Key amino acid residues govern the substrate selectivity of the transporter Xltr1p from Trichoderma reesei for glucose, mannose, and galactose

Wei Ma , Shiyu Yuan , Zixian Wang , Kangle Niu , Fengyi Li , Lulu Liu , Lijuan Han , Xu Fang

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (4) : 100151

PDF (5730KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (4) :100151 DOI: 10.1016/j.engmic.2024.100151
Original article
research-article

Key amino acid residues govern the substrate selectivity of the transporter Xltr1p from Trichoderma reesei for glucose, mannose, and galactose

Author information +
History +
PDF (5730KB)

Abstract

This research identified four amino acid residues (Leu174, Asn297, Tyr301, and Gln291) that contribute to substrate recognition by the high-affinity glucose transporter Xltr1p from Trichoderma reesei. Potential hotspots affecting substrate specificity were selected through homology modeling, evolutionary conservation analyses, and substrate-docking modeling of Xltr1p. Variants carrying mutations at these hotspots were subsequently obtained via in silico screening. Replacement of Leu174 or Asn297 in Xltr1p with alanine resulted in loss of hexose transport activity, indicating that Leu174 and Asn297 play essential roles in hexose transport. The Y301W variant exhibited accelerated mannose transport, but lost galactose transport capacity, and mutation of Gln291 to alanine greatly accelerated mannose transport. These results suggest that amino acids located in transmembrane α-helix 7 (Asn297, Tyr301, and Gln291) play critical roles in substrate recognition by the hexose transporter Xltr1p. Our results will help expand the potential applications of this transporter and provide insights into the mechanisms underlying its function and specificity.

Keywords

Hexose transporter / Glucose / Galactose / Mannose / Transmembrane α-helix 7 / Sugar / ransport / Computer-aided screening

Cite this article

Download citation ▾
Wei Ma, Shiyu Yuan, Zixian Wang, Kangle Niu, Fengyi Li, Lulu Liu, Lijuan Han, Xu Fang. Key amino acid residues govern the substrate selectivity of the transporter Xltr1p from Trichoderma reesei for glucose, mannose, and galactose. Engineering Microbiology, 2024, 4(4): 100151 DOI:10.1016/j.engmic.2024.100151

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

The original/source data and resources are available from the correspondence author Xu Fang (fangxu@sdu.edu.cn) on request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Wei Ma: Writing - review & editing, Writing - original draft, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Shiyu Yuan: Supervision, Formal analysis. Zixian Wang: Supervision, Formal analysis. Kangle Niu: Supervision, Methodology. Fengyi Li: Writing - original draft, Supervision. Lulu Liu: Supervision, Formal analysis. Lijuan Han: Supervision, Methodology. Xu Fang: Writing - review & editing, Writing - original draft, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization.

Acknowledgments

The authors would like to thank Dr. Xiangmei Ren from State Key Laboratory of Microbial Technology of Shandong University for help and guidance in the high-performance liquid chromatography. We thank Prof. Dr Eckhard Boles from the Institutfür Molekulare Biowissenschaf-ten Goethe-Universität Frankfurt for kindly providing the EBY.VW4000 strain. This work was supported by National Key R&D Program of China (No. 2018YFA0901700), National Natural Science Foundation of China (No. 32271526).

Chemical compounds studied in this article

d-Glucose (PubChem CID:5793), d-Mannose (PubChem CID:18950), d-Galactose (PubChem CID:6036).

References

[1]

P. Bittihn, M.O. Din, L.S. Tsimring, J. Hasty, Rational engineering of synthetic micro- bial systems: from single cells to consortia, Curr. Opin. Microbiol. 45 (2018) 92-99, doi:10.1016/j.mib.2018.02.009.

[2]

N.S. McCarty, R. Ledesma-Amaro, Synthetic biology tools to engineer micro- bial communities for biotechnology, Trends Biotechnol. 37 (2) (2019) 181-197, doi:10.1016/j.tibtech.2018.11.002.

[3]

H. Song, M.Z. Ding, X.Q. Jia, Q. Ma, Y.J. Yuan, Synthetic microbial consortia: from systematic analysis to construction and applications, Chem. Soc. Rev. 43 (20) (2014) 6954-6981, doi:10.1039/C4CS00114A.

[4]

S.B. Said, R. Tecon, B. Borer, D. Or, The engineering of spatially linked microbial consortia-potential and perspectives, Curr. Opin. Biotechnol. 62 (2020) 137-145, doi:10.1016/j.copbio.2019.09.015.

[5]

N.I. Johns, T. Blazejewski, A.L. Gomes, H.H. Wang, Principles for designing synthetic microbial communities, Curr. Opin. Microbiol. 31 (2016) 146-153, doi:10.1016/j.mib.2016.03.010.

[6]

B. Gao, R. Sabnis, T. Costantini, R. Jinkerson, Q. Sun, A peek in the micro- sized world: a review of design principles, engineering tools, and applications of engineered microbial community, Biochem. Soc. Trans. 48 (2) (2020) 399-409, doi:10.1042/BST20190172.

[7]

H. Song, S. Payne, C. Tan, L. You, Programming microbial population dynam- ics by engineered cell-cell communication, Biotechnol. J. 6 (7) (2011) 837-849, doi:10.1002/biot.201100132.

[8]

J.S. Chuang, Engineering multicellular traits in synthetic microbial populations, Curr. Opin. Chem. Biol. 16 (3-4) (2012) 370-378, doi:10.1016/j.cbpa.2012.04.002.

[9]

W. Bacchus, M. Fussenegger, Engineering of synthetic intercellular communication systems, Metab. Eng. 16 (2013) 33-41, doi:10.1016/j.ymben.2012.12.001.

[10]

K. Brenner, L. You, F.H. Arnold, Engineering microbial consortia: a new frontier in synthetic biology, Trends Biotechnol. 26 (9) (2008) 483-489, doi:10.1016/j.tibtech.2008.05.004.

[11]

E.H. Wintermute, P.A. Silver, Dynamics in the mixed microbial concourse, Genes Dev. 24 (23) (2010) 2603-2614, doi:10.1101/gad.1985210.

[12]

P.T. Tarr, E.J. Tarling, D.D. Bojanic, P.A. Edwards, Á. Baldán, Emerging new paradigms for ABCG transporters, Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 1791 (7) (2009) 584-593, doi:10.1016/j.bbalip.2009.01.007.

[13]

K.P. Locher, Mechanistic diversity in ATP-binding cassette (ABC) transporters, Nat. Struct. Mol. Biol. 23 (6) (2016) 487-493, doi:10.1038/nsmb.3216.

[14]

J.W. Lengeler, F. Titgemeyer, A.P. Vogler, B.M. Wohrl, Structures and homologies of carbohydrate: phosphotransferase system (PTS) proteins, Philo. Trans. R. Soc. Lond. B, Biol. Sci. 326 (1236) (1990) 489-504, doi:10.1098/rstb.1990.0027.

[15]

P.W. Postma, J.W. Lengeler, G. Jacobson, Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria, Microbiol. Rev. 57 (3) (1993) 543-594, doi:10.1128/mr.57.3.543-594.1993.

[16]

S.S. Pao, I.T. Paulsen, M.H. Saier Jr., Major facilitator superfamily, Microbiol. Mol. Biol. Rev. 62 (1) (1998) 1-34, doi:10.1128/mmbr.62.1.1-34.1998.

[17]

S.C. Wang, P. Davejan, K.J. Hendargo, I. Javadi-Razaz, A. Chou, D.C. Yee, F. Ghazi, K.J.K. Lam, A.M. Conn, A. Madrigal, A. Medrano-Soto, M.H. Saier Jr., Expansion of the major facilitator superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes, Biochim. Biophys. Acta (BBA)-Biomembr. 1862 (9)(2020) 183277, doi:10.1016/j.bbamem.2020.183277.

[18]

X. Jiao, B. Shen, M. Li, L. Ye, H. Yu, Secretory production of tocotrienols in Sac- charomyces cerevisiae, ACS Synth. Biol. 11 (2) (2022) 788-799, doi:10.1021/acssyn- bio.1c00484.

[19]

A. Tippelt, M. Nett, Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides, Microb. Cell Fact. 20 (1) (2021) 1-24, doi:10.1186/s12934-021-01650-y.

[20]

J. Anjos, H.R. de Sousa, C. Roca, F. Cássio, M. Luttik, J.T. Pronk, P. Gonçalves, Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose: H+ stoichiometry, Biochim. Biophys. Acta (BBA)-Biomembr. 1828 (2) (2013) 201-207, doi:10.1016/j.bbamem.2012.08.011.

[21]

T.S. Ng, S.Y. Chew, P. Rangasamy, M.N. Mohd Desa, D. Sandai, P.P. Chong, L. T.L. Than, SNF 3 as high affinity glucose sensor and its function in supporting the viability of Candida glabrata under glucose-limited environment, Front. Microbiol. 6 (1334) (2015), doi:10.3389/fmicb.2015.01334.

[22]

T. Hamacher, J. Becker, M. Gárdonyi, B. Hahn-Hagerdal, E. Boles, Character- ization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization, Microbiology 148 (9) (2002) 2783-2788, doi:10.1099/00221287-148-9-2783.

[23]

M. Sedlak, N.W. Ho, Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast, Yeast 21 (8) (2004) 671-684, doi:10.1002/yea.1060.

[24]

E. Young, A. Poucher, A. Comer, A. Bailey, H. Alper, Functional survey for het- erologous sugar transport proteins, using Saccharomyces cerevisiae as a host, Appl. Environ. Microbiol. 77 (10) (2011) 3311-3319, doi:10.1128/AEM.02651-10.

[25]

S.A.T. Rojas, V. Schadeweg, F. Kirchner, E. Boles, M. Oreb, Identification of a glucose-insensitive variant of Gal2 from Saccharomyces cerevisiae ex- hibiting a high pentose transport capacity, Sci. Rep. 11 (1) (2021) 24404, doi:10.1038/s41598-021-03822-7.

[26]

A.C. Colabardini, L.N.A. Ries, N.A. Brown, T.F. Dos Reis, M. Savoldi, M.H. Gold- man, J.F. Menino, F. Rodrigues, G.H Goldman, Functional characterization of a xylose transporter in Aspergillus nidulans, Biotechnol. Biofuels 7 (2014) 46, doi:10.1186/1754-6834-7-46.

[27]

K. Nishizawa, E. Shimoda, M. Kasahara, Substrate recognition domain of the Gal2 galactose transporter in yeast Saccharomyces cerevisiae as revealed by chimeric galactose-glucose transporters, J. Biol. Chem. 270 (6) (1995) 2423-2426, doi:10.1074/jbc.270.6.2423.

[28]

M. Kasahara, E. Shimoda, M. Maeda, Amino acid residues responsible for galactose recognition in yeast Gal2 transporter, J. Biol. Chem. 272 (27) (1997) 16721-16724, doi:10.1074/jbc.272.27.16721.

[29]

M. Kasahara, M. Maeda, Contribution to substrate recognition of two aromatic amino acid residues in putative transmembrane segment 10 of the yeast sugar transporters Gal2 and Hxt2, J. Biol. Chem. 273 (44) (1998) 29106-29112, doi:10.1074/jbc.273.44.29106.

[30]

T. Kasahara, M. Kasahara, Tryptophan 388 in putative transmembrane segment 10 of the rat glucose transporter Glut1 is essential for glucose transport, J. Biol. Chem. 273 (44) (1998) 29113-29117, doi:10.1074/jbc.273.44.29113.

[31]

Y. Qiao, C. Li, X. Lu, H. Zong, B. Zhuge, Identification of key residues for effi- cient glucose transport by the hexose transporter CgHxt4 in high sugar fermentation yeast Candida glycerinogenes, Appl. Microbiol. Biotechnol. 105 (2021) 7295-7307, doi:10.1007/s00253-021-11567-6.

[32]

T. Kasahara, M. Kasahara, Identification of a key residue determining substrate affin- ity in the yeast glucose transporter Hxt7: a two-dimensional comprehensive study, J. Biol. Chem. 285 (34) (2010) 26263-26268, doi:10.1074/jbc.M110.149716.

[33]

Y. Jiang, Y. Shen, L. Gu, Z. Wang, N. Su, K. Niu, W. Guo, S. Hou, X. Bao, C. Tian, X. Fang, Identification and characterization of an efficient d -xylose trans- porter in Saccharomyces cerevisiae, J. Agric. Food Chem. 68 (9) (2020) 2702-2710,

[34]

R. Wieczorke, S. Krampe, T. Weierstall, K. Freidel, C.P. Hollenberg, E. Boles, Concurrent knock-out of at least 20 transporter genes is required to block up- take of hexoses in Saccharomyces cerevisiae, FEBS Lett. 464 (3) (1999) 123-128, doi:10.1016/s0014-5793(99)01698-1.

[35]

W. Guo, Q. Huang, Y. Feng, T. Tan, S. Niu, S. Hou, Z. Chen, Z. Du, Y. Shen, X. Fang, Rewiring central carbon metabolism for tyrosol and salidroside produc- tion in Saccharomyces cerevisiae, Biotechnol. Bioeng. 117 (8) (2020) 2410-2419, doi:10.1002/bit.27370.

[36]

W. Guo, Q. Huang, H. Liu, S. Hou, S. Niu, Y. Jiang, X. Bao, Y. Shen, X. Fang, Rational engineering of chorismate-related pathways in Saccharomyces cerevisiae for improving tyrosol production, Front. Bioeng. Biotechnol. 7 (2019) 152, doi:10.3389/fbioe.2019.00152.

[37]

C. Wang, X. Bao, Y. Li, C. Jiao, J. Hou, Q. Zhang, W. Zhang, W. Liu, Y. Shen, Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization, Metab. Eng. 30 (2015) 79-88, doi:10.1016/j.ymben.2015.04.007.

[38]

H. Ashkenazy, S. Abadi, E. Martz, O. Chay, I. Mayrose, T. Pupko, N. Ben-Tal, Con-Surf 2016: an improved methodology to estimate and visualize evolutionary con- servation in macromolecules, Nucleic Acids Res. 44 (W1) (2016) W344-W350, doi:10.1093/nar/gkw408.

[39]

A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F.T. Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS- MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res. 46 (W1) (2018) W296-W303, doi:10.1093/nar/gky427.

[40]

B. Webb, A. Sali, Comparative protein structure modeling using MODELLER, Curr. Protoc. Bioinform. 54 (1) (2016) 5-6, doi:10.1002/cpbi.3.

[41]

L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass, M.J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc. 10 (6) (2015) 845-858, doi:10.1038/nprot.2015.053.

[42]

Z. Yang, Z. Ye, J. Qiu, R. Feng, D. Li, C. Hsieh, J. Allcock, S. Zhang, A mutation- induced drug resistance database (MdrDB), Commun. Chem. 6 (1) (2023) 123, doi:10.1038/s42004-023-00920-7.

AI Summary AI Mindmap
PDF (5730KB)

293

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/