An upgraded Myxococcus xanthus chassis with enhanced growth characteristics for efficient genetic manipulation

Weifeng Hu , Yan Wang , Xiaoran Yue , Weiwei Xue , Wei Hu , Xinjing Yue , Yuezhong Li

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100155

PDF (2277KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100155 DOI: 10.1016/j.engmic.2024.100155
Original article
research-article

An upgraded Myxococcus xanthus chassis with enhanced growth characteristics for efficient genetic manipulation

Author information +
History +
PDF (2277KB)

Abstract

Myxobacteria are well known for multicellular social behaviors and valued for biosynthesis of natural products. Myxobacteria social behaviors such as clumping growth severely hamper strain cultivation and genetic manipulation. Using Myxococcus xanthus DK1622, we engineered Hu04, which is deficient in multicellular behavior and pigmentation. Hu04, while maintaining nutritional growth and a similar metabolic background, exhibits improved dispersed growth, streamlining operational procedures. It achieves high cell densities in culture and is promising for synthetic biology applications.

Keywords

Myxococcus xanthus / Operation deficiency / Phenotypic optimization / Chassis / Genetic performance

Cite this article

Download citation ▾
Weifeng Hu, Yan Wang, Xiaoran Yue, Weiwei Xue, Wei Hu, Xinjing Yue, Yuezhong Li. An upgraded Myxococcus xanthus chassis with enhanced growth characteristics for efficient genetic manipulation. Engineering Microbiology, 2024, 4(3): 100155 DOI:10.1016/j.engmic.2024.100155

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files or are available upon request.

Declaration of Competing Interest

Given his role as editorial board member, Dr. Yuezhong Li, had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Dr. Shengbiao Hu.

CRediT authorship contribution statement

Weifeng Hu: Writing - original draft, Visualization, Investigation, Formal analysis, Data curation, Conceptualization. Yan Wang: Visualization, Validation, Formal analysis, Data curation. Xiaoran Yue: Methodology, Data curation. Weiwei Xue: Methodology, Data curation. Wei Hu: Validation, Formal analysis. Xinjing Yue: Writing - review & editing, Validation, Supervision, Funding acquisition. Yuezhong Li: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.

Acknowledgments

We thank Zhi-feng Li, Jing Zhu, Cheng-jia Zhang, and Qi Chen of the Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology of Shandong University, for providing the AKTA Avant FPLC (AKTAavant), FESEM (Quanta 250 FEG), and a Parallel Bioreactor (Multifors 2).

This study was financially supported by the National Key Research and Development Program of China (2021YFC2101000) and the Na- tional Natural Science Foundation of China (32070030 and 32301220).

References

[1]

J. Herrmann, A.A. Fayad, R. Müller, Natural products from myxobacteria: novel metabolites and bioactivities, Nat. Prod. Rep. 34 (2017) 135-160, doi:10.1039/c6np00106h.

[2]

C.Y. Wang, J.Q. Hu, D.G. Wang, Y.Z. Li, C. Wu, Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023, Nat. Prod. Rep. (2024) 10.1039.D3NP00062A, doi:10.1039/D3NP00062A.

[3]

X. Yue, D. Sheng, L. Zhuo, Y.Z. Li, Genetic manipulation and tools in myxobacte- ria for the exploitation of secondary metabolism, Eng. Microbiol. 3 (2023) 100075, doi:10.1016/j.engmic.2023.100075.

[4]

J. Liu, H. Zhou, Z. Yang, X. Wang, H. Chen, L. Zhong, W. Zheng, W. Niu, S. Wang, X. Ren, G. Zhong, Y. Wang, X. Ding, R. Müller, Y. Zhang, X. Bian, Rational con- struction of genome-reduced Burkholderiales chassis facilitates efficient heterolo- gous production of natural products from proteobacteria, Nat. Commun. 12 (2021) 4347, doi:10.1038/s41467-021-24645-0.

[5]

Y. Liu, L. Liu, J. Li, G. Du, J. Chen, Synthetic biology toolbox and chas- sis development in bacillus subtilis, Trends Biotechnol. 37 (2019) 548-562, doi:10.1016/j.tibtech.2018.10.005.

[6]

X. Xu, Y. Liu, G. Du, R. Ledesma-Amaro, L. Liu, Microbial chassis develop- ment for natural product biosynthesis, Trends Biotechnol. 38 (2020) 779-796, doi:10.1016/j.tibtech.2020.01.002.

[7]

L.J. Shimkets, Social and developmental biology of the myxobacteria, Microbiol. Rev. 54 (1990) 473-501, doi:10.1128/mr.54.4.473-501.1990.

[8]

R. Yang, S. Bartle, R. Otto, A. Stassinopoulos, M. Rogers, L. Plamann, P. Hartzell, AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus, J. Bacteriol. 186 (2004) 6168-6178, doi:10.1128/JB.186.18.6168-6178.2004.

[9]

Z. Yang, W. Hu, K. Chen, J. Wang, R. Lux, Z.H. Zhou, W. Shi, Alanine 32 in PilA is important for PilA stability and type IV pili function in Myxococcus xanthus, Micro- biology 157 (2011) 1920-1928 (Reading), doi:10.1099/mic.0.049684-0.

[10]

W.P. Black, Q. Xu, Z. Yang, Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation, Mol. Microbiol. 61 (2006) 447-456, doi:10.1111/j.1365-2958.2006.05230.x.

[11]

S. Padmanabhan, A.J. Monera-Girona, R. Pérez-Castaño, E. Bastida-Martínez, E. Pajares-Martínez, D. Bernal-Bernal, M.L. Galbis-Martínez, M.C. Polanco, A.A. Ini- esta, M. Fontes, M. Elías-Arnanz, Light-triggered carotenogenesis in Myxococcus xan- thus: new paradigms in photosensory signaling, transduction and gene regulation, Microorganisms 9 (2021), doi:10.3390/microorganisms9051067.

[12]

P. Meiser, K.J. Weissman, H.B. Bode, D. Krug, J.S. Dickschat, A. Sandmann, R. Müller, DKxanthene biosynthesis-understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism, Chem. Biol. 15 (2008) 771-781, doi:10.1016/j.chembiol.2008.06.005.

[13]

P. Meiser, H.B. Bode, R. Müller, The unique DKxanthene secondary metabo- lite family from the myxobacterium Myxococcus xanthus is required for devel- opmental sporulation, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 19128-19133, doi:10.1073/pnas.0606039103.

[14]

H. Nariya, M. Inouye, MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development, Cell 132 (2008) 55-66, doi:10.1016/j.cell.2007.11.044.

[15]

C.L. Murphy, R. Yang, T. Decker, C. Cavalliere, V. Andreev, N. Bircher, J. Cornell, R. Dohmen, C.J. Pratt, A. Grinnell, J. Higgs, C. Jett, E. Gillett, R. Khadka, S. Mares, C. Meili, J. Liu, H. Mukhtar, M.S. Elshahed, N.H. Youssef, Genomes of novel myx- ococcota reveal severely curtailed machineries for predation and cellular differen- tiation, Appl. Environ. Microbiol. 87 (2021) e0170621, doi:10.1128/AEM.01706-21.

[16]

J.P. Remis, D. Wei, A. Gorur, M. Zemla, J. Haraga, S. Allen, H.E. Witkowska, J.W. Costerton, J.E. Berleman, M. Auer, Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains, Environ. Micro- biol. 16 (2014) 598-610, doi:10.1111/1462-2920.12187.

[17]

W.-F. Hu, L. Niu, X.-J. Yue, L.-L. Zhu, W. Hu, Y.-Z. Li, C. Wu, Characterization of constitutive promoters for the elicitation of secondary metabolites in myxobacteria, ACS Synth. Biol. 10 (2021) 2904-2909, doi:10.1021/acssynbio.1c00444.

[18]

Q.T. Bu, P. Yu, J. Wang, Z.Y. Li, X.A. Chen, X.M. Mao, Y.Q. Li, Rational construc- tion of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches, Microb. Cell Factories 18 (2019) 16, doi:10.1186/s12934-019-1055-7.

[19]

M. Baumgart, S. Unthan, R. Kloß, A. Radek, T. Polen, N. Tenhaef, M.F. Müller, A. Küberl, D. Siebert, N. Brühl, K. Marin, S. Hans, R. Krämer, M. Bott, J. Kalinowski, W. Wiechert, G. Seibold, J. Frunzke, C. Rückert, V.F. Wendisch, S. Noack, Corynebac- terium glutamicum Chassis C1: building and testing a novel platform host for syn- thetic biology and industrial biotechnology, ACS Synth. Biol. 7 (2018) 132-144, doi:10.1021/acssynbio.7b00261.

[20]

B. Wynands, M. Otto, N. Runge, S. Preckel, T. Polen, L.M. Blank, N. Wierckx, Stream- lined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features, ACS Synth. Biol. 8 (2019) 2036-2050, doi:10.1021/acssynbio.9b00108.

AI Summary AI Mindmap
PDF (2277KB)

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/