O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis

Baixin Lin , Dashan Zhang , Junbo Wang , Yongjian Qiao , Jinjin Wang , Zixin Deng , Lingxin Kong , Delin Yuo

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100150

PDF (2595KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100150 DOI: 10.1016/j.engmic.2024.100150
Original Research Article
research-article

O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis

Author information +
History +
PDF (2595KB)

Abstract

Carbazomycins (1-8) are a subgroup of carbazole derivatives that contain oxygen at the C3 and C4 positions and an unusual asymmetric substitution pattern. Several of these compounds exhibit antifungal and antioxidant activities. To date, no systematic biosynthetic studies have been conducted on carbazomycins. In this study, carbazomycins A and B (1 and 2) were isolated from Streptomyces luteosporeus NRRL 2401 using a one-strain-many-compound (OSMAC)-guided natural product mining screen. A biosynthetic gene cluster (BGC) was identified, and possible biosynthetic pathways for 1 and 2 were proposed. The in vivo genetic manipulation of the O-methyltransferase-encoding gene cbzMT proved indispensable for 1 and 2 biosynthesis. Size exclusion chromatography indicated that CbzMT was active as a dimer. In vitro biochemical assays confirmed that CbzMT could repeatedly act on the hydroxyl groups at C3 and C4, producing monomethylated 2 and dimethylated 1. Monomethylated carbazomycin B (2) is not easily methylated; however, CbzMT seemingly prefers the dimethylation of the dihydroxyl substrate (12) to 1, even with a low conversion efficiency. These findings not only improve the understanding of carbazomycin biosynthesis but also expand the inventory of OMT-catalyzing iterative methylations on different acceptor sites, paving the way for engineering biocatalysts to synthesize new active carbazomycin derivatives.

Keywords

One-strain-many-compounds (OSMAC) / Carbazole / Carbazomycins / O-methyltransferase / Iterative methylation

Cite this article

Download citation ▾
Baixin Lin, Dashan Zhang, Junbo Wang, Yongjian Qiao, Jinjin Wang, Zixin Deng, Lingxin Kong, Delin Yuo. O-methyltransferase CbzMT catalyzes iterative 3,4-dimethylations for carbazomycin biosynthesis. Engineering Microbiology, 2024, 4(2): 100150 DOI:10.1016/j.engmic.2024.100150

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data generated or analyzed during this study are included in this published article and its supplementary information files or are available upon request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Baixin Lin: Writing - original draft, Investigation, Formal analysis, Data curation. Dashan Zhang: Formal analysis. Junbo Wang: Formal analysis. Yongjian Qiao: Formal analysis. Jinjin Wang: Methodology. Zixin Deng: Methodology. Lingxin Kong: Writing - review & editing, Writing - original draft, Formal analysis. Delin You: Writing - review & editing, Supervision, Project administration, Conceptualization.

Acknowledgments

This work was supported by a grant from the National Key research and development Program of China (2021YFA0909500, 2021YFC2100100), and National Natural Science Foundation of China (32170077, 32170075).

References

[1]

P. Natho, L.A. Allen, A cyclobutanol ring-expansion approach to oxygenated car- bazoles: total synthesis of glycoborine, carbazomycin A and carbazomycin B, Syn. Lett. 34 (2023) 937-942.

[2]

K. Sakano, K. Ishimaru, S. Nakamura, New antibiotics, carbazomycins A and B. I. Fermentation, extraction, purification and physico-chemical and biological proper- ties,J. Antibiot. (Tokyo). 33 (1980) 683-689.

[3]

A.W. Schmidt, K.R. Reddy, H.J. Knölker, Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids, Chem. Rev. 112 (2012) 3193-3328.

[4]

S. Karwehl, R. Jansen, V. Huch, M. Stadler, Sorazolons, carbazole alkaloids from Sorangium cellulosum strain Soce375, J. Nat. Prod. 79 (2016) 369-375.

[5]

C. Intaraudom, P. Rachtawee, R. Suvannakad, P. Pittayakhajonwut, Antimalarial and antituberculosis substances from Streptomyces sp. BCC26924, Tetrahedron 67 (2011) 7593-7597.

[6]

M. Kaneda, T. Naid, T. Kitahara, S. Nakamura, T. Hirata, T. Suga, Carbazomycins G and H, novel carbazomycin-congeners containing a quinol moiety, J. Antibiot. (Tokyo) 41 (1988) 602-608.

[7]

T. Naid, T. Kitahara, M. Kaneda, S. Nakamura, C. Carbazomycins, D, E and F, minor components of the carbazomycin complex, J. Antibiot. (Tokyo) 40 (1987) 157-164.

[8]

H.J. Knölker, K.R. Reddy, Isolation and synthesis of biologically active carbazole alkaloids, Chem. Rev. 102 (2002) 4303-4428.

[9]

S. Kato, T. Kawasaki, T. Urata, J. Mochizuki, In vitro and ex vivo free radical scav- enging activities of carazostatin, carbazomycin B and their derivatives, J. Antibiot.(Tokyo). 46 (1993) 1859-1865.

[10]

S. Singh, R. Samineni, S. Pabbaraja, G. Mehta, A general carbazole synthesis via stitching of indole-ynones with nitromethanes: application to total synthesis of car- bazomycin A, calothrixin B, and staurosporinone, Org. Lett. 21 (2019) 3372-3376.

[11]

M. Catellani, E. Motti, N. Della Ca’, New protocols for the synthesis of condensed heterocyclic rings through palladium-catalyzed aryl coupling reactions, Top. Catal. 53 (2010) 991-996.

[12]

Y. Feng, T. Yukioka, M. Matsuyama, A. Mori, K. Okano, Deprotonative generation and trapping of Haloaryllithium in a batch reactor, Org. Lett. 25 (2023) 3013-3017.

[13]

H.J. Knölker, W. Fröhner, K.R. Reddy, Iron-mediated synthesis of carbazomycin G and carbazomycin H, the first carbazole-1,4-quinol alkaloids from Streptoverticillium ehimense, Eur. J. Org. Chem. 2003 (2003) 740-746.

[14]

Y. An, Y. Wang, X. Hu, Total synthesis of carbazomycin G by a thermal ring expan- sion/self-redox reaction cascade, Eur. J. Org. Chem. 2014 (2014) 3715-3718.

[15]

L. Su, M. Lv, K. Kyeremeh, Z. Deng, H. Deng, Y. Yu, A ThDP-dependent enzymatic carboligation reaction involved in neocarazostatin A tricyclic carbazole formation, Org. Biomol. Chem. 14 (2016) 8679-8684.

[16]

K. Yamasaki, M. KANEDA, K. WATANABE, Y. UEKI, K. ISHIMARU, S. NAKAMURA, et al., New antibiotics, carbazomycins A and B III. Taxonomy and biosynthesis, J. Antibiot. 36 (1983) 552-558.

[17]

M. Kaneda, T. Kitahara, K. Yamasaki, S. Nakamura, Biosynthesis of carbazomycin B II. Origin of the whole carbon skeleton, J. Antibiot. 43 (1990) 1623-1626.

[18]

S. Huang, S.S. Elsayed, M. Lv, J. Tabudravu, M.E. Rateb, R. Gyampoh, et al., Biosyn- thesis of neocarazostatin A reveals the sequential carbazole prenylation and hydrox- ylation in the tailoring Steps, Chem. Biol. 22 (2015) 1633-1642.

[19]

L. Su, R. Zhang, K. Kyeremeh, Z. Deng, H. Deng, Y. Yu, Dissection of the neocara- zostatin: a C4 alkyl side chain biosynthesis by in vitro reconstitution, Org. Biomol. Chem. 15 (2017) 3843-3848.

[20]

M. Kobayashi, T. Tomita, K. Shin-ya, M. Nishiyama, T. Kuzuyama, An unprecedented cyclization mechanism in the biosynthesis of carbazole alkaloids in Streptomyces, Angew. Chem. Int. Ed. Engl. 58 (2019) 13349-13353.

[21]

W. Zhang, L. Wang, L. Kong, T. Wang, Y. Chu, Z. Deng, et al., Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin, Chem. Biol. 19 (2012) 422-432.

[22]

J. Shen, L. Kong, Y. Li, X. Zheng, Q. Wang, W. Yang, et al., A LuxR family transcrip- tional regulator AniF promotes the production of anisomycin and its derivatives in Streptomyces hygrospinosus var. beijingensis, Synth. Syst. Biotechnol. 4 (2019) 40-48.

[23]

L. Kong, Q. Wang, W. Yang, J. Shen, Y. Li, X. Zheng, et al., Three recently diverging duplicated methyltransferases exhibit substrate-dependent regioselectivity essential for xantholipin biosynthesis, ACS Chem. Biol. 15 (2020) 2107-2115.

[24]

R. Zallot, N. Oberg, J.A. Gerlt, The EFI Web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways, Biochemistry 58 (2019) 4169-4182.

[25]

Y. Li, L. Kong, J. Shen, Q. Wang, Q. Liu, W. Yang, et al., Characterization of the pos- itive SARP family regulator PieR for improving piericidin A 1 production in Strepto- myces piomogeues var. Hangzhouwanensis, Synth. Syst. Biotechnol. 4 (2019) 16-24.

[26]

Q. Li, J. Bu, Y. Ma, J. Yang, Z. Hu, C. Lai, et al., Characterization of O-methyltrans- ferases involved in the biosynthesis of tetrandrine in Stephania tetrandra, J. Plant. Physiol. 250 (2020).

[27]

D.A. van Bergeijk, B.R. Terlouw, M.H. Medema, G.P. van Wezel, Ecology and ge- nomics of Actinobacteria: new concepts for natural product discovery, Nat. Rev. Mi- crobiol. 18 (2020) 546-558.

[28]

M.J. Bibb, Regulation of secondary metabolism in Streptomycetes, Curr. Opin. Micro- biol. 8 (2005) 208-215.

[29]

K. Scherlach, C. Hertweck, Mining and unearthing hidden biosynthetic potential, Nat. Commun. 12 (2021).

[30]

H.B. Bode, B. Bethe, R. Höfs, A. Zeeck, Big effects from small changes: possible ways to explore nature’s chemical diversity, Chembiochem 3 (2002) 619-627.

[31]

D. Zhang, J. Wang, Y. Qiao, B. Lin, Z. Deng, L. Kong, et al., Genome mining and metabolic profiling reveal cytotoxic cyclodipeptides in Streptomyces hygrospinosus var. Beijingensis, Antibiotics. 11 (2022).

[32]

C. Wu, H.U. van der Heul, A.V. Melnik, J. Lübben, P.C. Dorrestein, A.J. Minnaard, et al., Lugdunomycin, an angucycline-derived molecule with unprecedented chemi- cal architecture, Angew. Chem. Int. Ed. Engl. 58 (2019) 2809-2814.

[33]

K.I. Sakano, S. Nakamura, New antibiotis, carbazomycins A and B II. Structural elu- cidation, J. Antibiot. 33 (1980) 961-966.

[34]

Z. Feng, G. Chen, J. Zhang, H. Zhu, X. Yu, Y. Yin, et al., Characterization and com- plete genome analysis of the carbazomycin B-producing strain Streptomyces luteover- ticillatus SZJ61, Curr. Microbiol. 76 (2019) 982-987.

[35]

A.W. Struck, M.L. Thompson, L.S. Wong, J. Micklefield, S-adenosyl-methionine-de- pendent methyltransferases: highly versatile enzymes in bocatalysis, biosynthesis and other biotechnological applications, Chembiochem 13 (2012) 2642-2655.

[36]

Y. Byeon, H.J. Lee, H.Y. Lee, K. Back, Cloning and functional characterization of the arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin syn- thesis, J. Pineal. Res. 60 (2016) 65-73.

[37]

Y.M. Jeon, B.G. Kim, J.H. Ahn, Biological synthesis of 7-O-methyl apigenin from naringenin using Escherichia coli expressing two genes, J. Microbiol. Biotechnol. 19 (2009) 491-494.

[38]

A.B. Hazra, A.W. Han, A.P. Mehta, K.C. Mok, V. Osadchiy, T.P. Begley, et al., Anaer- obic biosynthesis of the lower ligand of vitamin B12, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 10792-10797.

[39]

B. Kepplinger, L. Mardiana, J. Cowell, S. Morton-Laing, Y. Dashti, C. Wills, et al., Discovery isolation, heterologous expression and mode-of-action studies of the an- tibiotic polyketide tatiomicin from Amycolatopsis sp. DEM30355, Sci. Rep. 12 (2022).

[40]

G.A. Payne, M.P. Brown, Genetics and physiology of aflation biosynthesis, Annu. Rev. Phytopathol. 36 (1998) 329-362.

[41]

J.L. Martin, F.M. McMillan, SAM (dependent) I AM: the S-adenosylmethionine-de- pendent methyltransferase fold, Curr. Opin. Struct. Biol. 12 (2002) 783-793.

[42]

N.P. Keller, H.C. Dischinger, D. Bhatnagar, T.E. Cleveland, A.H. Ullah, Purification of a 40-kilodalton methyltransferase active in the aflatoxin biosynthetic pathway, Appl. Environ. Microbiol. 59 (1993) 479-484.

[43]

N. Kallscheuer, M. Vogt, M. Bott, J. Marienhagen, Functional expression of plan- t-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin, J. Biotechnol. 258 (2017) 190-196.

[44]

D. Kalb, T. Heinekamp, S. Schieferdecker, M. Nett, A.A. Brakhage, D. Hoffmeister, An iterative O-methyltransferase catalyzes 1,11-dimethylation of Aspergillus fumigatus fumaric acid amides, Chembiochem 17 (2016) 1813-1817.

[45]

L.A.T. Allen, P. Natho, Trends in carbazole synthesis-an update (2013-2023), Org. Biomol. Chem. 45 (2023) 8956-8974.

[46]

L.M. Alkhalaf, K.S. Ryan, Biosynthetic manipulation of tryptophan in bacteria: path- ways and mechanisms, Chem. Biol. 22 (2015) 317-328.

[47]

S.A. Benner, A.M. Sismour, Synthetic biology, Nat. Rev. Genet. 6 (2005) 533-543.

[48]

S. Hirschi, T.R. Ward, W.P. Meier, D.J. Müller, D. Fotiadis, Synthetic Biology: bot- tom-up assembly of molecular systems, Chem. Rev. 122 (2022) 16294-16328.

[49]

G. Florova, G. Kazanina, K.A. Reynolds, Enzymes involved in fatty acid and polyke- tide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity, Biochemistry 41 (2002) 10462-10471.

[50]

H. Chen, H. Yamase, K. Murakami, C.W. Chang, L. Zhao, Z. Zhao, et al., Expres- sion, purification, and characterization of two N, N-dimethyltransferases, TylM1 and DesVI, involved in the biosynthesis of mycaminose and desosamine , Biochemistry 41 (2002) 9165-9183.

[51]

X.X. Xue, L. Chen, M.C. Tang, Genome mining discovery of a new benzazepine al- kaloid pseudofisnin A from the marine fungus Neosartorya pseudofischeri F27-1, An- tibiotics 11 (2022).

[52]

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, et al., Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583-589.

[53]

L.C. Ward, H.V. McCue, D.J. Rigden, N.M. Kershaw, C. Ashbrook, H. Hatton, et al., Carboxyl methyltransferase catalysed formation of mono-and dimethyl esters under aqueous conditions: application in cascade biocatalysis, Angew. Chem. 134 (2022).

[54]

L.C. Ward, E. Goulding, D.J. Rigden, F.E. Allan, A. Pellis, H. Hatton, et al., Engi- neering a carboxyl methyltransferase for the formation of a furan-based bioplastic precursor, ChemSusChem. 16 (2023).

[55]

X. Zheng, L. Lv, S. Lu, W. Wang, Z. Li, Benzannulation of indoles to carbazoles and its applications for syntheses of carbazole alkaloids, Org. Lett. 16 (2014) 5156-5159.

AI Summary AI Mindmap
PDF (2595KB)

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/