Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines

Maofeng Wang , Cancan Wu , Nan Liu , Xiaoqiong Jiang , Hongjie Dong , Shubao Zhao , Chaonan Li , Sujuan Xu , Lichuan Gu

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100162

PDF (1441KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100162 DOI: 10.1016/j.engmic.2024.100162
Original article
research-article

Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines

Author information +
History +
PDF (1441KB)

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing novel vaccines. An ideal vaccine should trigger an intense immune reaction without causing significant side effects. In this study we found that substitution of tryptophan located in the cores of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein structures with certain smaller amino acids resulted in variants with melting temperatures of 33-37 °C. An enzyme activity assay indicated that the proteolytic activity of the main proteinase (3CLpro) decreased sharply when the environmental temperature exceeded the melting temperature, implying that other protein variants may lose most of their functions under the same conditions. This finding suggests that a virus variant containing engineered proteins with melting temperatures of 33-37 °C may only be functional in the upper respiratory tract where the temperature is about 33 °C, but will be unable to invade internal organs, which maintain temperatures above 37 °C, thus making it possible to construct temperature-sensitive attenuated vaccines.

Keywords

Protein melting temperature / Enzyme activity / SARS-CoV-2 N protein / 3CLpro / Temperature sensitive attenuated vaccines

Cite this article

Download citation ▾
Maofeng Wang, Cancan Wu, Nan Liu, Xiaoqiong Jiang, Hongjie Dong, Shubao Zhao, Chaonan Li, Sujuan Xu, Lichuan Gu. Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines. Engineering Microbiology, 2024, 4(3): 100162 DOI:10.1016/j.engmic.2024.100162

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

Declaration of Competing Interest

The authors declare that they have no conflicts of interest with the contents of this article.

CRediT authorship contribution statement

Maofeng Wang: Writing - original draft, Visualization, Methodology, Investigation, Data curation. Cancan Wu: Writing - review & editing, Data curation. Nan Liu: Writing - review & editing. Xiaoqiong Jiang: Data curation. Hongjie Dong: Formal analysis. Shubao Zhao: Data curation. Chaonan Li: Investigation, Data curation. Sujuan Xu: Writing - review & editing. Lichuan Gu: Writing - review & editing, Supervision, Methodology, Funding acquisition, Conceptualization.

Acknowledgments

We are grateful for the funding from the Shandong Provincial Key Research and Development Program (2020CXGC011305).

References

[1]

Y. Chen, Q. Liu, D. Guo, Emerging coronaviruses: genome structure, replication, and pathogenesis, J. Med. Virol. 92 (2020) 418-423.

[2]

N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, I. China Novel Coronavirus, T. Research, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727-733.

[3]

Y. Fan, X. Li, L. Zhang, S. Wan, L. Zhang, F. Zhou, SARS-CoV-2 Omicron variant: recent progress and future perspectives, Signal. Transduct. Target. Ther. 7 (2022) 141.

[4]

G. Iacobucci, Covid-19: runny nose, headache, and fatigue are commonest symptoms of omicron, early data show, BMJ 375 (2021) n3103.

[5]

F. Krammer, SARS-CoV-2 vaccines in development, Nature 586 (2020) 516-527.

[6]

J.S. Tregoning, K.E. Flight, S.L. Higham, Z. Wang, B.F. Pierce, Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effective- ness and escape, Nat. Rev. Immunol. 21 (2021) 626-636.

[7]

O.J. Wouters, K.C. Shadlen, M. Salcher-Konrad, A.J. Pollard, H.J. Larson, Y. Teer- awattananon, M. Jit, Challenges in ensuring global access to COVID-19 vaccines: pro- duction, affordability, allocation, and deployment, Lancet 397 (2021) 1023-1034 London, England.

[8]

N. Pardi, M.J. Hogan, F.W. Porter, D. Weissman, mRNA vaccines - a new era in vaccinology, Nat. Rev. Drug Discov. 17 (2018) 261-279.

[9]

F. Hernandez-Bernal, M.C. Ricardo-Cobas, Y. Martin-Bauta, Z. Navarro-Rodriguez, M. Pinera-Martinez, J. Quintana-Guerra, K. Urrutia-Perez, K. Urrutia-Perez, C.O. Chavez-Chong, J.L. Azor-Hernandez, J.L. Rodriguez-Reinoso, L. Lobaina-Lam- bert, E. Colina-Avila, J. Bizet-Almeida, J. Rodriguez-Nuviola, S. Del Valle-Pinera, M. Ramirez-Dominguez, E. Tablada-Ferreiro, M. Alonso-Valdes, G. Lemos-Perez, G.E. Guillen-Nieto, A. Palenzuela-Diaz, E. Noa-Romero, M. Limonta-Fernandez, J.M. Fernandez-Avila, N.A. Ali-Mros, L. Del Toro-Lahera, R. Remedios-Reyes, M. Ay- ala-Avila, V.L. Muzio-Gonzalez, Safety, tolerability, and immunogenicity of a SARS-CoV-2 recombinant spike RBD protein vaccine: a randomised, double-blind, place- bo-controlled, phase 1-2 clinical trial (ABDALA Study), EClinicalMedicine 46 (2022) 101383.

[10]

R. Yadav, J.K. Chaudhary, N. Jain, P.K. Chaudhary, S. Khanra, P. Dhamija, A. Sharma, A. Kumar, S. Handu, Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19, Cells (2021).

[11]

R. Vanaparthy, G. Mohan, D. Vasireddy, P. Atluri, Review of COVID-19 viral vec- tor-based vaccines and COVID-19 variants, Infez. Med. 29 (2021) 328-338.

[12]

S. Khoshnood, M. Arshadi, S. Akrami, M. Koupaei, H. Ghahramanpour, A. Shariati, N. Sadeghifard, M. Heidary, An overview on inactivated and live-attenuated SARS-CoV-2 vaccines, J. Clin. Lab. Anal. 36 (2022) e24418.

[13]

N.P. Klein, N. Lewis, K. Goddard, B. Fireman, O. Zerbo, K.E. Hanson, J.G. Don- ahue, E.O. Kharbanda, A. Naleway, J.C. Nelson, S. Xu, W.K. Yih, J.M. Glanz, J.T.B. Williams, S.J. Hambidge, B.J. Lewin, T.T. Shimabukuro, F. DeStefano, E.S. Weintraub, Surveillance for adverse events after COVID-19 mRNA vaccination, JAMA 326 (2021) 1390-1399.

[14]

A. Husby, L. Køber, COVID-19 mRNA vaccination and myocarditis or pericarditis, Lancet 399 (2022) 2168-2169.

[15]

Y.R. Suryawanshi, An overview of protein-based SARS-CoV-2 vaccines, Vaccine 41 (2023) 6174-6193.

[16]

P.D. Minor, Live attenuated vaccines: historical successes and current challenges, Virology 479-480 (2015) 379-392.

[17]

C.R. Pringle, Temperature-sensitive mutant vaccines, Methods Mol. Med. 4 (1996) 17-32.

[18]

J. Gelb Jr., D.J. King, W.A. Wisner, P.A. Ruggeri , Attenuation of lentogenic Newcas- tle disease virus strain B-1 by cold adaptation, Avian Dis. 40 (1996) 605-612.

[19]

H.F. Maassab, D.C. DeBorde, Development and characterization of cold-adapted viruses for use as live virus vaccines, Vaccine 3 (1985) 355-369.

[20]

S. Matsuno, S. Murakami, M. Takagi, M. Hayashi, S. Inouye, A. Hasegawa, K. Fukai, Cold-adaptation of human rotavirus, Virus Res. 7 (1987) 273-280.

[21]

M. Chapin, G.R. Dubes, Cold-Adapted genetic variants of polio viruses, Science 124 (1956) 586-587 New York, N.Y..

[22]

S.A. Plotkin, J.D. Farquhar, M. Katz, F. Buser, Attenuation of RA 27-3 rubella virus in WI-38 human diploid cells, Am. J. Dis. Children 118 (1969) 178-185 1960.

[23]

H. Dong, S. Wang, J. Zhang, K. Zhang, F. Zhang, H. Wang, S. Xie, W. Hu, L. Gu, Struc- ture-Based primer design minimizes the risk of PCR failure caused by SARS-CoV-2 mutations, Front. Cell. Infect. Microbiol. 11 (2021) 741147.

[24]

K. Anand, J. Ziebuhr, P. Wadhwani, J.R. Mesters, R. Hilgenfeld, Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs, Science 300 (2003) 1763-1767 New York, N.Y..

[25]

Y. Xia, L. Xun, Revised mechanism and improved efficiency of the QuikChange site-directed mutagenesis method, Methods Mol. Biol. 1498 (2017) 367-374 Clifton, N.J..

[26]

M. Shrotri, T. Swinnen, B. Kampmann, E.P.K. Parker, An interactive website tracking COVID-19 vaccine development, Lancet Glob. Health 9 (2021) e590-e592.

[27]

C. Drosten, J.M. Jimenez-Guardeño, J.A. Regla-Nava, J.L. Nieto-Torres, M. L. DeDiego, C. Castaño-Rodriguez, R. Fernandez-Delgado, S. Perlman, L. En- juanes, Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine, PLoS Pathog. 11 (2015).

[28]

A.S. Lauring, J.O. Jones, R. Andino, Rationalizing the development of live attenuated virus vaccines, Nat. Biotechnol. 28 (2010) 573-579.

[29]

M. Karbalaei, S.A. Rezaee, H. Farsiani, Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins, J. Cell. Physiol. 235 (2020) 5867-5881.

[30]

F. Sakurai, M. Tachibana, H. Mizuguchi, Adenovirus vector-based vaccine for infec- tious diseases, Drug Metab. Pharmacokinet. 42 (2022) 100432.

[31]

T. Shimabukuro, N. Nair, Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 Vaccine, JAMA 325 (2021) 780-781.

AI Summary AI Mindmap
PDF (1441KB)

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/