Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates

Xiaoyan Qi , Huangwei Cai , Xiaolei Wang , Ruijun Liu , Ting Cai , Sen Wang , Xueying Liu , Xia Wang

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100148

PDF (3662KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100148 DOI: 10.1016/j.engmic.2024.100148
Original Research Article
research-article

Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates

Author information +
History +
PDF (3662KB)

Abstract

Microbial fuel cells (MFCs) employing Pseudomonas putida B6-2 (ATCC BAA-2545) as an exoelectrogen have been developed to harness energy from various conventional substrates, such as acetate, lactate, glucose, and fructose. Owing to its metabolic versatility, P. putida B6-2 demonstrates adaptable growth rates on diverse, cost-effective carbon sources within MFCs, exhibiting distinct energy production characteristics. Notably, the anode chamber's pH rises with carboxylates' (acetate and lactate) consumption and decreases with carbohydrates' (glucose and fructose) utilization. The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m−2. Initial analysis revealed that P. putida B6-2 forms biofilms covered with nanowires, contributing to bioelectricity generation. These microbial nanowires are likely key players in direct extracellular electron transport through physical contact. This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems (BESs) utilizing P. putida as an exoelectrogen.

Keywords

Microbial fuel cell / Pseudomonas putida B6-2 / Multi-substrate biodegradation / Power generation / Extracellular electron transfer

Cite this article

Download citation ▾
Xiaoyan Qi, Huangwei Cai, Xiaolei Wang, Ruijun Liu, Ting Cai, Sen Wang, Xueying Liu, Xia Wang. Electricity generation by Pseudomonas putida B6-2 in microbial fuel cells using carboxylates and carbohydrate as substrates. Engineering Microbiology, 2024, 4(2): 100148 DOI:10.1016/j.engmic.2024.100148

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data generated or analyzed during this study are included in this published article (and its Supplementary Materials files).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT Authorship Contribution Statement

Xiaoyan Qi: Writing - original draft, Validation, Investigation, Formal analysis, Data curation. Huangwei Cai: Software, Writing - review & editing. Xiaolei Wang: Methodology, Investigation, Formal analysis. Ruijun Liu: Investigation, Formal analysis. Ting Cai: Investigation, Formal analysis. Sen Wang: Visualization. Xueying Liu: Writing - review & editing. Xia Wang: Writing - review & editing, Supervision, Resources, Funding acquisition, Conceptualization.

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (32070097 and 91951202), National Key Research and Development Program of China (2019YFA0904800).

References

[1]

N.M. Dowell, P.S. Fennell, N. Shah, et al., The role of CO 2 capture and utilization in mitigating climate change, Nat. Clim. Change 7 (2017) 243-249.

[2]

M.A. Abdulwahhab, S.T. Najim, M.A. Abdulwahhab, Microbial fuel cell review: ther- modynamic and infuencing factors, exoelectrogenic bacteria, anode and cathode configuration, J. Chem. Technol. Biot. 98 (2023) 1559-1583.

[3]

A.J. Slate, K.A. Whitehead, D.A.C. Brownson, et al., Microbial fuel cells: an overview of current technology, Renew. Sust. Energ. Rev. 3 (2010) 899-919.

[4]

M.C. Potter, A.D. Waller, Electrochemical effects accompanying the decomposition of organic compounds, Proc. Roy. Soc. Lond. 84 (1911) 260-276.

[5]

H. Wang, J. Park, Z.J. Ren, Practical energy harvesting for microbial fuel cells: a review, Environ. Sci. Technol. 49 (2015) 3267-3277.

[6]

D.F. Liu, W.W. Li, Potential-dependent extracellular electron transfer pathways of exoelectrogens, Curr. Opin. Chem. Biol. 59 (2020) 140-146.

[7]

S. Ishii, K. Watanabe, S. Yabuki, et al., Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell, Appl. Environ. Microbiol. 74 (2008) 7348-7355.

[8]

J.C. Biffinger, J. Pietron, O. Bretschger, et al., The influence of acidity on microbial fuel cells containing Shewanella oneidensis, Biosens. Bioelectron. 24 (2009) 900-905.

[9]

B. Lai, P.V. Bernhardt, J.O. Kr ӧmer, Cytochrome c reductase is a key enzyme in- volved in the extracellular electron transfer pathway towards transition metal com- plexes in Pseudomonas Putida, ChemSusChem 13 (2020) 5308-5317.

[10]

W. Wang, Q. Li, L. Zhang, et al., Genetic mapping of highly versatile and solvent-tol- erant Pseudomonas putida B6- 2 (ATCC BAA-2545) as a ’superstar’ for mineralization of PAHs and dioxin-like compounds, Environ. Microbiol. 23 (2021) 4309-4325.

[11]

A. Loeschcke, S. Thies, Pseudomonas putida -a versatile host for the production of natural products, Appl. Microbiol. Biotechnol. 99 (2015) 6197-6214.

[12]

M. Rahimnejad, N. Mokhtarian, G. Najafpour, et al., Effective parameters on perfor- mance of microbial fuel cell, Int. Conf. Environ. Comput. Sci. (2009) 28-30.

[13]

L. Moreno, M. Nemati, B. Predicala, Biokinetic evaluation of fatty acids degradation in microbial fuel cell type bioreactors, Bioprocess Biosyst. Eng. 38 (2015) 25-38.

[14]

X. Zhang, H. Wang, T. Xia, et al., Characterization of a new electrochemically ac- tive bacterium phylogenetically related to Alicyclobacillus hesperidum and its elec- trochemical performance in microbial fuel cell, Biosen. Bioelectron. 175 (2021) 112865.

[15]

S.D. Roller, H.P. Bennetto, G.M. Delaney, et al., Electron-transfer coupling in mi- crobial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria, J. Chem. Tech. Biotechnol. 34 (1984) 3-12.

[16]

B. Lai, P.V. Bernhardt, J.O. Kr ӧmer, Cytochrome c reductase is a key enzyme in- volved in the extracellular electron transfer pathway towards transition metal com- plexes in Pseudomonas Putida, ChemSusChem 13 (2020) 5308-5317.

[17]

S. Schmitz, S. Nies, N. Wierckx, et al., Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440, Front. Microbiol. 6 (2015) 284.

[18]

T.D. Askitosari, S.T. Boto, L.M. Blank, et al., Boosting heterologous phenazine pro- duction in Pseudomonas putida KT 2440 through the exploration of the natural se- quence space, Front. Microbiol. 10 (2019) 1990.

[19]

T.D. Askitosari, C. Berger, T. Tiso, et al., Coupling an electroactive Pseudomonas putida KT 2440 with bioelectrochemical rhamnolipid production, Microorganisms 8 (2020) 2-15.

[20]

A. Chukwubulkem, C. Berger, A. Mady, et al., Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system, Microb. Biotechnol. 14 (2021) 1613-1626.

[21]

X. Qi, H. Wang, X. Gao, et al., Efficient power recovery from aromatic compounds by a novel electroactive bacterium Pseudomonas putida B6- 2 in microbial fuel cells, J. Environ. Chem. Eng. 10 (2022) 108536.

[22]

S. Pinhal, D. Popers, J. Geiselmann, et al., Acetate metabolism and the inhibition of bacterial growth by acetate, J. Bacteriol. 201 (2019) 147-166.

[23]

M. Basan, S. Hui, H. Okano, et al., Overflow metabolism in Escherichia coli results from efficient proteome allocation, Nature 528 (2015) 99-104.

[24]

N. Li, R. Kakarla, B. Min, et al., Effect of influential factors on microbial growth and the correlation between current generation and biomass in an air cathode microbial fuel cell, Int. J. Hydrogen. Energ. 41 (2017) 20606-20614.

[25]

A. Zani, É.J.R. Almeida, J.P.R. Furlan, et al., Electrobiochemical skills of Pseu- domonas aeruginosa species that produce pyocyanin or pyoverdine for glycerol oxi- dation in a microbial fuel cell, Chemosphere 335 (2023) 139073.

[26]

F. Rojo, Carbon catabolite repression in Pseudomonas: optimizing metabolic versatil- ity and interactions with the environment, FEMS Microbiol. Rev. 20 (2010) 658-684.

[27]

T.D. Castillo, J.L. Ramos, J.J. Rodriguez-Herva, et al., Convergent peripheral path- ways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis, J. Bacteriol. 189 (2007) 5142-5152.

[28]

C. Ling, G.L. Peabody, D. Salvachua, et al., Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering, Nat. Commun. 13 (2022) 4925.

[29]

S. Yu, B. Lai, M.R. Plan, et al., Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydro- genase, Biotechnol. Bioeng. 115 (2018) 145-155.

[30]

A. Thygesen, F.W. Poulsen, B. Min, et al., The effect of different substrates and humic acid on power generation in microbial fuel cell operation, Bioresour. Technol. 100 (2009) 1186-1191.

[31]

T. Ouyang, X. Hu, X. Shi, et al., Mathematical modeling and performance evaluation of a cathodic bi-population microfluidic microbial fuel cell, Energ. Convers. Manage. 267 (2022) 115900.

[32]

X. Zhang, Li X, X. Zhao, et al., Factors affecting the efficiency of a bioelectrochemical system: a review, RSC Adv. 34 (2019) 19748-19761.

[33]

A. Weimer, M. Kohlstedt, D.C. Volke, et al., Industrial biotechnology of Pseudomonas putida: advances and prospects, Appl. Microbiol. Biotechnol. 104 (2020) 7745-7766.

[34]

L. Tao, H. Wang, M. Xie, et al., Improving mediated electron transport in anodic bioelectrocatalysis, Chem. Commun. 51 (2015) 12170-12173.

[35]

H. Wang, X. Qi, L. Zhang, et al., Efficient bioelectricity generation and carbazole biodegradation using an electrochemically active bacterium Sphingobium yanoikuyae XLDN2-5, Chemosphere 307 (2022) 135986.

[36]

G. Reguera, K.D. Mccarthy, T. Mehta, et al., Extracellular electron transfer via mi- crobial nanowires, Nature 435 (2005) 1098-1101.

[37]

E. Marsili, D.B. Baron, I.D. Shikhare, et al., Shewanella secretes flavins that mediate extracellular electron transfer, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 3968-3973.

[38]

S.D. Roller, H.P. Bennetto, G.M. Delaney, et al., Electron-transfer coupling in mi- crobial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria, J. Chem. Technol. 34 (1984) 3-12.

[39]

M.J. González-Pabón, E. Cortón, F. Figueredo, Sorting the main bottlenecks to use paper-based microbial fuel cells as convenient and practical analytical devices for environmental toxicity testing, Chemosphere 265 (2021) 129101.

[40]

S. Goel, From waste to watts in micro-devices: review on development of membraned and membraneless microfluidic microbial fuel cell, Appl. Mater. Today 11 (2018) 270-279.

[41]

D.R. Lovley, J. Yao, Intrinsically conductive microbial nanowires for “green” elec- tronics with novel functions, Trends Biotechnol. 39 (2021) 940-952.

[42]

X. Liu, S. Wang, A. Xu, et al., Biological synthesis of high-conductive pili in aer- obic bacterium Pseudomonas aeruginosa, Appl. Microbiol Biot. 103 (2019) 1535-1544.

[43]

J.C. Biffinger, J. Pietron, R. Ray, et al., A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes, Biosen. Bioelectron. 22 (2007) 1672-1679.

[44]

B. Huang, S. Gao, Z. Xu, et al., The functional mechanisms and application of electron shuttles in extracellular electron transfer, Curr. Microbiol. 75 (2018) 99-106.

[45]

K. Watanabe, M. Manefield, M. Lee, et al., Electron shuttles in biotechnology, Opin. Biotechnol. 20 (2009) 633-641.

[46]

T.J. Cameron, J.D. Coates, Review: direct and indirect electrical stimulation of mi- crobial metabolism Environ. Sci. Technol. 42 (2008) 3921-3931.

[47]

X.Y. Yong, D.Y. Shi, Y.L. Chen, et al., Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells, Biore- sour. Technol. 152 (2014) 220-224.

[48]

N. Meddings, J.R. Owen, N. Garcia-Araez, A simple, fast and accurate in-situ method to measure the rate of transport of redox species through membranes for lithium batteries, J. Power Sources 364 (2017) 148-155.

AI Summary AI Mindmap
PDF (3662KB)

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/