De Majumdar, M. Hornsey, N. Woodford, T. Schneiders, Genetic char- acterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes, J. Antimicrob. Chemother 68 (2013) 1011-1018.

[79]

M. Hornsey, M.J. Ellington, M. Doumith, G. Scott, D.M. Livermore, N. Woodford, Emergence of AcrAB-mediated tigecycline resistance in a clinical isolate of Enter- obacter cloacae during ciprofloxacin treatment, Int. J. Antimicrob. Agents 35 (2010) 478-481.

[80]

D. Keeney, A. Ruzin, P.A. Bradford, RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecy- cline in Enterobacter cloacae, Microb. Drug Resist. 13 (2007) 1-6.

[81]

Y. Li, Q. Wang, X. Xiao, R. Li, Z. Wang, Emergence of blaNDM-9 -bearing tigecy- cline-resistant Klebsiella aerogenes of chicken origin, J. Glob. Antimicrob. Resist. 26 (2021) 66-68.

[82]

A. Hirabayashi, T.D. Dao, T. Takemura, F. Hasebe, L.T. Trang, N.H. Thanh, H.H. Tran, K. Shibayama, I. Kasuga, M. Suzuki, A transferable IncC-IncX3 hybrid plasmid cocarrying blaNDM-4, tet (X), and tmexCD3-toprJ3 confers resistance to car- bapenem and tigecycline, mSphere 6 (2021) e0059221.

[83]

M.A. Visalli, E. Murphy, S.J. Projan, P.A. Bradford, AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis, Antimicrob. Agents Chemother 47 (2003) 665-669.

[84]

A. Ruzin, D. Keeney, P.A. Bradford, AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii, Antimicrob. Agents Chemother 49 (2005) 791-793.

[85]

E.J. Yoon, P. Courvalin, C. Grillot-Courvalin, RND-Type efflux pumps in mul- tidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations, Antimicrob. Agents Chemother 57 (2013) 2989-2995.

[86]

T.G. Hammerstrom, K. Beabout, T.P. Clements, G. Saxer, Y. Shamoo, Acinetobacter baumannii repeatedly evolves a hypermutator phenotype in response to tigecycline that effectively surveys evolutionary trajectories to resistance, PLoS. One 10 (2015) e0140489.

[87]

Q. Chen, X. Li, H. Zhou, Y. Jiang, Y. Chen, X.T. Hua, Y.S. Yu, Decreased suscep- tibility to tigecycline in Acinetobacter baumannii mediated by a mutation in trm encoding SAM-dependent methyltransferase, J. Antimicrob. Chemother 69 (2014) 72-76.

[88]

M.F. Lin, Y.Y. Lin, H.W. Yeh, C.Y. Lan, Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility, BMC. Microbiol. 14 (2014) 119.

[89]

K. Smalla, H. Heuer, A. Gotz, D. Niemeyer, E. Krogerrecklenfort, E. Tietze, Exoge- nous isolation of antibiotic resistance plasmids from piggery manure slurries re- veals a high prevalence and diversity of IncQ-like plasmids, Appl. Environ. Microb 66 (2000) 4854-4862.

[90]

C.Z. Wang, X. Gao, L.C. Lv, Z.P. Cai, J. Yang, J.H. Liu, Novel tigecycline resistance gene cluster tnfxB3-tmexCD3-toprJ1b in Proteus spp. and Pseudomonas aeruginosa, co-existing with tet (X6) on an SXT/R391 integrative and conjugative element, J. Antimicrob. Chemother 76 (2021) 3159-3167.

[91]

N. Dong, C.C. Liu, Y.Y. Hu, J.Y. Lu, Y. Zeng, G.X. Chen, S. Chen, R. Zhang, Emer- gence of an extensive drug resistant Pseudomonas aeruginosa strain of chicken origin carrying blaIMP-45, tet (X6), and tmexCD3-toprJ3 on an Inc(pRBL16) plasmid, Micro- biol. Spectr. 10 (2022) e0228322.

[92]

M. Tuckman, P.J. Petersen, S.J. Projan, Mutations in the interdomain loop region of the tet (A) tetracycline resistance gene increase efflux of minocycline and glycyl- cyclines, Microb. Drug Resist. 6 (2000) 277-282.

[93]

C.Z. Wang, X. Gao, J.Y. Tu, L.C. Lv, W.X. Pu, X.T. He, Y.X. Jiao, Y.T. Deng, J.H. Liu, Multiple copies of mobile tigecycline resistance efflux pump gene cluster tmexC2D2.2-toprJ2 identified in chromosome of Aeromonas spp, Microbiol. Spectr. 10 (2022) e0346822.

[94]

C.L. Lee, H.F. Ng, Y.F. Ngeow, Z. Thaw, A stop-gain mutation in sigma factor SigH (MAB_3543c) may be associated with tigecycline resistance in Mycobacteroides ab- scessus, J. Med. Microbiol. 70 (2021) 001378.

[95]

K.M. Aw, H.F. Ng, C.L. Lee, T. Zin, Y.F. Ngeow, RshA mutations contributing to tigecycline resistance in Mycobacteroides abscessus, J. Med. Microbiol. 71 (2022) 001547.

[96]

M. Veleba, T. Schneiders, Tigecycline resistance can occur independently of the ramA gene in Klebsiella pneumoniae, Antimicrob. Agents Chemother 56 (2012) 4466-4467.

[97]

R. Rosenblum, E. Khan, G. Gonzalez, R. Hasan, T. Schneiders, Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae, Int. J. Antimicrob. Agents 38 (2011) 39-45.

[98]

M.C. Moken, L.M. McMurry, S.B. Levy, Selection of multiple-antibiotic-resistant (Mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci, Antimicrob. Agents Chemother. 41 (1997) 2770-2772.

[99]

Y.Q. Yang, Y.X. Yang, G.P. Chen, M.M. Lin, Y. Chen, R.W. He, K.N. Galvao, M. A.E. Ahmed, A.P. Roberts, Y.P. Wu, L.L. Zhong, X.X. Liang, M.Y. Qin, X. Ding, W.B. Deng, S.Y. Huang, H.Y. Li, M. Dai, D.Q. Chen, L.Y. Zhang, K. Liao, Y. Xia, G.B. Tian, Molecular characterization of carbapenem-resistant and virulent plas- mids in Klebsiella pneumoniae from patients with bloodstream infections in China, Emerg. Microbes. Infect. 10 (2021) 700-709.

[100]

Y. Xu, W. Wang, W. Su, M. Wang, H. Xu, X. Zhang, L. Li, A widespread single amino acid mutation in AcrA reduces tigecycline susceptibility in Klebsiella pneumoniae, Microbiol. Spectr. 12 (2024) e0203023.

[101]

Y. Xu, W. Wang, W. Su, M. Wang, H. Xu, X. Zhang, L. Li, Significant impact of AcrB amino acid polymorphism at residue 716 on susceptibility to tigecycline and other antibiotics in Klebsiella pneumoniae, ACS. Infect. Dis. 10 (2024) 541-552.

[102]

L.C. Lv, M. Wan, C.Z. Wang, X. Gao, Q.W. Yang, S.R. Partridge, Y. Wang, Z.Y. Zong, Y.H. Doi, J.Z. Shen, P.Y. Jia, Q.H. Song, Q.H. Zhang, J. Yang, X.H. Huang, M. G. Wang, J.H. Liu, Emergence of a plasmid-encoded Resistance-Nodulation-Di- vision efflux pump conferring resistance to multiple drugs, Including tigecycline, in: Klebsiella Pneumoniae, 11, mBio, 2020, p. e02930. -19.

[103]

W.H. Zhang, X.Y. Lu, S.J. Chen, Y. Liu, D.X. Peng, Z.Q. Wang, R.C. Li, Molecu- lar epidemiology and population genomics of tet (X4), blaNDM or mcr-1 positive Es- cherichia coli from migratory birds in southeast coast of China, Ecotox. Environ. Safe 244 (2022) 114032.

[104]

C. Kürekci, X. Lu, B.G. Celil, H.B. Disli, M. Mohsin, Z. Wang, R. Li, Emergence and characterization of tigecycline resistance gene tet (X4) in ST609 Escherichia coli isolates from wastewater in Turkey, Microbiol. Spectr. 10 (2022) e0073222.

[105]

Z. Zhang, Z. Zhan, C. Shi, International spread of Tet(X4)-producing Escherichia coli isolates, Foods. 11 (2022) 150689.

[106]

C.O. Rock, S.E. Goelz, J.E. Cronan, Phospholipid synthesis in Escherichia coli. Char- acteristics of fatty acid transfer from acyl-acyl carrier protein to sn-Glycerol 3-phos- phate, J. Biol. Chem. 256 (1981) 736-742.

[107]

Y.H. Yin, Z.Y. Yue, Y.B. Zhang, F.Q. Li, Q.H. Zhang, Over expression of AdeABC and AcrAB-TolC efflux systems confers tigecycline resistance in clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae, Rev. Soc. Bras. Med. Tro 49 (2016) 165-171.

[108]

S. Coyne, P. Courvalin, B. Perichon, Efflux-mediated antibiotic resistance in Acine- tobacter spp, Antimicrob. Agents Chemother 55 (2011) 947-953.

[109]

M. Hornsey, M.J. Ellington, M. Doumith, C.P. Thomas, N.C. Gordon, D.W. Ware- ham, J. Quinn, K. Lolans, D.M. Livermore, N. Woodford, AdeABC-mediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii, J. Antimicrob. Chemother 65 (2010) 1589-1593.

[110]

A. Ruzin, D. Keeney, B. P.A, AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex, J. Antimicrob. Chemother 59 (2007) 1001-1004.

[111]

X. Li, L. Liu, J. Ji, Q. Chen, X. Hua, Y. Jiang, Y. Feng, Y. Yu, Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-a- cyl-sn-glycerol-3-phosphate acyltransferase, Eur. J. Clin. Microbiol. Infect. Dis. 34 (2015) 625-631.

[112]

M.M. Khlaif, N.H. Hussein, Sequencing analysis of tigecycline resistance among tigecycline non-susceptible in three species of G-ve bacteria isolated from clinical specimens in Baghdad, Mol. Biol. Rep. 49 (2022) 11811-11820.

[113]

M. Hentschke, M. Christner, I. Sobottka, M. Aepfelbacher, H. Rohde, Combined ramR mutation and presence of a Tn1721-associated tet (A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline, Antimicrob. Agents Chemother 54 (2010) 1319-1322.

AI Summary AI Mindmap
PDF (1061KB)

522

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/