CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids

Xin Sun , Haobin Zhang , Yuping Jia , Jingyi Li , Meirong Jia

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100154

PDF (1851KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100154 DOI: 10.1016/j.engmic.2024.100154
Original article
research-article

CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids

Author information +
History +
PDF (1851KB)

Abstract

Terpenoids are widely used as medicines, flavors, and biofuels. However, the use of these natural products is largely restricted by their low abundance in native plants. Fortunately, heterologous biosynthesis of terpenoids in microorganisms offers an alternative and sustainable approach for efficient production. Various genome-editing technologies have been developed for microbial strain construction. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) is the most commonly used system owing to its outstanding efficiency and convenience in genome editing. In this review, the basic principles of CRISPR-Cas9 systems are briefly introduced and their applications in engineering bacteria for the production of plant-derived terpenoids are summarized. The aim of this review is to provide an overview of the current developments of CRISPR-Cas9-based genome-editing technologies in bacterial engineering, concluding with perspectives on the challenges and opportunities of these technologies.

Keywords

CRISPR-Cas9 / Genome editing / Terpenoids / Metabolic engineering / Bacteria

Cite this article

Download citation ▾
Xin Sun, Haobin Zhang, Yuping Jia, Jingyi Li, Meirong Jia. CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids. Engineering Microbiology, 2024, 4(3): 100154 DOI:10.1016/j.engmic.2024.100154

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Xin Sun: Writing - review & editing, Writing - original draft, Conceptualization. Haobin Zhang: Writing - review & editing. Yuping Jia: Writing - review & editing, Conceptualization. Jingyi Li: Writing - review & editing, Writing - original draft, Conceptualization. Meirong Jia: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.

Acknowledgments

This work was supported by the Beijing Nova Program (Z211100002121004), CAMS Innovation Fund for Medical Sciences (CIFMS 2021-I2M-1-029, CIFMS 2022-I2M-2-002), and Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2021-RC350-003).

References

[1]

J. Gershenzon, N. Dudareva, The function of terpene natural products in the natural world, Nat. Chem. Biol. 3 (2007) 408-414.

[2]

R. Mewalal, D.K. Rai, D. Kainer, F. Chen, C. Külheim, G.F. Peter, G.A. Tuskan, Plant-derived terpenes: a feedstock for specialty biofuels, Trends Biotechnol. 35 (2017) 227-240.

[3]

B.A.P. Wilson, C.C. Thornburg, C.J. Henrich, T. Grkovic, B.R. O’Keefe, Creating and screening natural product libraries, Nat. Prod. Rep. 37 (2020) 893-918.

[4]

Y. Li, Z. Lin, C. Huang, Y. Zhang, Z. Wang, Y.J. Tang, T. Chen, X. Zhao, Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing, Metab. Eng. 31 (2015) 13-21.

[5]

A.W. Westbrook, X. Ren, J. Oh, M. Moo-Young, C.P. Chou, Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis, Metab. Eng. 47 (2018) 401-413.

[6]

M. Li, J. Chen, K. He, C. Su, Y. Wu, T. Tan, Corynebacterium glutamicum cell factory design for the efficient production of cis, cis-muconic acid, Metab. Eng. 82 (2024) 225-237.

[7]

X. Cao, W. Yu, Y. Chen, S. Yang, Z.K. Zhao, J. Nielsen, H. Luan, Y.J. Zhou, En- gineering yeast for high-level production of diterpenoid sclareol, Metab. Eng. 75 (2023) 19-28.

[8]

P. Cai, X. Wu, J. Deng, L. Gao, Y. Shen, L. Yao, Y.J. Zhou, Methanol biotransforma- tion toward high-level production of fatty acid derivatives by engineering the in- dustrial yeast Pichia pastoris, Proc. Natl. Acad. Sci. U S A 119 (2022) e2201711119.

[9]

Y. Ma, N. Liu, P. Greisen, J. Li, K. Qiao, S. Huang, G. Stephanopoulos, Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica, Nat. Commun. 13 (2022) 572.

[10]

K.K. Hong, J. Nielsen, Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries, Cell Mol. Life Sci. 69 (2012) 2671-2690.

[11]

J. Lian, H. Zhao, Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites, J. Ind. Microbiol. Biotechnol. 42 (2015) 437-451.

[12]

E. Nevoigt, Progress in metabolic engineering of Saccharomyces cerevisiae, Micro- biol. Mol. Biol. Rev. 72 (2008) 379-412.

[13]

J.D. Keasling, Manufacturing molecules through metabolic engineering, Science 330 (2010) 1355-1358.

[14]

H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R.E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H.B. Schreyer, S. Andrae, T.H. Yang, S.Y. Lee, M.J. Burk, S. Van Dien, Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol. 7 (2011) 445-452.

[15]

D.K. Summers, The kinetics of plasmid loss, Trends Biotechnol. 9 (1991) 273-278.

[16]

M. Sengupta, S. Austin, Prevalence and significance of plasmid maintenance func- tions in the virulence plasmids of pathogenic bacteria, Infect. Immun. 79 (2011) 2502-2509.

[17]

O. Smithies, R.G. Gregg, S.S. Boggs, M.A. Koralewski, R.S. Kucherlapati, Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination, Nature 317 (1985) 230-234.

[18]

A.M. Geurts, G.J. Cost, Y. Freyvert, B. Zeitler, J.C. Miller, V.M. Choi, S.S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G.D. Davis, L. Zhang, E.J. Rebar, P.D. Gregory, F.D. Urnov, H.J. Jacob, R. Buelow, Knockout rats via embryo microinjection of zinc-finger nucleases, Science 325 (2009) 433.

[19]

L. Tesson, C. Usal, S. Ménoret, E. Leung, B.J. Niles, S. Remy, Y. Santiago, A.I. Vin- cent, X. Meng, L. Zhang, P.D. Gregory, I. Anegon, G.J. Cost, Knockout rats generated by embryo microinjection of TALENs, Nat. Biotechnol. 29 (2011) 695-696.

[20]

J.M. Lambert, R.S. Bongers, M. Kleerebezem, Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum, Appl. Environ. Microbiol. 73 (2007) 1126-1135.

[21]

J.K. Joung, J.D. Sander, TALENs: a widely applicable technology for targeted genome editing, Nat. Rev. Mol. Cell Biol. 14 (2013) 49-55.

[22]

M.M. Zhang, Y. Wang, E.L. Ang, H. Zhao, Engineering microbial hosts for produc- tion of bacterial natural products, Nat. Prod. Rep. 33 (2016) 963-987.

[23]

S. Pontrelli, T.Y. Chiu, E.I. Lan, F.Y. Chen, P. Chang, J.C. Liao, Escherichia coli as a host for metabolic engineering, Metab. Eng. 50 (2018) 16-46.

[24]

J. Becker, C.M. Rohles, C. Wittmann, Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products, Metab. Eng. 50 (2018) 122-141.

[25]

F. Hille, E. Charpentier, CRISPR-Cas: biology mechanisms and relevance, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371 (2016) 20150496.

[26]

E.V. Koonin, K.S. Makarova, Origins and evolution of CRISPR-Cas systems, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 374 (2019) 20180087.

[27]

P. Horvath, R. Barrangou, CRISPR/Cas, the immune system of bacteria and archaea, Science 327 (2010) 167-170.

[28]

J.Y. Wang, P. Pausch, J.A. Doudna, Structural biology of CRISPR-Cas immunity and genome editing enzymes, Nat. Rev. Microbiol. 20 (2022) 641-656.

[29]

K.S. Makarova, Y.I. Wolf, J. Iranzo, S.A. Shmakov, O.S. Alkhnbashi, S.J.J. Brouns, E. Charpentier, D. Cheng, D.H. Haft, P. Horvath, S. Moineau, F.J.M. Mojica, D. Scott, S.A. Shah, V. Siksnys, M.P. Terns, C. Venclovas, M.F. White, A.F. Yakunin, W. Yan, F. Zhang, R.A. Garrett, R. Backofen, J. van der Oost, R. Barrangou, E.V. Koonin, Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol. 18 (2020) 67-83.

[30]

H. Altae-Tran, S. Kannan, A.J. Suberski, K.S. Mears, F.E. Demircioglu, L. Moeller, S. Kocalar, R. Oshiro, K.S. Makarova, R.K. Macrae, E.V. Koonin, F. Zhang, Un- covering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering, Science 382 (2023) 1910.

[31]

E.R. Westra, A. Buckling, P.C. Fineran, CRISPR-Cas systems: beyond adaptive im- munity, Nat. Rev. Microbiol. 12 (2014) 317-326.

[32]

L.A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature 526 (2015) 55-61.

[33]

R.A. Wilkinson, C. Martin, A.A. Nemudryi, B. Wiedenheft, CRISPR RNA-guided autonomous delivery of Cas9, Nat. Struct. Mol. Biol. 26 (2019) 14-24.

[34]

J.A. Doudna, E. Charpentier, Genome editing. The new frontier of genome engi- neering with CRISPR-Cas9, Science 346 (2014) 1258096.

[35]

J.D. Sander, J.K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol. 32 (2014) 347-355.

[36]

P.D. Hsu, E.S. Lander, F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering, Cell 157 (2014) 1262-1278.

[37]

O. Shalem, N.E. Sanjana, F. Zhang, High-throughput functional genomics using CRISPR-Cas9, Nat. Rev. Genet. 16 (2015) 299-311.

[38]

J.M. Peters, M.R. Silvis, D. Zhao, J.S. Hawkins, C.A. Gross, L.S. Qi, Bacte- rial CRISPR: accomplishments and prospects, Curr. Opin. Microbiol. 27 (2015) 121-126.

[39]

Y. Tang, Y. Fu, Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing, Cell Biosci. 8 (2018) 59.

[40]

Y. Tong, T. Weber, S.Y. Lee, CRISPR/Cas-based genome engineering in natural product discovery, Nat. Prod. Rep. 36 (2019) 1262-1280.

[41]

J. Wang, Y. Teng, R. Zhang, Y. Wu, L. Lou, Y. Zou, M. Li, Z.R. Xie, Y. Yan, Engineer- ing a PAM-flexible SpdCas9 variant as a universal gene repressor, Nat. Commun. 12 (2021) 6916.

[42]

H. Wang, M.La Russa, L.S. Qi, CRISPR/Cas 9 in genome editing and beyond, Annu. Rev. Biochem. 85 (2016) 227-264.

[43]

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E. Charpentier, A pro- grammable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science 337 (2012) 816-821.

[44]

D. Bikard, W. Jiang, P. Samai, A. Hochschild, F. Zhang, L.A. Marraffini, Pro- grammable repression and activation of bacterial gene expression using an engi- neered CRISPR-Cas system, Nucleic Acids Res. 41 (2013) 7429-7437.

[45]

A. Hashemi, CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli, World J. Microbiol. Biotechnol. 36 (2020) 96.

[46]

R.D. Arroyo-Olarte, R. Bravo Rodriguez, E. Morales-Rios, Genome editing in bac- teria: CRISPR-Cas and beyond, Microorganisms 9 (2021) 844.

[47]

H. Dong, Y. Cui, D. Zhang, CRISPR/Cas technologies and their applications in Es- cherichia coli, Front. Bioeng. Biotechnol. 9 (2021) 762676.

[48]

R. Sapranauskas, G. Gasiunas, C. Fremaux, R. Barrangou, P. Horvath, V. Siksnys, The Streptococcus thermophilus CRISPR/Cas system provides immunity in Es- cherichia coli, Nucleic Acids Res. 39 (2011) 9275-9282.

[49]

W. Jiang, D. Bikard, D. Cox, F. Zhang, L.A. Marraffini, , RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol. 31 (2013) 233-239.

[50]

Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang, Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Appl. Environ. Microbiol. 81 (2015) 2506-2514.

[51]

M.E. Pyne, M. Moo-Young, D.A. Chung, C.P. Chou, Coupling the CRISPR/Cas9 sys- tem with lambda Red recombineering enables simplified chromosomal gene re- placement in Escherichia coli, Appl. Environ. Microbiol. 81 (2015) 5103-5114.

[52]

D.D. Qi, J. Jin, D. Liu, B. Jia, Y.J. Yuan, In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast, Microb. Cell Fact. 19 (2020) 103.

[53]

Y. Tong, T.S. Jorgensen, C.M. Whitford, T. Weber, S.Y. Lee, A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing, Nat. Commun. 12 (2021) 5206.

[54]

D. Zhao, J. Li, S. Li, X. Xin, M. Hu, M.A. Price, S.J. Rosser, C. Bi, X. Zhang, Gly- cosylase base editors enable C-to-A and C-to-G base changes, Nat. Biotechnol. 39 (2021) 35-40.

[55]

N. Costantino, D.L. Court, Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants, Proc. Natl. Acad. Sci. U S A 100 (2003) 15748-15753.

[56]

M.C. Bassalo, A.D. Garst, A.L. Halweg-Edwards, W.C. Grau, D.W. Domaille, V. K. Mutalik, A.P. Arkin, R.T. Gill, Rapid and efficient one-step metabolic path- way integration in E. coli, ACS Synth. Biol. 5 (2016) 561-568.

[57]

K. Wang, J. Fredens, S.F. Brunner, S.H. Kim, T. Chia, J.W. Chin, Defining synony- mous codon compression schemes by genome recoding, Nature 539 (2016) 59-64.

[58]

H.Q. Liu, G.F. Hou, P. Wang, G.Y. Guo, Y. Wang, N. Yang, M.N.U. Rehman, C.L. Li, Q. Li, J.P. Zheng, J.F. Zeng, S.H. Li, A double-locus scarless genome editing system in Escherichia coli, Biotechnol. Lett. 42 (2020) 1457-1465.

[59]

X. Feng, D. Zhao, X. Zhang, X. Ding, C. Bi, CRISPR/Cas 9 assisted multiplex genome editing technique in Escherichia coli, Biotechnol. J. 13 (2018) e1700604.

[60]

Q. Li, B. Sun, J. Chen, Y. Zhang, Y. Jiang, S. Yang, A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli, Acta Biochim. Biophys. Sin. (Shanghai) 53 (2021) 620-627.

[61]

S. Shukal, X.H. Lim, C. Zhang, X. Chen, Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recom- bineering, Microb. Cell Fact. 21 (2022) 19.

[62]

B.E. Rubin, S. Diamond, B.F. Cress, A. Crits-Christoph, Y.C. Lou, A.L. Borges, H. Shivram, C. He, M. Xu, Z. Zhou, S.J. Smith, R. Rovinsky, D.C.J. Smock, K. Tang, T.K. Owens, N. Krishnappa, R. Sachdeva, R. Barrangou, A.M. Deutschbauer, J.F. Banfield, J.A. Doudna, Species- and site-specific genome editing in complex bacterial communities, Nat. Microbiol. 7 (2022) 34-47.

[63]

A.W. Westbrook, M. Moo-Young, C.C. Perry, Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis, Appl. Environ. Microbiol. 82 (2016) 4876-4895.

[64]

K. Zhang, X. Duan, J. Wu, Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system, Sci. Rep. 6 (2016) 27943.

[65]

A. Garcia-Moyano, O. Larsen, S. Gaykawad, E. Christakou, C. Boccadoro, P. Punter- voll, G.E.K. Bjerga, Fragment exchange plasmid tools for CRISPR/Cas9-mediated gene integration and protease production in Bacillus subtilis, Appl. Environ. Mi- crobiol. 87 (2021) e02090.

[66]

H. Huang, G. Zheng, W. Jiang, H. Hu, Y. Lu, One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces, Acta Biochim. Biophys. Sin. 47 (2015) 231-243.

[67]

J. Mo, S. Wang, W. Zhang, C. Li, Z. Deng, L. Zhang, X. Qu, Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system, Synth. Syst. Biotechnol. 4 (2019) 86-91.

[68]

C. Yao, X. Hu, X. Wang, Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum, AMB Express 11 (2021) 70.

[69]

X.H. Mo, H. Zhang, T.M. Wang, C. Zhang, C. Zhang, X.H. Xing, S. Yang, Estab- lishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis, Appl. Microbiol. Biotechnol. 104 (2020) 4515-4532.

[70]

J. Park, B.J. Yu, J.I. Choi, H.M. Woo, Heterologous production of squalene from glu- cose in engineered Corynebacterium glutamicum using multiplex CRISPR interfer- ence and high-throughput fermentation, J. Agric. Food Chem. 67 (2019) 308-319.

[71]

C. Kiattisewee, C. Dong, J. Fontana, W. Sugianto, P. Peralta-Yahya, J.M. Carothers, J.G. Zalatan, Portable bacterial CRISPR transcriptional activation enables metabolic engineering in Pseudomonas putida, Metab. Eng. 66 (2021) 283-295.

[72]

C. Liao, J. Cui, M. Gao, B. Wang, K. Ito, Y. Guo, B. Zhang, Dual-sgRNA CRISPRa sys- tem for enhanced MK-7 production and salmonella infection mitigation in Bacillus subtilis natto applied to Caco-2 cells, J. Agric. Food Chem. 72 (2024) 4301-4316.

[73]

C. Wang, M. Liwei, J.B. Park, S.H. Jeong, G. Wei, Y. Wang, S.W. Kim, Microbial platform for terpenoid production: Escherichia coli and yeast, Front. Microbiol. 9 (2018) 2460.

[74]

C. Wang, Q. Chen, D. Fan, J. Li, G. Wang, P. Zhang, Structural analyses of short-- chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Bras- sicaceae plants, Mol. Plant. 9 (2016) 195-204.

[75]

B.R. Lichman, M.O. Kamileen, G.R. Titchiner, G. Saalbach, C.E.M. Stevenson, D. M. Lawson, S.E. O’Connor, Uncoupled activation and cyclization in catmint re- ductive terpenoid biosynthesis, Nat. Chem. Biol. 15 (2019) 71-79.

[76]

J. Alonso-Gutierrez, D. Koma, Q. Hu, Y. Yang, L.J.G. Chan, C.J. Petzold, P. D. Adams, C.E. Vickers, L.K. Nielsen, J.D. Keasling, T.S. Lee, Toward industrial production of isoprenoids in Escherichia coli: lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway, Biotech- nol. Bioeng. 115 (2018) 1000-1013.

[77]

J.H. Moon, K. Lee, J.H. Lee, P.C. Lee, Redesign and reconstruction of a stevio- l-biosynthetic pathway for enhanced production of steviol in Escherichia coli, Mi- crob. Cell Fact. 19 (2020) 20.

[78]

W. Wang, P. He, D. Zhao, L. Ye, L. Dai, X. Zhang, Y. Sun, J. Zheng, C. Bi, Construc- tion of Escherichia coli cell factories for crocin biosynthesis, Microb. Cell Fact. 18 (2019) 120.

[79]

B. Su, D. Song, H. Zhu, Homology-dependent recombination of large synthetic path- ways into E. coli genome via 𝜆-Red and CRISPR/Cas9 dependent selection method- ology, Microb. Cell Fact. 19 (2020) 108.

[80]

A.H. Yona, E.J. Alm, J. Gore, Random sequences rapidly evolve into de novo pro- moters, Nat. Commun. 9 (2018) 1530.

[81]

T. Nieuwkoop, N.J. Claassens, J. van der Oost, Improved protein production and codon optimization analyses in Escherichia coli by bicistronic design, Microb. Biotechnol. 12 (2019) 173-179.

[82]

S.Z. Yu, L.W. Guo, L.Y. Zhao, Z.Y. Chen, Y.X. Huo, Metabolic engineering of E. coli for producing phloroglucinol from acetate, Appl. Microbiol. Biotechnol. 104 (2020) 7787-7799.

[83]

S.K. Kim, G.H. Han, W. Seong, H. Kim, S.W. Kim, D.H. Lee, S.G. Lee, CRISPR in- terference-guided balancing of a biosynthetic mevalonate pathway increases ter- penoid production, Metab. Eng. 38 (2016) 228-240.

[84]

Y. Song, S. He, II Abdallah, A. Jopkiewicz, R. Setroikromo, R. van Merkerk, P.G. Tepper, W.J. Quax, Engineering of multiple modules to improve amorpha- diene production in Bacillus subtilis using CRISPR-Cas9, J. Agric. Food Chem. 69 (2021) 4785-4794.

[85]

H. Pramastya, D. Xue, II Abdallah, R. Setroikromo, W.J. Quax, High level produc- tion of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory, Nat. Biotechnol. 60 (2021) 159-167.

[86]

S.K. Yeo, A.Y. Ali, O.A. Hayward, D. Turnham, T. Jackson, I.D. Bowen, R. Clark- son, 𝛽-Bisabolene, a sesquiterpene from the essential oil extract of opoponax (Com- miphora guidottii), exhibits cytotoxicity in breast cancer cell lines, Phytother. Res. 30 (2016) 418-425.

[87]

J. Pól, B. Hohnová, T. Hyötyläinen, Characterisation of Stevia rebaudiana by com- prehensive two-dimensional liquid chromatography time-of-flight mass spectrom- etry, J. Chromatogr. A. 1150 (2007) 85-92.

[88]

M. Spanova, G. Daum, Squalene - biochemistry molecular biology, process biotechnology and applications, Eur. J. Lipid Sci. Technol. 113 (2011) 1299-1320.

[89]

L.H. Reddy, P. Couvreur, Squalene: a natural triterpene for use in disease manage- ment and therapy, Adv. Drug Deliv. Rev. 61 (2009) 1412-1426.

[90]

P. Palozza, N.I. Krinsky, Antioxidant effects of carotenoids in vivo and in vitro: an overview, Meth. Enzymol. 213 (1992) 403-420.

[91]

O. Ahrazem, A. Rubio-Moraga, J. Berman, T. Capell, P. Christou, C. Zhu, L. Gomez-Gomez, The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of cro- cetin in spring crocuses and saffron is a plastidial enzyme, New Phytol. 209 (2016) 650-663.

[92]

T. Wu, L. Ye, D. Zhao, S. Li, Q. Li, B. Zhang, C. Bi, X. Zhang, Membrane engineering - A novel strategy to enhance the production and accumulation of 𝛽-carotene in Escherichia coli, Metab. Eng. 43 (2017) 85-91.

[93]

Q. Xie, S. Li, D. Zhao, L. Ye, Q. Li, X. Zhang, L. Zhu, C. Bi, Manipulating the posi- tion of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency, Microb. Cell Fact. 19 (2020) 229.

[94]

P.D. Donohoue, R. Barrangou, A.P. May, Advances in industrial biotechnology us- ing CRISPR-Cas systems, Trends Biotechnol. 36 (2018) 134-146.

[95]

J. Lian, M. HamediRad, S. Hu, H. Zhao, Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system, Nat. Commun. 8 (2017) 1688.

[96]

C. Dong, J. Fontana, A. Patel, J.M. Carothers, J.G. Zalatan, Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria, Nat. Commun. 9 (2018) 2489.

[97]

H. Yin, C.Q. Song, S. Suresh, S.Y. Kwan, Q. Wu, S. Walsh, J. Ding, R.L. Bogorad, L. J. Zhu, S.A. Wolfe, V. Koteliansky, W. Xue, R. Langer, D.G. Anderson, Partial DNA-guided Cas9 enables genome editing with reduced off-target activity, Nat. Chem. Biol. 14 (2018) 311-316.

[98]

F.A. Ran, P.D. Hsu, C.Y. Lin, J.S. Gootenberg, S. Konermann, A.E. Trevino, D. A. Scott, A. Inoue, S. Matoba, Y. Zhang, F. Zhang, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell 154 (2013) 1380-1389.

[99]

J. Liu, Y. Wang, Y. Lu, P. Zheng, J. Sun, Y. Ma, Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum, Microb. Cell Fact. 16 (2017) 205.

[100]

Y.J. Goh, R. Barrangou, Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli, Curr. Opin. Biotechnol. 56 (2019) 163-171.

[101]

Y. Chang, T. Su, Q. Qi, Q. Liang, Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system, Microb. Cell Fact. 15 (2016) 195.

[102]

M.L. Luo, A.S. Mullis, R.T. Leenay, C.L. Beisel, Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression, Nucleic Acids Res. 43 (2015) 674-681.

[103]

J. Zhang, W. Zong, W. Hong, Z.T. Zhang, Y. Wang, Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engi- neer the strain for high-level butanol production, Metab. Eng. 47 (2018) 49-59.

[104]

M.E. Pyne, M.R. Bruder, M. Moo-Young, D.A. Chung, C.P. Chou, Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium, Sci. Rep. 6 (2016) 25666.

[105]

C. Hidalgo-Cantabrana, Y.J. Goh, M. Pan, R. Sanozky-Dawes, R. Barrangou, Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus, Proc. Natl. Acad. Sci. U S A 116 (2019) 15774-15783.

[106]

Y. Zheng, J. Han, B. Wang, X. Hu, R. Li, W. Shen, X. Ma, L. Ma, L. Yi, S. Yang, W. Peng, Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering, Nucleic Acids Res. 47 (2019) 11461-11475.

[107]

Z. Xu, Y. Li, H. Cao, M. Si, G. Zhang, P.C.Y. Woo, A. Yan, A transferrable and inte- grative type I-F Cascade for heterologous genome editing and transcription modu- lation, Nucleic Acids Res. 49 (2021) e94.

[108]

Y. Hao, Q. Wang, J. Li, S. Yang, Y. Zheng, W. Peng, Double nicking by RNA-directed Cascade-nCas3 for high-efficiency large-scale genome engineering, Open Biol. 12 (2022) 210241.

[109]

J. Zhao, H. Fang, D. Zhang, Expanding application of CRISPR-Cas9 system in mi- croorganisms, Synth. Syst. Biotechnol. 5 (2020) 269-276.

[110]

B. Hu, X. Zhao, E. Wang, J. Zhou, J. Li, J. Chen, G. Du, Efficient heterologous expression of cytochrome P450 enzymes in microorganisms for the biosynthesis of natural products, Crit. Rev. Biotechnol. 43 (2023) 227-241.

[111]

A. Kantor, M.E. McClements, R.E. MacLaren, CRISPR-Cas 9 DNA base-editing and prime-editing, Int. J. Mol. Sci. 21 (2020) 6240.

AI Summary AI Mindmap
PDF (1851KB)

305

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/