A novel strategy to protect prokaryotic cells from virus infection

Yoshizumi Ishino

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100153

PDF (679KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100153 DOI: 10.1016/j.engmic.2024.100153
Research Highlights
research-article

A novel strategy to protect prokaryotic cells from virus infection

Author information +
History +
PDF (679KB)

Abstract

The recent discovery of the CRISPR-Cas-mediated acquired immunity system highlights the fact that our knowledge of phage/virus defense mechanisms encoded in bacterial and archaeal genomes is far from complete. Indeed, new prokaryotic immune systems are now continually being discovered. A recent report described a novel glycosylase that recognizes α-glycosyl-hydroxymethyl cytosin (α-Glu-hmC), a modified base observed in the T4 phage genome, where it produces an abasic site, thereby inhibiting the phage propagation.

Keywords

Prokaryotic immunity / Antiviral defense / Glycosylase / Modified base / Functional screening

Cite this article

Download citation ▾
Yoshizumi Ishino. A novel strategy to protect prokaryotic cells from virus infection. Engineering Microbiology, 2024, 4(2): 100153 DOI:10.1016/j.engmic.2024.100153

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Given his role as editorial board member, Dr. Yoshizumi Ishino, had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Dr. Qunxin She.

CRediT authorship contribution statement

Yoshizumi Ishino: Writing - review & editing, Writing - original draft.

References

[1]

A. Bernheim, R. Sorek, The pan-immune system of bacteria: antiviral defence as a community resource, Nat. Rev. Microbiol. 18 (2020) 113-119.

[2]

M.R. Tock, D.T. Dryden, The biology of restriction and anti-restriction, Curr. Opin. Microbiol. 8 (2005) 466-472.

[3]

I.J. Molineux, Host-parasite interactions: recent developments in the genetics of abortive phage infections, New Biol. 3 (1991) 230-236.

[4]

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, P. Horvath, CRISPR provides acquired resistance against viruses in prokaryotes, Science 315 (2007) 1709-1712.

[5]

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E. Charpentier, A pro- grammable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science 337 (2012) 816-821.

[6]

G. Gasiunas, R. Barrangou, P. Horvath, V. Siksnys, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) E2579.

[7]

S. Doron, S. Melamed, G. Ofir, A. Leavitt, A. Lopatina, M. Keren, G. Amitai, R. Sorek, Systematic discovery of antiphage defense systems in the microbial pangenome, Sci- ence 359 (2018) eaar4120.

[8]

C.N. Vassallo, C.R. Doering, M.L. Littlehale, G.I.C. Teodoro, M.T. Laub, A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome, Nat. Microbiol. 7 (2022) 1568-1579.

[9]

A.A. Hossain, Y.Z. Pigli, C.F. Baca, S. Heissel, A. Thomas, V.K. Libis, J. Burian, J.S. Chappie, S.F. Brady, P.A. Rice, L.A. Marraffini, DNA glycosylases provide an- tiviral defence in prokaryotes, Nature 629 (2024) 410-416.

[10]

S.F. Brady, Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules, Nat. Proto c. 2 (2007) 1297-1305.

[11]

Z. Feng, D. Kallifidas, S.F. Brady, Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites, Proc. Natl Acad. Sci. U.S.A. 108 (2011) 12629-12634.

[12]

T. Uemori, Y. Sato, I. Kato, H. Doi, Y. Ishino, A novel DNA polymerase in the hy- perthermophilic archaeon, Pyrococcus furiosus. Gene cloning, expression, and char- acterization, Genes Cell. 2 (1997) 499-512.

[13]

Y. Ishino, K. Komori, I. Cann, Y. Koga, A novel DNA polymerase family found in Archaea, J. Bacteriol. 180 (1998) 2232-2236.

[14]

S. Ishino, Y. Nishi, S. Oda, T. Uemori, T. Sagara, N. Takatsu, T. Yamagami, T. Shirai, Y. Ishino, Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea, Nucleic Acids Res 44 (2016) 2977-2986.

[15]

S. Ishino, S. Skouloubris, H. Kudo, C. l’Hermitte-Stead, A. Essadik, J.J. Lambry, Y. Ishino, H. Myllykallio, Activation of the mismatch-specific endonuclease En- doMS/NucS by the replication clamp is required for high fidelity DNA replication, Nucl. Acid. Res. 46 (2018) 6206-6217.

[16]

N. Schormann, R. Ricciardi, D. Chattopadhyay, Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes, Prot. Sci. 23 (2014) 1667-1685.

[17]

G. Ofir, E. Herbst, M. Baroz, D. Cohen, A. Millman, S. Doron, N. Tal, D.B.A. Mal- heiro, S. Malitsky, G. Amitai, R. Sorek, Antiviral activity of bacterial TIR domains via immune signalling molecules, Nature 600 (2021) 116-120.

[18]

A. Deep, G. Yajie, Y.-Q. Gao, K.M. Ego, M.A. Herzik Jr, H. Zhou, K.D. Corbett, The SMC-family Wadjet complex protects bacteria from plasmid transformation by recog- nition and cleavage of closed-circular DNA, Mol. Cell 82 (2022) 4145-4159.

[19]

L. Gao, H. Altae-Tran, F. Böhning, K.S. Makarova, M. Segel, J.L. Schmid-Burgk, Koob, Y.I. Wolf, E.V. Koonin, F. Zhang, Diverse enzymatic activities mediate an- tiviral immunity in prokaryotes, Science 369 (2020) 1077-1084.

[20]

A. Millman, S. Melamed, A. Leavitt, S. Doron, A. Bernheim, J. Hör, J. Garb, N. Be- chon, A. Brandis, A. Lopatina, G. Ofir, D. Hochhauser, A. Stokar-Avihail, N. Tal, S. Sharir, M. Voichek, Z. Erez, J.M. Ferrer, D. Dar, A. Kacen, G. Amitai, R. Sorek, An expanded arsenal of immune systems that protect bacteria from phages, Cell Host Microb. 30 (2022) 1556-1569.

[21]

I.R. Lehman, E.A. Pratt, On the structure of the glucosylated hydroxymethylcytosine nucleotides of coliphages T2, T4, and T6, J. Biol. Chem. 235 (1960) 3254-3259.

[22]

N. Sommer, R. Depping, M. Piotrowski, W. Rüger, Bacteriophage T4 alpha-glucosyl- transferase: a novel interaction with gp45 and aspects of the catalytic mechanism, Biochem. Biophys. Res. Commun. 323 (2004) 809-815.

[23]

L. Aravind, E.V. Koonin, The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates, Genom. Biol. 1 (2000) RESEARCH0007.

[24]

S.M. Saporito, B.J. Smith-White, R.P. Cunningham, Nucleotide sequence of the xth gene of Escherichia coli K-12, J. Bacteriol. 170 (1988) 4542-4547.

[25]

S.M. Saporito, R.P. Cunningham, Nucleotide sequence of the nfo gene of Escherichia coli K-12, J. Bacteriol. 170 (1988) 5141-5145.

[26]

W.D. Wright, S.S. Shah, W.D. Heyer, Homologous recombination and the repair of DNA double-strand breaks, J. Biol. Chem. 293 (2018) 10524-10535.

[27]

L. Loeff, A. Walter, G.T. Rosalen, M. Jinek, Systematic discovery of an- tiphage defense systems in the microbial pangenome. DNA end sensing and cleavage by the Shedu anti-phage defense system, bioRxiv preprint doi:https://doi.org/10.1101/2023.08.10.552762;2023.

AI Summary AI Mindmap
PDF (679KB)

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/