Dual role of phage terminase in Salmonella enterica oxidative stress response

Senfeng Zhang , Shengsheng Ma , Feizuo Wang , Chunyi Hu

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100156

PDF (926KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100156 DOI: 10.1016/j.engmic.2024.100156
Original article
research-article

Dual role of phage terminase in Salmonella enterica oxidative stress response

Author information +
History +
PDF (926KB)

Abstract

The adaptive survival mechanisms of bacterial pathogens under host-induced stress are crucial for understanding pathogenesis. Recently, Uppalapati et al. revealed a unique dual function of the Gifsy-1 prophage terminase in Salmonella enterica: it acts as a transfer ribonuclease (tRNase) under oxidative stress. The Gifsy-1 prophage terminase targets and fragments tRNALeu to halt translation and temporarily impairs bacterial growth when exposed to high levels of ROS generated by the host immune cells. This response not only preserves genomic integrity by facilitating DNA repair but also inhibits prophage mobilization, thereby aiding in bacterial survival within vertebrate hosts. This study highlights a novel intersection between phage biology and bacterial adaptive strategies.

Keywords

Phage / Terminase / Oxidative stress / tRNA / SOS response

Cite this article

Download citation ▾
Senfeng Zhang, Shengsheng Ma, Feizuo Wang, Chunyi Hu. Dual role of phage terminase in Salmonella enterica oxidative stress response. Engineering Microbiology, 2024, 4(3): 100156 DOI:10.1016/j.engmic.2024.100156

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

Given his role as editorial board member, Dr. Chunyi Hu, had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Dr. Qunxin She.

CRediT authorship contribution statement

Senfeng Zhang: Writing - original draft. Shengsheng Ma: Writing - review & editing. Feizuo Wang: Writing - review & editing. Chunyi Hu: Writing - original draft.

References

[1]

H.G. Hampton, B.N.J. Watson, P.C. Fineran, The arms race between bacteria and their phage foes, Nature 577 (2020) 327-336, doi:10.1038/s41586-019-1894-8.

[2]

P. Mastroeni, et al., Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. effects on micro- bial proliferation and host survival in vivo, J. Exp. Med. 192 (2000) 237-248, doi:10.1084/jem.192.2.237.

[3]

F.C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and contro- versies, Nat. Rev. Microbiol. 2 (2004) 820-832, doi:10.1038/nrmicro1004.

[4]

M. Fasnacht, N. Polacek, Oxidative stress in bacteria and the central dogma of molec- ular biology, Front Mol. Biosci. 8 (2021) 671037, doi:10.3389/fmolb.2021.671037.

[5]

S. Uppalapati, et al., Prophage terminase with tRNase activity sensitizes Salmonella enterica to oxidative stress, Science 384 (2024) 100-105, doi:10.1126/sci- ence.adl3222.

[6]

K.J. Hughes, X. Chen, A.M. Burroughs, L. Aravind, S.L. Wolin, An RNA repair operon regulated by damaged tRNAs, Cell Rep 33 (2020) 108527, doi:10.1016/j.celrep.2020.108527.

[7]

D. Hawkins, et al., Insights into a viral motor: the structure of the HK 97 packaging termination assembly, Nucleic. Acids Res. 51 (2023) 7025-7035, doi:10.1093/nar/gkad480.

[8]

S. Rath, S. Das, Oxidative stress-induced DNA damage and DNA repair mechanisms in mangrove bacteria exposed to climatic and heavy metal stressors, Environ. Pollut. 339 (2023) 122722, doi:10.1016/j.envpol.2023.122722.

[9]

B.K. Bharati, et al., Crucial role and mechanism of transcription-coupled DNA repair in bacteria, Nature 604 (2022) 152-159, doi:10.1038/s41586-022-04530-6.

[10]

J. Carvajal-Garcia, A.N. Samadpour, A.J. Hernandez Viera, H Merrikh, Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria, Proc. Natl. Acad Sci. U S A 120 (2023) e2300761120, doi:10.1073/pnas.2300761120.

[11]

J. Hu, H. Ye, S. Wang, J. Wang, D. Han, Prophage activation in the intestine: in- sights into functions and possible applications, Front Microbiol. 12 (2021) 785634, doi:10.3389/fmicb.2021.785634.

[12]

C.C. Wendling, D. Refardt, A.R. Hall, Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different en- vironments, Evolution (N Y) 75 (2021) 515-528, doi:10.1111/evo.14153.

[13]

L.C. Fortier, O. Sekulovic, Importance of prophages to evolution and virulence of bacterial pathogens, Virulence 4 (2013) 354-365, doi:10.4161/viru.24498.

AI Summary AI Mindmap
PDF (926KB)

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/