Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications

I. C. Cunha-Ferreira , C. S. Vizzotto , T. D. Frederico , J. Peixoto , L. S Carvalho , M. R. Tótola , R. H. Krüger

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100163

PDF (3147KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100163 DOI: 10.1016/j.engmic.2024.100163
Original article
research-article

Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications

Author information +
History +
PDF (3147KB)

Abstract

The biotechnological industry faces a crucial demand for novel bioactive compounds, particularly antimicrobial agents, to address the rising challenge of bacterial resistance to current available antibiotics. Traditional strategies for cultivating naturally occurring microorganisms often limit the discovery of novel antimicrobial producers. This study presents a protocol for targeted selection of bacterial strains using the supernatant of Paenibacillus elgii, which produces abundant signal molecules and antimicrobial peptides. Soil samples were inoculated in these enriched culture media to selectively cultivate bacteria resistant to the supernatant, indicating their potential to produce similar compounds. The bacterial strains isolated through this method were assessed for their antibacterial activity. In addition, the functional annotation of the genome of one of these strains revealed several gene clusters of biotechnological interest. This study highlights the effectiveness of using this approach for selective cultivation of microorganisms with potential for biotechnological applications.

Keywords

Prospecting / Supernatant / Antibacterial activity

Cite this article

Download citation ▾
I. C. Cunha-Ferreira, C. S. Vizzotto, T. D. Frederico, J. Peixoto, L. S Carvalho, M. R. Tótola, R. H. Krüger. Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications. Engineering Microbiology, 2024, 4(3): 100163 DOI:10.1016/j.engmic.2024.100163

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

The type strain is K003, which is isolated from the soil of the Brazilian savanna-like Cerrado biome, Brasilia, Brazil. The deposit of the K003 genome in the GenBank database is being processed under accession number JAZBNP000000000.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

I. C. Cunha-Ferreira: Writing - original draft, Investigation, Formal analysis, Data curation, Conceptualization. C. S. Vizzotto: Investigation, Formal analysis, Data curation, Conceptualization. T. D. Frederico: Formal analysis, Data curation. J. Peixoto: Writing - review & editing, Writing - original draft, Formal analysis, Data curation. L. S Carvalho: Writing - review & editing, Methodology. M. R. Tótola: Writing - review & editing, Methodology, Investigation, Formal analysis, Data curation. R. H. Krüger: Writing - review & editing, Writing - original draft, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Acknowledgments

The authors thank the Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente (Universidade Federal de Viçosa - UFV) for the infrastructure to carry out part of the experiments in this work. This study was funded by the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Federal District Research Support Foundation (FAP-DF).

References

[1]

J. Gutleben, C. Loureiro, L.A. Ramírez Romero, S. Shetty, R.H. Wijffels, H. Smidt, et al., Cultivation of bacteria from Aplysina aerophoba: effects of oxygen and nutri- ent gradients, Front. Microbiol. 11 (2020) 175, doi:10.3389/fmicb.2020.00175.

[2]

J.C. Lagier, P. Hugon, S. Khelaifia, P.E. Fournier, B. La Scola, D. Raoult, The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota, Clin. Microbiol. Rev. 28 (1) (2015) 237-264, doi:10.1128/CMR.00014-14.

[3]

L. Wilson, K.M. Iqbal, T. Simmons-Ehrhardt, M.F. Bertino, M.R. Shah, et al., Customizable 3D printed diffusion chambers for studies of bacterial pathogen phenotypes in complex environments, J. Microbiol. Methods. 162 (2019) 8-15, doi:10.1016/j.mimet.2019.05.002.

[4]

J. Choi, F. Yang, R. Stepanauskas, E. Cardenas, A. Garoutte, et al., Strategies to improve reference databases for soil microbiomes, ISME J 11 (2017) 829-834, doi:10.1038/ismej.2016.168.

[5]

S. Liu, C.D. Moon, N. Zheng, S. Huws, S. Zhao, J. Wang, Opportunities and chal- lenges of using metagenomic data to bring uncultured microbes into cultivation, Microbiome 10 (2022) 76, doi:10.1186/s40168-022-01272-5.

[6]

J. Overmann, B. Abt, J. Sikorski, Present and future of culturing bacteria, Annu. Rev. Microbiol. 71 (2017) 711-730, doi:10.1146/annurev-micro-090816-093449.

[7]

M. Laws, A. Shaaban, K.M. Rahman, Antibiotic resistance breakers: current ap- proaches and future directions, FEMS Microbiol. Rev. 43 (5) (2019) 490-516, doi:10.1093/femsre/fuz014.

[8]

G.A. Durand, D. Raoult, G. Dubourg, Antibiotic discovery: history, meth- ods and perspectives, Int. J. Antimicrob. Agents. 53 (2019) 371-382, doi:10.1016/j.ijantimicag.2018.11.010.

[9]

J. Overmann, Principles of enrichment, isolation, cultivation, and preservation of bacteria, in: E.F.DeLong, E.Stackebrandt, S.Lory, F.Thompson (Eds.), The Prokaryotes: Prokaryotic Biology and Symbiotic Associations, 4th edn., Springer, New York, 2013, pp. 149-207.

[10]

N. Boilattabi, L. Barrassi, A. Bouanane-Darenfed, B. La Scola, Isolation and identifi- cation of Legionella spp. from hot spring water in Algeria by culture and molecular methods, J. Appl. Microbiol. 130 (2021) 1394-1400, doi:10.1111/jam.14871.

[11]

D.K. Chaudhary, A. Khulan, J. Kim, Development of a novel cultiva- tion technique for uncultured soil bacteria, Sci. Rep. 9 (2017) 6666, doi:10.1038/s41598-019-43182-x.

[12]

J. Pascual, M. García-López, C. Carmona, T.S. Sousa, N. de Pedro, et al., Pseu- domonas soli sp. nov., a novel producer of xantholysin congeners, Syst. Appl. Mi- crobiol. 37 (2014) 412-416, doi:10.1016/j.syapm.2014.07.003.

[13]

J.M. van Dorst, G. Hince, I. Snape, B.C. Ferrari, Novel culturing techniques select for heterotrophs and hydrocarbon degraders in a subantarctic soil, Sci. Rep. 6 (2016) 36724, doi:10.1038/srep36724.

[14]

B.O. Bachmann, S.G. Van Lanem, R.H. Baltz, Microbial genome mining for acceler- ated natural products discovery: is a renaissance in the making? J. Ind. Microbiol. Biotechnol. 41 (2) (2014) 175-184, doi:10.1007/s10295-013-1389-9.

[15]

Y. Xiao, H. Zou, J. Li, T. Song, W. Lv, et al., Impact of quorum sens- ing signaling molecules in gram-negative bacteria on host cells: current un- derstanding and future perspectives, Gut. Microbes. 14 (1) (2022) 2039048, doi:10.1080/19490976.2022.2039048.

[16]

D. Nichols, K. Lewis, J. Orjala, S. Mo, R. Ortenberg, P. O’Connor, et al., Short peptide induces an "uncultivable" microorganism to grow in vitro, Appl. Environ. Microbiol. 74 (15) (2008) 4889-4897, doi:10.1128/AEM.00393-08.

[17]

L.M. Babenko, I.V. Kosakivska, К. О. Romanenko, Molecular mechanisms of N-acyl homoserine lactone signals perception by plants, Cell. Biol. Int. 46 (4) (2022) 523-534, doi:10.1002/cbin.11749.

[18]

K. Papenfort, B.L. Bassler, Quorum sensing signal-response systems in Gram- negative bacteria, Nat. Rev. Microbiol. 14 (9) (2016) 576-588, doi:10.1038/nr- micro.2016.89.

[19]

F. Verbeke, S. De Craemer, N. Debunne, Y. Janssens, E. Wynendaele, et al., Pep- tides as quorum sensing molecules: measurement techniques and obtained levels In Vitro and In Vivo, Front. Neurosci. 11 (2017) 183, doi:10.3389/fnins.2017. 00183.

[20]

E.V. Soares, Perspective on the biotechnological production of bacterial siderophores and their use, Appl. Microbiol. Biotechnol. 106 (11) (2022) 3985-4004, doi:10.1007/s00253-022-11995-y.

[21]

R.A. da Costa, I.E.P.C. Andrade, O.H.B. Pinto, B.B.P. de Souza, D.L.A. Ful- gêncio, et al., A novel family of non-secreted tridecaptin lipopeptide pro- duced by Paenibacillus elgii, Amino Acids 54 (11) (2022) 1477-1489, doi:10.1007/s00726-022-03187-9.

[22]

D.B. Ortega, R.A. Costa, A.S. Pires, T.F. Araújo, J.F. Araújo, et al., Draft genome sequence of the antimicrobial-producing strain Paenibacillus elgii AC13, Genome Announc 6 (26) (2018) e00573-18, doi:10.1128/genomeA.00573-18.

[23]

S. Mak, Y. Xu, J.R. Nodwell, The expression of antibiotic resistance genes in antibiotic-producing bacteria, Mol. Microbiol. 93 (3) (2014) 391-402, doi:10.1111/mmi.12689.

[24]

I.C. Cunha-Ferreira, C.S. Vizzotto, M.A.M. Freitas, J. Peixoto, L.S. Carvalho, et al., Genomic and physiological characterization of Kitasatospora sp. nov., an actinobac- terium with potential for biotechnological application isolated from Cerrado soil, Braz J Microbiol (2024), doi:10.1007/s42770-024-01324-y.

[25]

S.F. Brady, Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules, Nat Protoc 2 (5) (2007) 1297-1305, doi:10.1038/nprot.2007.195.

[26]

W. G. Weisburg, S.M. Barns, D.A. Pelletier, D.J. Lane, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol. 173 (2) (1991) 697-703, doi:10.1128/jb.173.2.697-703.1991.

[27]

M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, D.G. Higgins, Clustal W and Clustal X version 2.0, Bioinformatics 23 (21) (2007) 2947-2948, doi:10.1093/bioinformatics/btm404.

[28]

K. Tamura, G. Stecher, S. Kumar, MEGA11: molecular evolutionary genetics anal- ysis version 11, Mol. Biol. Evol. 38 (7) (2021) 3022-3027, doi:10.1093/mol- bev/msab120.

[29]

M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16 (1980) 111-120, doi:10.1007/BF01731581.

[30]

J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, Evolution 39 (1985) 783-791, doi:10.1111/j.1558-5646.1985.tb00420.

[31]

G.M. Hughes, L. Gang, W.J. Murphy, D.G. Higgins, E.C. Teeling, Using Illumina next generation sequencing technologies to sequence multigene families in de novo species, Mol Ecol Resour 13 (3) (2013) 510-521, doi:10.1111/1755-0998.12087.

[32]

Y. Wang, Y. Zhao, A. Bollas, Y. Wang, K.F. Au, Nanopore sequencing technol- ogy, bioinformatics and applications, Nat Biotechnol 39 (11) (2021) 1348-1365, doi:10.1038/s41587-021-01108-x.

[33]

T. Carver, N. Thomson, A. Bleasby, M. Berriman, J. Parkhill, DNAPlotter: circular and linear interactive genome visualization, Bioinformatics 25 (1) (2009) 119-120, doi:10.1093/bioinformatics/btn578.

[34]

M. Richter, R. Rosselló-Móra, F. Oliver Glöckner, J. Peplies, JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome compar- ison, Bioinformatics 32 (6) (2016) 929-931, doi:10.1093/bioinformatics/btv681.

[35]

J.P. Meier-Kolthoff, J.S. Carbasse, R.L. Peinado-Olarte, M. Göker, TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes, Nucleic Acids Res 50 (D1) (2022) D801-D807, doi:10.1093/nar/gkab902.

[36]

S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot, M. Shumway, et al., Versatile and open software for comparing large genomes, Genome Biol 5 (2) (2004) R12, doi:10.1186/gb-2004-5-2-r12.

[37]

T. Yin, D. Cook, M. Lawrence, Ggbio: an R package for extending the grammar of graphics for genomic data, Genome Biol 13 (8) (2012) R77, doi:10.1186/gb-2012-13-8-r77.

[38]

O. Avram, D. Rapoport, S. Portugez, T. Pupko, M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data, Nucleic Acids Res 47 (2019) W88-W92, doi:10.1093/nar/gkz423.

[39]

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics 30 (14)(2014) 2068-2069, doi:10.1093/bioinformatics/btu153.

[40]

E. Afgan, D. Baker, M. Van Den Beek, D. Blankenberg, D. Bouvier, et al., The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update, Nucleic Acids. Res. 44 (2016) W3-W10, doi:10.1093/nar/gkw343.

[41]

A.J. Page, C.A. Cummins, M. Hunt, V.K. Wong, S. Reuter, et al., Roary: rapid large- scale prokaryote pan genome analysis, Bioinformatics 31 (22) (2015) 3691-3693, doi:10.1093/bioinformatics/btv421.

[42]

E. Corretto, L. Antonielli, A. Sessitsch, S. Compant, C. Höfer, et al., Complete genome sequence of the heavy metal resistant bacterium Agromyces aureus AR33T and comparison with related actinobacteria, Stand. Genomic Sci. 12 (2017) 2, doi:10.1186/s40793-016-0217-z.

[43]

J. Sun, F. Lu, Y. Luo, L. Bie, L. Xu, Y. Wang, OrthoVenn3: anintegrated platform for exploring and visualizing orthologous data across genomes, Nucleic Acids Res 51 (W1) (2023) W397-W403, doi:10.1093/nar/gkad313.

[44]

J. Hadfield, N.J. Croucher, R.J. Goater, K. Abudahab, D.M. Aanensen, S.R. Harris, Phandango: an interactive viewer for bacterial population genomics, Bioinformat- ics 34 (2) (2018) 292-293, doi:10.1093/bioinformatics/btx610.

[45]

J. Huerta-Cepas, K. Forslund, L.P. Coelho, D. Szklarczyk, L.J. Jensen, et al., Fast genome-wide functional annotation through orthology assignment by eggNOG- mapper, Mol. Biol. Evol. 34 (8) (2017) 2115-2122, doi:10.1093/molbev/msx148.

[46]

M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, et al., KEGG for linking genomes to life and the environment, Nucleic Acids Res 36 (Database issue) (2008) D480-D484, doi:10.1093/nar/gkm882.

[47]

K. Blin, S. Shaw, A.M. Kloosterman, Z. Charlop-Powers, G.P. van Wezel, et al., AntiSMASH 6.0: improving cluster detection and comparison capabilities, Nucleic Acids Res. 49 (W1) (2021) W29-W35, doi:10.1093/nar/gkab335.

[48]

U. Gawde, S. Chakraborty, F.H. Waghu, R.S. Barai, A. Khanderkar, et al., CAMPR4: a database of natural and synthetic antimicrobial peptides, Nucleic Acids Res (2023), doi:10.1093/nar/gkac933.

[49]

F.H. Waghu, R.S. Barai, P. Gurung, S. Idicula-Thomas, CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides, Nucleic Acids Res 44 (2016) D1094-D1097, doi:10.1093/nar/gkv1051.

[50]

P. Villesen, FaBox: an online toolbox for FASTA sequences, Mol. Ecol. Notes 7 (2007) 965-968, doi:10.1111/j.1471-8286.2007.01821.x.

[51]

P. Agrawal, D. Bhagat, M. Mahalwal, N. Sharma, G.P.S. Raghava, AntiCP 2.0: an updated model for predicting anticancer peptides, Brief. Bioinform. 22 (3) (2021), doi:10.1093/bib/bbaa153.

[52]

P. Agrawal, S. Bhalla, K. Chaudhary, R. Kumar, M. Sharma, G.P.S. Raghava, In silico approach for prediction of antifungal peptides, Front. Microbiol. 9 (2018) 323, doi:10.3389/fmicb.2018.00323.

[53]

A.S.E. Ramaprasad, S. Singh, R.P.S. Gajendra, S. Venkatesan, AntiAngioPred: a server for prediction of anti-angiogenic peptides, PLoS ONE 10 (2015) e0136990, doi:10.1371/journal.pone.0136990.

[54]

B. Liu, M. Pop, ARDB-Antibiotic Resistance Genes Database, Nucleic Acids Res 37 (Database issue) (2009) D443-D447, doi:10.1093/nar/gkn656.

[55]

D. Couvin, A. Bernheim, C. Toffano-Nioche, M. Touchon, J. Michalik, et al., CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins, Nucleic Acids Res 46 (W1)(2018) W246-W251, doi:10.1093/nar/gky425.

[56]

J.C. Navarro-Muñoz, N. Selem-Mojica, M.W. Mullowney, S.A. Kautsar, et al., A computational framework to explore large-scale biosynthetic diversity, Nat. Chem. Biol. 16 (1) (2020) 60-68, doi:10.1038/s41589-019-0400-9.

[57]

D. Hyatt, G.L. Chen, P.F. Locascio, M.L. Land, F.W. Larimer, L.J. Hauser, Prodi- gal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics 11 (2010) 119 2010 Mar 8, doi:10.1186/1471-2105-11-119.

[58]

J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, et al., Pfam: the protein families database in 2021, Nucleic Acids Res 49 (D1) (2021) D412-D419, doi:10.1093/nar/gkaa913.

[59]

A. Weimann, K. Mooren, J. Frank, P.B. Pope, A. Bremges, A.C. McHardy, From genomes to phenotypes: traitar, the microbial trait analyzer, mSystem (2016), doi:10.1101/043315.

[60]

C.A. Reddy, T.J. Beveridge, J.A. Breznak, G.A. Marzluf, T.M. Schmidt, L.R. Sny- der, Methods for general and molecular microbiology, Am. Soc. Microbiol. (2007), doi:10.1128/9781555817497.

[61]

B. Tindal, J. Sikorski, R. Smibert, N. Krieg, Phenotypic characterization and the principles of comparative systematics, in: T.Berridge, J.Breznak, G. Mar-zluf, T.Schmidr, L.Snyder (Eds.), Methods for General and Molecular Microbiol- ogy, ASM Press, Washington DC, 2007, pp. 330-393.

[62]

E.V.V. Ramaprasad, G. Mahidhara, C. Sasikala, C.V. Ramana, Rhodococ- cus electrodiphilus sp. nov., a marine electro active actinobacterium isolated from coral reef, Int. J. Syst. Evol. Microbiol. 68 (8) (2018) 2644-2649, doi:10.1099/ijsem.0.002895.

[63]

Sasser M. 2001. Technical Note # 101 identification of bacteria by gas chromatog- raphy of cellular fatty acids.

[64]

A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method, Am J Clin Pathol 45 (4) (1966) 493-496, doi:10.1093/ajcp/45.4_ts.493.

[65]

C.E.M. Grossi, E. Fantino, F. Serral, M.S. Zawoznik, D.A. Fernandez Do Porto, R. M. Ulloa, Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions, Front. Plant. Sci. 11 (2020) 71, doi:10.3389/fpls.2020.00071.

[66]

J. Kim, G. Chhetri, I. Kim, M.K. Kim, T. Seo, Methylobacterium durans sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil, Antonie Van Leeuwenhoek. 113 (2) (2020) 211-220, doi:10.1007/s10482-019-01331-2.

[67]

M.M. Photolo, V. Mavumengwana, L. Sitole, M.G. Tlou, Antimicrobial and antiox- idant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds, Int. J. Microbiol. 18 (2020) 2020-9483670, doi:10.1155/2020/9483670.

[68]

S.S. Wang, J.M. Liu, J. Sun, Y.F. Sun, J.N. Liu, et al., Diversity of culture- independent bacteria and antimicrobial activity of culturable endophytic bac- teria isolated from different Dendrobium stems, Sci. Rep. 9 (2019) 10389, doi:10.1038/s41598-019-46863-9.

[69]

J. Njoroge, V. Sperandio, Jamming bacterial communication: new approaches for the treatment of infectious diseases, EMBO Mol. Med. 1 (4) (2009) 201-210, doi:10.1002/emmm.200900032.

[70]

B. Gray, P. Hall, H. Gresham, Targeting agr- and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections, Sensors (Basel) 13 (4) (2013) 5130-5166, doi:10.3390/s130405130.

[71]

G. Kapinusova, M.A. Lopez Marin, O. Uhlik, Reaching unreachables: obstacles and successes of microbial cultivation and their reasons, Front. Microbiol. 14 (2023) 1089630, doi:10.3389/fmicb.2023.1089630.

[72]

A. Ho, D.P. Di Lonardo, P.L. Bodelier, Revisiting life strategy concepts in environ- mental microbial ecology, FEMS Microbiol. Ecol. 93 (3) (2017), doi:10.1093/fem- sec/fix006.

[73]

M. Bahram, F. Hildebrand, S.K. Forslund, J.L. Anderson, N.A. Soudzilovskaia, et al., Structure and function of the global topsoil microbiome, Nature 560 (7717) (2018) 233-237, doi:10.1038/s41586-018-0386-6.

[74]

B. Schink, Synergistic interactions in the microbial world, Antonie Van Leeuwen- hoek. 81 (1-4) (2002) 257-261, doi:10.1023/a:1020579004534.

[75]

R. Jacoby, M. Peukert, A. Succurro, A. Koprivova, S. Kopriva, The role of soil mi- croorganisms in plant mineral nutrition-current knowledge and future directions, Front. Plant. Sci. 8 (2017) 1617, doi:10.3389/fpls.2017.01617.

[76]

S. Pande, C. Kost, Bacterial unculturability and the formation of inter- cellular metabolic networks, Trends Microbiol 25 (5) (2017) 349-361, doi:10.1016/j.tim.2017.02.015.

[77]

E.J. Stewart, Growing unculturable bacteria, J. Bacteriol. 194 (16) (2012) 4151-4160, doi:10.1128/JB.00345-12.

[78]

N.B. Turan, D.S. Chormey, C. Büyükpı nar, G.O. Engin, S. Bakirdere, Quorum sens- ing: little talks for an effective bacterial coordination, Tr. A. Chem. 91 (2017) 1-11, doi:10.1016/j.trac.2017.03.007.

[79]

D.A. van Bergeijk, B.R. Terlouw, M.H. Medema, G.P. van Wezel, Ecology and ge- nomics of Actinobacteria: new concepts for natural product discovery, Nat. Rev. Microbiol. 18 (10) (2020) 546-558, doi:10.1038/s41579-020-0379-y.

[80]

M. A. Akinsanya, J.K. Goh, S.P. Lim, A.S. Ting, Diversity, antimicrobial and antiox- idant activities of culturable bacterial endophyte communities in Aloe vera, FEMS Microbiol. Lett. 362 (23) (2015) fnv184, doi:10.1093/femsle/fnv184.

[81]

S. Asaf, M. Numan, A.L. Khan, A. Al-Harrasi, Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth, Crit. Rev. Biotechnol. 40 (2) (2020) 138-152, doi:10.1080/07388551.2019.

[82]

J.M. Sánchez-Yañez, Xanthobacter autotrophicus an endophytic beneficial bacterium for wheat and other plants: a short review, Curr. Tr. W. Res. pp 73 (2022), doi:10.5772/intechopen.102066.

[83]

Y. Takahashi, Genus Kitasatospora, taxonomic features and diversity of secondary metabolites, J. Antibiot. 70 (2017) 506-513, doi:10.1038/ja.2017.8.

[84]

D. Zhu, C. Xie, Y. Huang, J. Sun, W. Zhang, Description of Comamonas serinivorans sp. nov., isolated from wheat straw compost, Int. J. Syst. Evol. Microbiol. 64 (Pt 12) (2014) 4141-4146, doi:10.1099/ijs.0.066688-0.

[85]

B.R. Yun, A. Malik, S.B. Kim, Genome based characterization of Ki- tasatospora sp. MMS16-BH015, a multiple heavy metal resistant soil acti- nobacterium with high antimicrobial potential, Gene 5 (2020) 733-144379, doi:10.1016/j.gene.2020.144379.

[86]

C.C. Cain, A.T. Henry, R.H. Waldo, L.J. Casida, J.O. Falkinham Jr, Identifi- cation and characteristics of a novel Burkholderia strain with broad-spectrum antimicrobial activity, Appl. Environ. Microbiol. 66 (9) (2000) 4139-4141, doi:10.1128/AEM.66.9.4139-4141.2000.

[87]

E. Depoorter, M.J. Bull, C. Peeters, T. Coenye, P. Vandamme, E. Mahenthi- ralingam, Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers, Appl. Microbiol. Biotechnol. 100 (12) (2016) 5215-5229, doi:10.1007/s00253-016-7520-x.

[88]

Y. Wang, J.P. Hoffmann, C.W. Chou, Z.U. Höner, K.H. Bentrup, et al., Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug- resistant and competitor microbial species, J. Microbiol. 58 (7) (2020) 550-562, doi:10.1007/s12275-020-0028-1.

[89]

R.P. Singh, S. Mishra, P. Jha, S. Raghuvanshi, P.N. Jha, Effect of inoculation of zinc- resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parame- ters and zinc uptake in wheat (Triticum aestivum L.) plant, Ecol. Eng. 116 (2018) 163-173, doi:10.1016/j.ecoleng.2017.12.033.

[90]

A. Sagar, R.Z. Sayyed, P.W. Ramteke, S. Sharma, N. Marraiki, A.M. Elgorban, A. Syed, ACC deaminase and antioxidant enzymes producing halophilic Enterobac- ter sp. PR14 promotes the growth of rice and millets under salinity stress, Physiol. Mol. Biol. Plants. 26 (9) (2020) 1847-1854, doi:10.1007/s12298-020-00852-9.

[91]

L. Ren, L. Men, Z. Zhang, F. Guan, J. Tian, et al., Biodegradation of Polyethylene by Enterobacter sp. D 1 from the Guts of Wax Moth Galleria mellonella, Int. J. Environ. Res. Public. Health. 16 (11) (2019) 1941, doi:10.3390/ijerph16111941.

[92]

S. Sah, S. Krishnani, R. Singh, Pseudomonas mediated nutritional and growth pro- motional activities for sustainable food security, Curr. Res. Microb. Sci. 2 (2021) 100084, doi:10.1016/j.crmicr.2021.100084.

[93]

M.E. Ojewumi, J.O. Okeniyi, J.O. Ikotun, E.T. Okeniyi, V.A. Ejemen, A.P.I. Popoola, Bioremediation: data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil, Data Brief 19 (2018) 101-113, doi:10.1016/j.dib.2018.04.102.

[94]

A. Loeschcke, S. Thies, Pseudomonas putida a versatile host for the production of natural products, Appl. Microbiol. Biotechnol. 99 (15) (2015) 6197-6214, doi:10.1007/s00253-015-6745-4.

[95]

J. Mozejko-Ciesielska, K. Szacherska, P. Marciniak, Pseudomonas Species as Pro- ducers of Eco-friendly Polyhydroxyalkanoates, J. Polym. Environ. 27 (2019) 1151-1166, doi:10.1007/s10924-019-01422-1.

[96]

D. Salvachúa, T. Rydzak, R. Auwae, A. De Capite, B.A. Black, et al., Metabolic engineering of Pseudomonas putida for increased polyhydroxyalka- noate production from lignin, Microb. Biotechnol. 13 (1) (2020) 290-298, doi:10.1111/1751-7915.13481.

[97]

C. Knief, V. Dengler, P.L. Bodelier, J.A. Vorholt, Characterization of Methy- lobacterium strains isolated from the phyllosphere and description of Methylobac- terium longum sp. nov, Antonie Van Leeuwenhoek. 101 (1) (2012) 169-183, doi:10.1007/s10482-011-9650-6.

[98]

O. Alessa, Y. Ogura, Y. Fujitani, H. Takami, T. Hayashi, N. Sahin, A. Tani, Com- prehensive comparative genomics and phenotyping of Methylobacterium species, Front. Microbiol. 6 (2021) 12-740610, doi:10.3389/fmicb.2021.740610.

[99]

S.A. Cochrane, J.C. Vederas, Lipopeptides from Bacillus and Paenibacillus spp.: a Gold Mine of Antibiotic Candidates, Med. Res. Rev. 36 (1) (2016) 4-31, doi:10.1002/med.21321.

[100]

M.Y. Galperin, Y.I. Wolf, K.S. Makarova, R. Vera Alvarez, D. Landsman, E. V. Koonin, COG database update: focus on microbial diversity, model organ- isms, and widespread pathogens, Nucleic Acids Res 49 (D) (2021) D274-D281, doi:10.1093/nar/gkaa1018.

[101]

F. Wimmer, C.L. Beisel, CRISPR-cas systems and the paradox of self-targeting spac- ers, Front. Microbiol. 22 (10) (2020) 3078, doi:10.3389/fmicb.2019.03078.

[102]

K.E.M. Sedeek, A. Mahas, M. Mahfouz, Plant genome engineering for targeted improvement of crop traits, Front. Plant Sci. 10 (2019) 114, doi:10.3389/fpls.2019.00114.

[103]

P.G. Arnison, M.J. Bibb, G. Bierbaum, A.A. Bowers, T.S. Bugni, G. Bulaj, et al., Ri- bosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Nat. Prod. Rep. 30 (1) (2013) 108-160, doi:10.1039/c2np20085f.

[104]

Y. Ding, J.P. Ting, J. Liu, S. Al-Azzam, P. Pandya, S. Afshar, Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics, Amino Acids 52 (9) (2020) 1207-1226, doi:10.1007/s00726-020-02890-9.

[105]

S. Huang, Y. Liu, W.Q. Liu, P. Neubauer, J. Li, The nonribosomal peptide vali- nomycin: from discovery to bioactivity and biosynthesis, Microorganisms. 9 (4)(2021) 780, doi:10.3390/microorganisms9040780.

[106]

P. Biniarz, M. Ł ukaszewicz, T. Janek, Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review, Crit. Rev. Biotechnol. 37 (3) (2017) 393-410, doi:10.3109/07388551.2016. 1163324.

[107]

C.D. Qian, T.Z. Liu, S.L. Zhou, R. Ding, W.P. Zhao, O. Li, X.C. Wu, Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacilluselgii, BMC Microbiol. 8 (2012) 12-197, doi:10.1186/1471-2180-12-197.

[108]

T.F. Araújo, D.B. Ortega, R.A. da Costa, I.E.P.C. Andrade, D.L.A. Fulgêncio, M. L. Mendonça, et al., Co-occurrence of linear and cyclic pelgipeptins in broth cultures of Paenibacillus elgii AC13, Braz J Microbiol 52 (4) (2021) 1825-1833, doi:10.1007/s42770-021-00597-x.

[109]

H. Wang, N. Liu, L. Xi, X. Rong, J. Ruan, Y. Huang, Genetic screening strategy for rapid access to polyether ionophore producers and products in actinomycetes, Appl. Environ. Microbiol. 77 (10) (2011) 3433-3442, doi:10.1128/AEM.02915-10.

[110]

A. Nivina, K.P. Yuet, J. Hsu, C. Khosla, Evolution and diversity of assembly- line polyketide synthases, Chem. Rev. 119 (24) (2019) 12524-12547, doi:10.1021/acs.chemrev.9b00525.

[111]

L. Kumar, S.K.S. Patel, K. Kharga, R. Kumar, P. Kumar, J. Pandohee, et al., Molecular mechanisms and applications of N-Acyl homoserine lactone- mediated quorum sensing in bacteria, Molecules 27 (21) (2022) 7584, doi:10.3390/molecules27217584.

[112]

Y. Yamada, T. Kuzuyama, M. Komatsu, K. Shin-Ya, S. Omura, et al., Terpene syn- thases are widely distributed in bacteria, Proc. Natl. Acad. Sci. USA. 112 (3) (2015) 857-862, doi:10.1073/pnas.1422108112.

[113]

S. Yoshida, S. Hiradate, M. Koitabashi, T. Kamo, S. Tsushima, Phyllosphere Methy- lobacterium bacteria contain UVA-absorbing compounds, J. Photochem. Photobiol. 167 (2017) 168-175, doi:10.1016/j.jphotobiol.2016.12.019.

[114]

J. Wang, C. Gao, X. Chen, L. Liu, Expanding the lysine industry: biotechnological production of l-lysine and its derivatives, Adv. Appl. Microbiol 115 (2021) 1-33, doi:10.1016/bs.aambs.2021.02.001.

[115]

C. Ongpipattanakul, E.K. Desormeaux, A. DiCaprio, W.A. van der Donk, D. A. Mitchell, S.K. Nair, Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides, Chem. Rev. 122 (18) (2022) 14722-14814, doi:10.1021/acs.chemrev.2c00210.

AI Summary AI Mindmap
PDF (3147KB)

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/