Role of the cathode chamber in microbial electrosynthesis: A comprehensive review of key factors

Ting Cai , Xinyu Gao , Xiaoyan Qi , Xiaolei Wang , Ruijun Liu , Lei Zhang , Xia Wang

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100141

PDF (2516KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (3) : 100141 DOI: 10.1016/j.engmic.2024.100141
Original article
research-article

Role of the cathode chamber in microbial electrosynthesis: A comprehensive review of key factors

Author information +
History +
PDF (2516KB)

Abstract

The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide (CO2) emissions, posing an ongoing threat to the ecological security of the Earth. Microbial electrosynthesis (MES) is an innovative energy regeneration strategy that offers a gentle and efficient approach to converting CO2 into high-value products. The cathode chamber is a vital component of an MES system and its internal factors play crucial roles in improving the performance of the MES system. Therefore, this review aimed to provide a detailed analysis of the key factors related to the cathode chamber in the MES system. The topics covered include inward extracellular electron transfer pathways, cathode materials, applied cathode potentials, catholyte pH, and reactor configuration. In addition, this review analyzes and discusses the challenges and promising avenues for improving the conversion of CO2 into high-value products via MES.

Keywords

Microbial electrosynthesis / Energy regeneration / CO2 reduction / Cathode chamber / Electroactive bacteria

Cite this article

Download citation ▾
Ting Cai, Xinyu Gao, Xiaoyan Qi, Xiaolei Wang, Ruijun Liu, Lei Zhang, Xia Wang. Role of the cathode chamber in microbial electrosynthesis: A comprehensive review of key factors. Engineering Microbiology, 2024, 4(3): 100141 DOI:10.1016/j.engmic.2024.100141

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Ting Cai: Writing - original draft, Visualization, Validation, Methodology, Investigation, Data curation. Xinyu Gao: Writing - review & editing, Conceptualization. Xiaoyan Qi: Visualization, Methodology. Xiaolei Wang: Validation, Investigation. Ruijun Liu: Formal analysis, Data curation. Lei Zhang: Validation, Data curation. Xia Wang: Writing - review & editing, Supervision, Resources, Project administration, Conceptualization.

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (32070097 and 91951202) and National Key Research and Development Program of China (2019YFA0904800).

References

[1]

C. Jiakui, J. Abbas, H. Najam, J. Liu, J. Abbas, Green technological innovation, green finance, and financial development and their role in green total factor pro- ductivity: empirical insights from China, J. Clean. Prod. 382 (2023) 135131.

[2]

H.C. Chin, W.W. Choong, S.R.W. Alwi, A.H. Mohammed, Issues of social acceptance on biofuel development, J. Clean. Prod. 71 (2014) 30-39.

[3]

L. Zhao, Z. Sun, C.C. Zhang, J. Nan, N. Ren, D.J. Lee, C. Chen, Advances in pre- treatment of lignocellulosic biomass for bioenergy production: challenges and per- spectives, Bioresour. Technol. 343 (2022) 126123.

[4]

F. Rossi, E.J. Olguín, L. Diels, R. De Philippis, Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification, New Biotechnol. 32 (2015) 109-120.

[5]

A. Elmekawy, H.M. Hegab, G. Mohanakrishna, A.F. Elbaz, M. Bulut, D. Pant, Tech- nological advances in CO2 conversion electro-biorefinery: a step toward commer- cialization, Bioresour. Technol. 215 (2016) 357-370.

[6]

C. Stewart, M.A. Hessami, A study of methods of carbon dioxide capture and seques- tration: the sustainability of a photosynthetic bioreactor approach, Energ. Convers. Manage. 46 (2005) 403-420.

[7]

V. Garilli, R. Rodolfo-Metalpa, D. Scuderi, L. Brusca, D. Parrinello, S.P.S. Rastrick, A. Foggo, R.J. Twitchett, J.M. Hall-Spencer, M. Milazzo, Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans, Nat. Clim. Change. 5 (2015) 678-682.

[8]

K. Kaiho, An animal crisis caused by pollution, deforestation, and warming in the late 21st century and exacerbation by nuclear war, Heliyon 9 (2023) e15221.

[9]

H. Luo, S. Wang, X. Meng, G. Yuan, X. Song, Z. Liang, Hollow viologen-based porous organic polymer for catalytic cycloaddition of CO2, Mater. Chem. Front. 7 (2023) 2277-2285.

[10]

L. Zhang, E.Q. Gao, Catalytic C(sp)-H carboxylation with CO2, Coordin, Chem. Rev. 486 (2023) 215138.

[11]

H. Wu, H.J. Pan, Z. Li, T. Liu, F. Liu, S. Xiu, J. Wang, H. Wang, Y. Hou, B. Yang, L. Lei, J. Lian, Efficient production of lycopene from CO2 via microbial electrosyn- thesis, Chem. Eng. J. 430 (2022) 132943.

[12]

S. Liu, H. Zhou, Z. Lin, Z. Ma, Y. Wang, Activated carbon-supported Mo-Co-K sulfide catalysts for synthesizing higher alcohols from CO2, Chem. Eng. Technol. 42 (2019) 962-970.

[13]

T. Yuan, Z. Wu, S. Zhai, R. Wang, S. Wu, J. Cheng, M. Zheng, X. Wang, Photo- synthetic fixation of CO2 in alkenes by heterogeneous photoredox catalysis with visible light, Angew. Chem. 62 (2023) e202304861.

[14]

R. Verma, R. Belgamwar, P. Chatterjee, R. Bericat-Vadell, J. , V. Polshettiwar, Nickel-laden dendritic plasmonic colloidosomes of black gold: forced plasmon me- diated photocatalytic CO2 hydrogenation, ACS Nano 17 (2023) 4526-4538.

[15]

L. Xue, Q. Fan, Y. Zhao, Y. Liu, H. Zhang, M. Sun, Y. Wang, S. Zeng, Ultralow Ag-as- sisted carbon-carbon coupling mechanism on Cu-based catalysts for electrocatalytic CO2 reduction, J. Energy Chem. 82 (2023) 414-422.

[16]

A. Karelovic, A. Bargibant, C. Fernández, P. Ruiz, Effect of the structural and mor- phological properties of Cu/ZnO catalysts prepared by citrate method on their ac- tivity toward methanol synthesis from CO2 and H2 under mild reaction conditions, Catal. Today 197 (2012) 109-118.

[17]

B. Kumar, M. Llorente, J.D. Froehlich, T.T. Dang, A.J. Sathrum, C.P. Kubiak, Pho- tochemical and photoelectrochemical reduction of CO2, Annu. Rev. Phys. Chem. 63 (2012) 541-569.

[18]

E. Gao, J. Wu, P. Ye, H. Qiu, H. Chen, Z. Fang, Rewiring carbon flow in Synechocystis PCC 6803 for a high rate of CO2 -to-ethanol under an atmospheric environment, Front. Microbiol. 14 (2023) 1211004.

[19]

S. Cantera, F. Di Benedetto, B.F. Tumulero, D.Z. Sousa, Microbial conversion of carbon dioxide and hydrogen into the fine chemicals hydroxyectoine and ectoine, Bioresour. Technol. 374 (2023) 128753.

[20]

L. Luan, X. Ji, B. Guo, J.L. Cai, W. Dong, Y. Huang, S. Zhang, Bioelectrocatalysis for CO2 reduction: recent advances and challenges to develop a sustainable system for CO2 utilization, Biotechnol. Adv. 63 (2023) 108098.

[21]

T. Huang, Y. Ma, Advances in biosynthesis of higher alcohols in Escherichia coli, World J. Microbiol. Biotechnol. 39 (2023) 1-13.

[22]

K. Rabaey, R.A. Rozendal, Microbial electrosynthesis —Revisiting the electrical route for microbial production, Nat. Rev. Microbiol. 8 (2010) 706-716.

[23]

X. Christodoulou, T. Okoroafor, S. Parry, S. Velasquez-Orta, The use of carbon diox- ide in microbial electrosynthesis: advancements, sustainability and economic fea- sibility, J. Co2 Util. 18 (2017) 390-399.

[24]

T.Q. Le, Recent applications and strategies to enhance performance of electrochem- ical reduction of CO2 gas into value-added chemicals catalyzed by whole-cell bio- catalysts, Processes 11 (2023) 766.

[25]

W. Bai, T.O. Ranaivoarisoa, R. Singh, K. Rengasamy, A. Bose, n-Butanol production by Rhodopseudomonas palustris TIE-1, Commun. Biol. 4 (2021) 1275.

[26]

D. Wang, Q. Liang, N. Chu, R.J. Zeng, Y. Jiang, Deciphering mixotrophic microbial electrosynthesis with shifting product spectrum by genome-centric metagenomics, Chem. Eng. J. 451 (2023) 139010.

[27]

S.A. Patil, S. Gildemyn, D. Pant, K. Zengler, B.E. Logan, K. Rabaey, A logical data representation framework for electricity-driven bioproduction processes, Biotech- nol. Adv. 33 (2015) 736-744.

[28]

G. Baek, J. Kim, S. Lee, C. Lee, Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane, Bioresour. Technol. 241 (2017) 1201-1207.

[29]

J.N. Hengsbach, B. Sabel-Becker, R. Ulber, D. Holtmann, Microbial electrosynthesis of methane and acetate —Comparison of pure and mixed cultures, App. Microbiol. Biotechnol. 106 (2022) 4427-4443.

[30]

C.W. Marshall, D.E. Ross, E.B. Fichot, R.S. Norman, H.D. May, Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes, Environ. Sci. Technol. 47 (2013) 6023-6029.

[31]

X. Chen, Y. Cao, F. Li, Y. Tian, H. Song, Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered Ralstonia eutropha, ACS Catal. 8 (2018) 4429-4437.

[32]

M. Roy, R. Yadav, P.V. Chiranjeevi, S.A. Patil, Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis, Bioresour. Technol. 320 (2021) 124289.

[33]

K. Zhang, Z. Qiu, D. Luo, T.-s. Song, J. Xie, Hybrid electron donors of ethanol and lactate stimulation chain elongation in microbial electrosynthesis with different inoculants, Renew. Energ. 202 (2023) 942-951.

[34]

Y. Tashiro, S. Hirano, M.M. Matson, S. Atsumi, A. Kondo, Electrical-biological hy- brid system for CO2 reduction, Metab. Eng. 47 (2018) 211-218.

[35]

S. Singh, M.T. Noori, N. Verma, Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system, Electrochim. Acta 338 (2020) 135887.

[36]

P.L. Tremblay, T. Zhang, Electrifying microbes for the production of chemicals, Front. Microbiol. 6 (2015) 201.

[37]

C. Liu, B.E. Colón, P.A. Silver, D.G. Nocera, Solar-powered CO2 reduction by a hybrid biological | inorganic system, J. Photoch. Photobio. A. 358 (2017) 411-415.

[38]

S.D. Molenaar, A.R. Mol, T. Sleutels, A.t. Heijne, C.J.N. Buisman, Microbial rechargeable battery: energy storage and recovery through acetate, Environ. Sci. Tech. Let. 3 (2016) 144-149.

[39]

Y. Xiang, G. Liu, R. Zhang, Y. Lu, H.-p. Luo, High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane, Bioresour. Technol. 233 (2017) 227-235.

[40]

N.J. Claassens, C.A.R. Cotton, D. Kopljar, A. Bar-Even, Making quantitative sense of electromicrobial production, Nat. Catal. 2 (2019) 437-447.

[41]

A. Sydow, T.M. Krieg, F. Mayer, J. Schrader, D. Holtmann, Electroactive bac- teria —Molecular mechanisms and genetic tools, Appl. Microbiol. Biotechnol. 98 (2014) 8481-8495.

[42]

R. Karthikeyan, R. Singh, A. Bose, Microbial electron uptake in microbial elec- trosynthesis: a mini-review, J. Ind. Microbiol. Biotechnol. 46 (2019) 1419-1426.

[43]

K.P. Nevin, T.L. Woodard, A.E. Franks, Z.M. Summers, D.R. Lovley, Microbial elec- trosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, MBio 1 (2010) e00103-e00110.

[44]

K.P. Nevin, S.A. Hensley, A.E. Franks, Z.M. Summers, J. Ou, T.L. Woodard, O. Snoeyenbos-West, D.R. Lovley, Electrosynthesis of organic compounds from car- bon dioxide is catalyzed by a diversity of acetogenic microorganisms, Appl. Envi- ron. Microbiol. 77 (2011) 2882-2886.

[45]

F. Mayer, F. Enzmann, A.M. López, D. Holtmann, Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide, Bioresour. Technol. 289 (2019) 121706.

[46]

S. Cheng, D. Xing, D.F. Call, B.E. Logan, Direct biological conversion of electrical current into methane by electromethanogenesis, Environ. Sci. Technol. 43 (2009) 3953-3958.

[47]

N.M. Tefft, M.A. Teravest, Reversing an extracellular electron transfer pathway for electrode-driven acetoin reduction, ACS Synth. Biol. 8 (2019) 1590-1600.

[48]

J. Feng, M. Jiang, K. Li, Q. Lu, S. Xu, X. Wang, K. Chen, P. Ouyang, Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli, Bioelec- trochemistry 134 (2020) 107498.

[49]

C.W. Marshall, D.E. Ross, E.B. Fichot, R.S. Norman, H.D. May, Electrosynthesis of commodity chemicals by an autotrophic microbial community, Appl. Environ. Microbiol. 78 (2012) 8412-8420.

[50]

F. Kracke, J.S. Deutzmann, W. Gu, A.M. Spormann, In situ electrochemical H2 pro- duction for efficient and stable power-to-gas electromethanogenesis, Green Chem. 22 (2020) 6194-6203.

[51]

R.M. Rodrigues, X. Guan, J.A. Iñiguez, D.A. Estabrook, J.O. Chapman, S. Huang, E. M. Sletten, C. Liu, Perfluorocarbon nanoemulsion promotes the delivery of reduc- ing equivalents for electricity-driven microbial CO2 reduction, Nat. Catal. 2 (2019) 407-414.

[52]

S. Bajracharya, A. Krige, L. Matsakas, U. Rova, P. Christakopoulos, Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosyn- thesis using Sporomusa ovata, Chemosphere 287 (2022) 132188.

[53]

H. Li, P.H. Opgenorth, D.G. Wernick, S.L. Rogers, T.Y. Wu, W. Higashide, P. Malati, Y. X. Huo, K.M. Cho, J.C. Liao, Integrated electromicrobial conversion of CO2 to higher alcohols, Science 335 (2012) 1596.

[54]

K. Sasaki, Y. Tsuge, D. Sasaki, A. Kondo, Increase in lactate yield by growing Corynebacterium glutamicum in a bioelectrochemical reactor, J. Biosci. Bioeng. 117 (2014) 598-601.

[55]

H. Seelajaroen, M. Haberbauer, C. Hemmelmair, A. Aljabour, L.M. Dumitru, A.W. Hassel, N.S. Sariciftci, Enhanced bio-electrochemical reduction of carbon dioxide by using neutral red as a redox mediator, Chembiochem 20 (2019) 1196-1205.

[56]

J. Song, Y. Kim, M.R. Lim, H.J. Lee, J.I. Lee, W. Shin, Microbes as electrochemical CO2 conversion catalysts, ChemSusChem 4 (2011) 587-590.

[57]

M.S. Guzman, K. Rengasamy, M.M. Binkley, C. Jones, T.O. Ranaivoarisoa, R. Singh, D. A. Fike, J.M. Meacham, A. Bose, Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris, Nat. Commun. 10 (2019) 1355.

[58]

A. Bose, E.J. Gardel, C. Vidoudez, E. Parra, P.R. Girguis, Electron uptake by iron-ox- idizing phototrophic bacteria, Nat. Commun. 5 (2014) 3391.

[59]

H. Li, J.C. Liao, Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels, Energy Environ. Sci. 6 (2013) 2892-2899.

[60]

A.R. Khan, W. Wang, A.R. Altaf, S. Shaukat, H. Zhang, A.u. Rehman, Z. Jun, L. Peng, Facial synthesis, stability, and interaction of Ti3 C2 Tx @PC composites for high-per- formance biocathode microbial electrosynthesis systems, ACS Omega 33 (2023) 29949-29958.

[61]

M. Villano, F. Aulenta, C. Ciucci, T. Ferri, A. Giuliano, M. Majone, Bioelectrochem- ical reduction of CO2 to CH4 via direct and indirect extracellular electron trans- fer by a hydrogenophilic methanogenic culture, Bioresour. Technol. 101 (2010) 3085-3090.

[62]

E. Blanchet, F. Duquenne, Y. Rafrafi, L. Etcheverry, B. Erable, A. Bergel, Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction, Energy Environ. Sci. 8 (2015) 3731-3744.

[63]

E.M. Nichols, J.J. Gallagher, C. Liu, Y. Su, J. Resasco, Y. Yu, Y. Sun, P. Yang, M. C.Y. Chang, C.J. Chang, Hybrid bioinorganic approach to solar-to-chemical con- version,Proc. Natl. Acad. Sci. USA. 112 (2015) 11461-11466.

[64]

J. Zhang, H. Liu, Y. Zhang, B. Fu, C. Zhang, M.H. Cui, P. Wu, Z.W. Guan, Meta- transcriptomic insights into the microbial electrosynthesis of acetate by Fe2+ /Ni2+ addition, World J. Microbiol. Biotechnol. 39 (2023) 109.

[65]

V. Radu, S. Frielingsdorf, S. Evans, O. Lenz, L.J.C. Jeuken, Enhanced oxygen-toler- ance of the full heterotrimeric membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha, J. Am. Chem. Soc. 136 (2014) 8512-8515.

[66]

J. Fritsch, P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B.r. Friedrich, O. Lenz, C. M.T. Spahn, The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre, Nature 479 (2011) 249-252.

[67]

E. Schwartz, A. Henne, R. Cramm, T. Eitinger, B.r. Friedrich, G. Gottschalk, Com- plete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encod- ing key enzymes of H2 -based lithoautotrophy and anaerobiosis, J. Mol. Biol. 332 (2003) 369-383.

[68]

Z. Li, X. Xin, B. Xiong, D. Zhao, X. Zhang, C. Bi, Engineering the Calvin-Ben- son-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for im- proved autotrophic growth and polyhydroxybutyrate production, Microb. Cell Fact. 19 (2020) 228.

[69]

L. Lauterbach, O. Lenz, Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2, J. Am. Chem. Soc. 135 (2013) 17897-17905.

[70]

O. Lenz, M. Ludwig, T. Schubert, I. Bürstel, S. Ganskow, T. Goris, A. Schwarze, B. r. Friedrich, H 2 conversion in the presence of O2 as performed by the mem- brane-bound [NiFe]-hydrogenase of Ralstonia eutropha, Chemphyschem 11 (2010) 1107-1019.

[71]

Z. Ma, D. Liu, M. Liu, Y. Cao, H. Song, From CO2 to high value-added products: advances on carbon sequestration by Ralstonia eutropha H16, Chin. Sci. B-Chin. 66 (2021) 4218-4230.

[72]

O.A. Adesina, I.A. Anzai, J.L. Avalos, B. Barstow, Embracing biological solutions to the sustainable energy challenge, Chem 2 (2017) 20-51.

[73]

A.J. Abel, D.S. Clark, A comprehensive modeling analysis of formate-mediated mi- crobial electrosynthesis, ChemSusChem 14 (2021) 344-355.

[74]

N.J. Claassens, I. Sánchez-Andrea, D.Z. Sousa, A. Bar-Even, Towards sustainable feedstocks: a guide to electron donors for microbial carbon fixation, Curr. Opin. Biotechnol. 50 (2018) 195-205.

[75]

J.D. Cha, H. Bak, I. Kwon, Hydrogen-fueled CO2 reduction using oxygen-tolerant oxidoreductases, Front. Bioeng. Biotechnol. 10 (2023) 1078164.

[76]

Z. Qiu, K. Zhang, X.L. Li, T.-s. Song, J. Xie, Sn promotes formate production to enhance microbial electrosynthesis of acetate via indirect electron transport, Biochem. Eng. J. 192 (2023) 108842.

[77]

P. Gupta, N. Verma, Conversion of CO2 to formate using activated carbon fiber-supported g-C3 N4 -NiCoWO4 photoanode in a microbial electrosynthesis system, Chem. Eng. J. 446 (2022) 137029.

[78]

O. Yishai, S.N. Lindner, J. González de la Cruz, H. Tenenboim, A. Bar-Even, The formate bio-economy, Curr. Opin. Chem. Biol. 35 (2016) 1-9.

[79]

T. Warnecke, R.T. Gill, Organic acid toxicity, tolerance, and production in Es- cherichia coli biorefining applications, Microb. Cell Fact. 4 (2005) 25.

[80]

P. Nicholls, Formate as an inhibitor of cytochrome c oxidase, Biochem. Biophys. Res. Commun. 67 (1975) 610-616.

[81]

M. Stöckl, S. Harms, I. Dinges, S. Dimitrova, D. Holtmann, From CO2 to bioplastic-coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis, ChemSusChem 13 (2020) 4086-4093.

[82]

Y. Li, S. Qiao, M.Z. Guo, C. Hou, J. Wang, C. Yu, J.-t. Zhou, X. Quan, Microbial electrosynthetic nitrate reduction to ammonia by reversing the typical electron transfer pathway in Shewanella oneidensis, Cell Rep. Phys. Sci. 4 (2023) 101433.

[83]

A. Franco, M. Elbahnasy, M.A. Rosenbaum, Screening of natural phenazine produc- ers for electroactivity in bioelectrochemical systems, Microb. Biotechnol. 16 (2023) 579-594.

[84]

C.R. Lee, C. Kim, Y.E. Song, H.S. Im, Y.K. Oh, S. Park, J.R. Kim, Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporo- musa ovata via a reducing-equivalent transfer mediator, Bioresour. Technol. 259 (2018) 128-135.

[85]

K.J.J. Steinbusch, H.V.M. Hamelers, J.D. Schaap, C. Kampman, C.J.N. Buisman, Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures, Environ. Sci. Technol. 44 (2010) 513-517.

[86]

B.N. Ha, D.M. Pham, D. Masuda, T. Kasai, A. Katayama, Humin-promoted microbial electrosynthesis of acetate from CO2 by Moorella thermoacetica, Biotechnol. Bioeng. 119 (2022) 3487-3496.

[87]

J. Zhang, H. Liu, Y. Zhang, B. Fu, C. Zhang, M.-h. Cui, P. Wu, C. Chen, Enhanced CO2 reduction by electron shuttle molecules via coupling different electron trans- port processes in microbial electrosynthesis, Fermentation 9 (2023) 679.

[88]

J. Feng, Q. Lu, K. Li, S. Xu, X. Wang, K. Chen, P. Ouyang, Construction of an electron transfer mediator pathway for bioelectrosynthesis by Escherichia coli, Front. Bioeng. Biotechnol. 8 (2020) 590667.

[89]

S. Li, Y.E. Song, J. Baek, H.S. Im, M. Sakuntala, M. Kim, C. Park, B. Min, J.R. Kim, Bioelectrosynthetic conversion of CO2 using different redox mediators: electron and carbon balances in a bioelectrochemical system, Energies 13 (2020) 2572.

[90]

E.L. Cava, A. Guionet, J. Saito, A. Okamoto, Involvement of proton transfer for carbon dioxide reduction coupled with extracellular electron uptake in Shewanella oneidensis MR-1, Electroanalysis 32 (2020) 1659-1663.

[91]

D. Min, L. Cheng, F. Zhang, X.N. Huang, D.B. Li, D.F. Liu, T.C. Lau, Y. Mu, H. Yu, Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degra- dation, Environ. Sci. Technol. 51 (2017) 5082-5089.

[92]

C. Ma, N. He, Y. Zhao, D. Xia, J. Wei, W. Kang, Antimicrobial mechanism of hy- droquinone, Appl. Biochem. Biotechnol. 189 (2019) 1291-1303.

[93]

M. Rudnicka, M. Ludynia, W. Karcz, Effects of naphthazarin (DHNQ) combined with lawsone (NQ-2-OH) or 1,4-naphthoquinone (NQ) on the auxin-induced growth of zea mays L. Coleoptile Segments, Int. J. Mol. Sci. 20 (2019) 1788.

[94]

B. Bian, S. Bajracharya, J. Xu, D. Pant, P.E. Saikaly, Microbial electrosynthesis from CO2: challenges, opportunities and perspectives in the context of circular bioecon- omy, Bioresour. Technol. 302 (2020) 122863.

[95]

N. Aryal, F. Ammam, S.A. Patil, D. Pant, An overview of cathode materials for mi- crobial electrosynthesis of chemicals from carbon dioxide, Green Chem. 19 (2017) 5748-5760.

[96]

L. Chen, L. Chen, P.L. Tremblay, S. Mohanty, K. Xu, T. Zhang, T. Zhang, Electrosyn- thesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide-tetraethylene pentamine, J. Mater. Chem. A 4 (2016) 8395-8401.

[97]

T. Noori, M.T. Vu, R.B. Ali, B. Min, Recent advances in cathode materials and con- figurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion, Chem. Eng. J. 392 (2020) 123689.

[98]

S. Bajracharya, A. Krige, L. Matsakas, U. Rova, P. Christakopoulos, Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation, Bioresour. Technol. 354 (2022) 127178.

[99]

Z.J. Shi, M. Ma, Synthesis,structure, and applications of lignin-based carbon mate- rials: a review, Sci. Adv. Mater. 11 (2019) 18-32.

[100]

J. Li, D. Yin, Y.W. Qin, Carbon materials: structures, properties synthesis and ap- plications, Manuf. Rev. 10 (2023) 13.

[101]

K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol. 39 (2005) 8077-8082.

[102]

J. Liu, Y. Qiao, C.X. Guo, S. Lim, H. Song, C.M. Li, Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells, Bioresour. Technol. 114 (2012) 275-280.

[103]

X. Qi, X. Jia, Y. Wang, P. Xu, M. Li, B. Xi, Y. Zhao, Y. Zhu, F. Meng, M. Ye, Develop- ment of a rapid startup method of direct electron transfer-dominant methanogenic microbial electrosynthesis, Bioresour. Technol. 358 (2022) 127385.

[104]

S.A. Patil, J.B.A. Arends, I. Vanwonterghem, J. van Meerbergen, K. Guo, G.W. Tyson, K. Rabaey, Selective enrichment establishes a stable performing com- munity for microbial electrosynthesis of acetate from CO2, Environ. Sci. Technol. 49 (2015) 8833-8843.

[105]

H.T. Nguyen, B. Min, Using multiple carbon brush cathode in a novel tubular pho- tosynthetic microbial fuel cell for enhancing bioenergy generation and advanced wastewater treatment, Bioresour. Technol. 316 (2020) 123928.

[106]

B. Bian, M.F. Alqahtani, K.P. Katuri, D. Liu, S. Bajracharya, Z. Lai, K. Rabaey, P.E. Saikaly, Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata, J. Mater. Chem. A 6 (2018) 17201-17211.

[107]

N. Aryal, L. Wan, M.H. Overgaard, A.C. Stoot, Y. Chen, P.L. Tremblay, T. Zhang, In- creased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode, Bioelectro- chemistry 128 (2019) 83-93.

[108]

Z. Dong, H. Wang, S. Tian, Y. Yang, H. Yuan, Q. Huang, T.S. Song, J. Xie, Flu- idized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide, Bioresour. Technol. 269 (2018) 203-209.

[109]

V. Flexer, L. Jourdin, Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide, Acc. Chem. Res. 53 (2020) 311-321.

[110]

K. Tahir, W. Miran, J. Jang, N.C. Maile, A. Shahzad, M. Moztahida, A.A. Ghani, B. Kim, H. Jeon, D.S. Lee, MXene-coated biochar as potential biocathode for im- proved microbial electrosynthesis system, Sci. Total Environ. 773 (2021) 145677.

[111]

G.S. Lekshmi, K. Bazaka, S. Ramakrishna, V. Kumaravel, Microbial electrosynthe- sis: carbonaceous electrode materials for CO2 conversion, Mater. Horiz. 10 (2022) 292-312.

[112]

N. Aryal, A. Halder, P.L. Tremblay, Q. Chi, T. Zhang, Enhanced microbial elec- trosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis, Electrochim. Acta 217 (2016) 117-122.

[113]

N. Hu, L. Wang, M. Liao, K. Liu, Research on electrocatalytic reduction of CO2 by microorganisms with a graphene modified carbon felt, Int. J. Hydrogen Energ. 46 (2020) 6180-6187.

[114]

P. Izadi, J.M. Fontmorin, B. Virdis, I.M. Head, E.H. Yu, The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial elec- trosynthesis, Appl. Energ. 283 (2020) 116310.

[115]

M.F. Alqahtani, S. Bajracharya, K.P. Katuri, M. Ali, J. Xu, M.S. Alarawi, P.E. Saikaly, Enrichment of salt-tolerant CO2 -fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply, Sci. Total Environ. 766 (2020) 142668.

[116]

N. Aryal, A. Halder, M. Zhang, P.R. Whelan, P.L. Tremblay, Q. Chi, T. Zhang, Free- standing and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion, Sci. Rep. 7 (2017) 9107.

[117]

R. Mateos, A. Sotres, R.M. Alonso, A. Escapa, A. Morán, Impact of the start-up process on the microbial communities in biocathodes for electrosynthesis, Bioelec- trochemistry 121 (2018) 27-37.

[118]

J. Zhang, H. Liu, Y. Zhang, P. Wu, J. Li, P. Ding, Q. Jiang, M.-h. Cui, Heterotrophic precultivation is a better strategy than polarity reversal for the startup of acetate microbial electrosynthesis reactor, Biochem. Eng. J. 179 (2021) 108319.

[119]

E. Labelle, H.D. May, Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate, Front. Microbiol. 8 (2017) 756.

[120]

S. Zhang, J. Jiang, H. Wang, F. Li, T. Hua, W. Wang, A review of microbial elec- trosynthesis applied to carbon dioxide capture and conversion: the basic principles, electrode materials, and bioproducts, J. Co2 Util. 51 (2021) 101640.

[121]

D. Wu, L. Huang, X. Quan, G.L. Puma, Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in micro- bial fuel cells, J. Power Sources 307 (2016) 705-714.

[122]

G. Baek, L. Shi, R. Rossi, B.E. Logan, Using copper-based biocathodes to improve carbon dioxide conversion efficiency into methane in microbial methanogenesis cells, Chem. Eng. J. 435 (2022) 135076.

[123]

L. Wang, Z. He, Z. Guo, T. Sangeetha, C. Yang, L. Gao, A. Wang, W. Liu, Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system, J. Power Sources 444 (2019) 227306.

[124]

S. Bause, M. Decker, P. Neubauer, W. Vonau, Optimization of the chemolithoau- totrophic biofilm growth of Cupriavidus necator by means of electrochemical hy- drogen synthesis, Chem. Pap. 72 (2018) 1205-1211.

[125]

F. Kracke, J.S. Deutzmann, B.S. Jayathilake, S.H. Pang, S. Chandrasekaran, S.E. Baker, A.M. Spormann, Efficient hydrogen delivery for microbial electrosyn- thesis via 3D-printed cathodes, Front. Microbiol. 12 (2021) 696473.

[126]

S. Das, S.K. Das, M.M. Ghangrekar, Application of TiO2 and Rh as cathode cat- alyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration, Process Biochem. 101 (2021) 237-246.

[127]

P.S. Liu, A new method for calculating the specific surface area of porous metal foams, Phil. Mag. Lett. 90 (2010) 447-453.

[128]

Y. Zhan, S. Zeng, H. Bian, Z. Li, Z. Xu, J. Lu, Y.Y. Li, Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance, Nano Res. 9 (2016) 2364-2371.

[129]

S. Sen, D. Liu, G.T.R. Palmore, Electrochemical reduction of CO 2 at copper nanofoams, 2014.

[130]

Q. Wang, L. Huang, H. Yu, X. Quan, Y. Li, G. Fan, L. Li, Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells, Int. J. Hydrogen Energ. 40 (2015) 184-196.

[131]

C. Dumas, A. Mollica, D. Féron, R. Basséguy, L. Etcheverry, A. Bergel, Marine mi- crobial fuel cell: use of stainless steel electrodes as anode and cathode materials, Electrochim. Acta 53 (2007) 468-473.

[132]

F. Liu, S. Feng, S. Xiu, B. Yang, Y. Hou, L. Lei, Z. Li, Co anchored on por- phyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2 -mediated microbial electrosynthesis, Front. Chem. Sci. Eng. 16 (2022) 1761-1771.

[133]

J.P. Torella, C.J. Gagliardi, J.S. Chen, D.K. Bediako, B.C. Colón, J.C. Way, P.A. Sil- ver, D.G. Nocera, Efficient solar-to-fuels production from a hybrid microbial-wa- ter-splitting catalyst system, Natl. Acad. Sci. USA. 112 (2015) 2337-2342.

[134]

C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting-biosyn- thetic system with CO2 reduction efficiencies exceeding photosynthesis, Science 352 (2016) 1210-1213.

[135]

A.H. Anwer, N. Khan, M.F. Umar, M. Rafatullah, M.Z. Khan, Electrodeposited hy- brid biocathode-based CO2 reduction via microbial electro-catalysis to biofuels, Membranes 11 (2021) 223.

[136]

M. Li, S. Garg, X. Chang, L. Ge, L. Li, M. Konarova, T.E. Rufford, V. Rudolph, G.G.X. Wang, Toward excellence of transition metal-based catalysts for CO2 elec- trochemical reduction: an overview of strategies and rationales, Small Methods 4 (2020) 2000033.

[137]

N. Khan, A.H. Anwer, M.D. Khan, A. Azam, A.O. Ibhadon, M.Z. Khan, Magnesium ferrite spinels as anode modifier for the treatment of congo red and energy recovery in a single chambered microbial fuel cell, J. Hazard. Mater. 410 (2020) 124561.

[138]

H. Nie, T. Zhang, M. Cui, H. Lu, D.R. Lovley, T.P. Russell, Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells, Phys. Chem. Chem. Phys. 15 (2013) 14290-14294.

[139]

Q. Fu, Y.T. He, Z. Li, J.Y. Li, L. Zhang, X. Zhu, Q. Liao, Direct CO2 delivery with hollow stainless steel/graphene foam electrode for enhanced methane production in microbial electrosynthesis, Energ. Convers. Manage. 268 (2022) 116018.

[140]

A. Tharak, S.V. Mohan, Electrotrophy of biocathodes regulates microbial-electro-catalyzation of CO2 to fatty acids in single chambered system, Bioresour. Technol. 320 (2020) 124272.

[141]

J.A. Modestra, S.V. Mohan, Capacitive biocathodes driving electrotrophy towards enhanced CO2 reduction for microbial electrosynthesis of fatty acids, Bioresour. Technol. 294 (2019) 122181.

[142]

K. Tahir, W. Miran, J. Jang, A. Shahzad, M. Moztahida, B. Kim, D.S. Lee, A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance, Chem. Eng. J. 381 (2020) 122687.

[143]

J. Li, Z. Li, S. Xiao, Q. Fu, H. Kobayashi, L. Zhang, Q. Liao, X. Zhu, Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis, J. Co2 Util. 35 (2020) 169-175.

[144]

Q. Fu, S. Xiao, Z. Li, Y. Li, H. Kobayashi, J. Li, Y. Yang, Q. Liao, X. Zhu, X. He, D. Ye, L. Zhang, M. Zhong, Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%, Nano Energy 53 (2018) 232-239.

[145]

R.C. Wagner, D.F. Call, B.E. Logan, Optimal set anode potentials vary in bioelec- trochemical systems, Environ. Sci. Technol. 44 (2010) 6036-6041.

[146]

A.A. Ragab, D.R. Shaw, K.P. Katuri, P.E. Saikaly, Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen func- tion at a metatranscriptional level, Sci. Rep. 10 (2020) 19824.

[147]

J.G. Gavilanes, C.N. Reddy, B. Min, Microbial electrosynthesis of bioalcohols through reduction of high concentrations of volatile fatty acids, Energy Fuels 33 (2019) 4264-4271.

[148]

Q. Fu, Y. Kuramochi, N. Fukushima, H. Maeda, K. Sato, H. Kobayashi, Bioelec- trochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis, Environ. Sci. Technol. 49 (2015) 1225-1232.

[149]

P.F. Beese-Vasbender, J.P. Grote, J. Garrelfs, M. Stratmann, K.J.J. Mayrhofer, Se- lective microbial electrosynthesis of methane by a pure culture of a marine lithoau- totrophic archaeon, Bioelectrochemistry 102 (2015) 50-55.

[150]

C.M. Dykstra, S.G. Pavlostathis, Methanogenic biocathode microbial community development and the role of bacteria, Environ. Sci. Technol. 51 (2017) 5306-5316.

[151]

D.R. Lovley, K.P. Nevin, Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity, Curr. Opin. Biotechnol. 24 (2013) 385-390.

[152]

Y. Jiang, M. Su, Y. Zhang, G. Zhan, Y. Tao, D.-p. Li, Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at rel- atively high rate, Int. J. Hydrogen Energ. 38 (2013) 3497-3502.

[153]

S. Das, I. Das, M.M. Ghangrekar, Role of applied potential on microbial electrosyn- thesis of organic compounds through carbon dioxide sequestration, J. Environ. Chem. Eng. 8 (2020) 104028.

[154]

S. Gildemyn, Technology and tools for bioelectrochemical production of short- and medium-chain carboxylic acids from CO2, 2016.

[155]

P. Batlle-Vilanova, S. Puig, R. Gonzalez-Olmos, A. Vilajeliu-Pons, M.D. Balaguer, J. Colprim, Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode, RSC Adv. 5 (2015) 52243-52251.

[156]

M. Cerrillo, M. Viñas, A. Bonmatí, Startup of electromethanogenic microbial elec- trolysis cells with two different biomass inocula for biogas upgrading, ACS Sustain. Chem. Eng. 5 (2017) 8852-8859.

[157]

G. Mohanakrishna, K. Vanbroekhoven, D. Pant, Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosyn- thesis, J. Co2 Util. 15 (2016) 57-64.

[158]

G. Mohanakrishna, K. Vanbroekhoven, D. Pant, Impact of dissolved carbon dioxide concentration on the process parameters during its conversion to acetate through microbial electrosynthesis, React. Chem. Eng. 3 (2018) 371-378.

[159]

L. Jourdin, S. Freguia, B.C. Donose, J. Chen, G.G. Wallace, J. Keller, V. Flexer, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A 2 (2014) 13093-13102.

[160]

D. Liu, T. Zheng, C. Buisman, A.T. Heijne, Heat-treated stainless steel felt as a new cathode material in a methane-producing bioelectrochemical system, ACS Sustain. Chem. Eng. 5 (2017) 11346-11353.

[161]

C.H. Im, K. Valgepea, O. Modin, Y. Nygård, Clostridium Ljungdahlii as a biocatalyst in microbial electrosynthesis-effect of culture conditions on product formation, SSRN Electron. J. (2022).

[162]

P. Batlle-Vilanova, S. Puig, R. Gonzalez-Olmos, M.D. Balaguer, J. Colprim, Continu- ous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture, J. Chem. Technol. Biot. 91 (2016) 921-927.

[163]

S. Das, L. Diels, D. Pant, S.A. Patil, M.M. Ghangrekar, Review —Microbial elec- trosynthesis: a way towards the production of electro-commodities through car- bon sequestration with microbes as biocatalysts, J. Electrochem. Soc. 167 (2020) 155510.

[164]

I. Vassilev, P.A. Hernandez, P. Batlle-Vilanova, S. Freguia, J.O. Krömer, J. Keller, P. Ledezma, B. Virdis, Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide, ACS Sustain. Chem. Eng. 6 (2018) 8485-8493.

[165]

J. Tr ček, N.P. Mira, L.R. Jarboe, Adaptation and tolerance of bacteria against acetic acid, Appl. Microbiol. Biotechnol. 99 (2015) 6215-6229.

[166]

D.C. Infantes, A.G.D. Campo, J.D. Villasenor, F.J. Fernández, Influence of pH, tem- perature and volatile fatty acids on hydrogen production by acidogenic fermentat, Int. J. Hydrogen Energ. 36 (2011) 15595-15601.

[167]

J. Rodríguez, R. Kleerebezem, J.M. Lema, M.C.M. van Loosdrecht, Modeling prod- uct formation in anaerobic mixed culture fermentations, Biotechnol. Bioeng. 93 (2006) 592-606.

[168]

H. Li, X. Mei, B.F. Liu, Z. Li, B. Wang, N. Ren, D. Xing, Insights on acetate-ethanol fermentation by hydrogen-producing Ethanoligenens under acetic acid accumula- tion based on quantitative proteomics, Environ. Int. 129 (2019) 1-9.

[169]

A. Gomez Vidales, G. Bruant, S. Omanovic, B. Tartakovsky, Carbon dioxide con- version to C1-C2 compounds in a microbial electrosynthesis cell with in situ elec- trodeposition of nickel and iron, Electrochim. Acta 383 (2021) 138349.

[170]

S. Xiao, Q. Fu, K. Xiong, Z. Li, J. Li, L. Zhang, Q. Liao, X. Zhu, Parametric study of biocathodes in microbial electrosynthesis for CO2 reduction to CH4 with a direct electron transfer pathway, Renew. Energ. 162 (2020) 438-446.

[171]

K. Sasaki, M. Morita, N. Matsumoto, D. Sasaki, S. Hirano, N. Ohmura, Y. Igarashi, Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system, J. Biosci. Bioeng. 114 (2012) 64-69.

[172]

Y. Su, S. Cestellos-Blanco, J.M. Kim, Y.-x. Shen, Q. Kong, D. Lu, C. Liu, H. Zhang, Y. Cao, P. Yang, Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation, Joule 4 (2020) 800-811.

[173]

G. Mohanakrishna, J.S. Seelam, K. Vanbroekhoven, D. Pant, An enriched elec- troactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction, Faraday Discuss. 183 (2015) 445-462.

[174]

S. Das, P. Chatterjee, M.M. Ghangrekar, Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis, Water Sci. Technol. 77 (2018) 1293-1302.

[175]

X. Li, S. Chen, D.W. Liang, M. Alvarado-Moralesa, Low-grade heat energy driven microbial electrosynthesis for ethanol and acetate production from CO2 reduction, J. Power Sources 477 (2020) 228990.

[176]

H. Yang, N. Hou, Y.X. Wang, J. Liu, C.S. He, Y. Wang, W.H. Li, Y. Mu, Mixed-culture biocathodes for acetate production from CO2 reduction in the microbial electrosynthesis: impact of temperature, Sci. Total Environ. 790 (2021) 148128.

[177]

L. Jourdin, S. Freguia, V. Flexer, J. Keller, Bringing High-Rate, CO 2 -based microbial electrosynthesis closer to practical implementation through improved electrode de- sign and operating conditions, Environ. Sci. Technol. 50 (2016) 1982-1989.

[178]

Y. Wu, W. Li, L. Wang, Y. Wu, Y. Wang, Y. Wang, H. Meng, Enhancing the se- lective synthesis of butyrate in microbial electrosynthesis system by gas diffusion membrane composite biocathode, Chemosphere 308 (2022) 136088.

[179]

Z. Li, Q. Fu, H. Chen, S. Xiao, J. Li, X. Zhu, Q. Liao, Modelling of a CH4 -producing microbial electrosynthesis system for energy recovery and wastewater treatment, Environ. Sci-Wat. Res. 8 (2022) 781-791.

[180]

A.B.T. Nelabhotla, C. Dinamarca, Bioelectrochemical CO2 reduction to methane: MES integration in biogas production processes, Appl. Sci. 9 (2019) 1056.

[181]

Z. Liu, X. Xue, W. Cai, K. Cui, S.A. Patil, K. Guo, Recent progress on microbial electrosynthesis reactor designs and strategies to enhance the reactor performance, Biochem. Eng. J. 190 (2023) 108745.

[182]

R. Rossi, B.E. Logan, Unraveling the contributions of internal resistance compo- nents in two-chamber microbial fuel cells using the electrode potential slope anal- ysis, Electrochim. Acta 348 (2020) 136291.

[183]

S.Y. Lee, Y.K. Oh, S. Lee, H.N. Fitriana, M. Moon, M.S. Kim, J. Lee, K. Min, G.W. Park, J.P. Lee, J.S. Lee, Recent developments and key barriers to microbial CO2 electrobiorefinery, Bioresour. Technol. 320 (2021) 124350.

AI Summary AI Mindmap
PDF (2516KB)

270

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/