Research advances on the consolidated bioprocessing of lignocellulosic biomass

Zhongye Li , Pankajkumar R. Waghmare , Lubbert Dijkhuizen , Xiangfeng Meng , Weifeng Liu

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100139

PDF (1304KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100139 DOI: 10.1016/j.engmic.2024.100139
Review
research-article

Research advances on the consolidated bioprocessing of lignocellulosic biomass

Author information +
History +
PDF (1304KB)

Abstract

Lignocellulosic biomass is an abundant and renewable bioresource for the production of biofuels and biochemical products. The classical biorefinery process for lignocellulosic degradation and conversion comprises three stages, i.e., pretreatment, enzymatic saccharification, and fermentation. However, the complicated pretreatment process, high cost of cellulase production, and insufficient production performance of fermentation strains have restricted the industrialization of biorefinery. Consolidated bioprocessing (CBP) technology combines the process of enzyme production, enzymatic saccharification, and fermentation in a single bioreactor using a specific microorganism or a consortium of microbes and represents another approach worth exploring for the production of chemicals from lignocellulosic biomass. The present review summarizes the progress made in research of CBP technology for lignocellulosic biomass conversion. In this review, different CBP strategies in lignocellulose biorefinery are reviewed, including CBP with natural lignocellulose-degrading microorganisms as the chassis, CBP with biosynthetic microorganisms as the chassis, and CBP with microbial co-culturing systems. This review provides new perspectives and insights on the utilization of low-cost feedstock lignocellulosic biomass for production of biochemicals.

Keywords

Lignocellulosic biomass / Biorefinery / Consolidated bioprocessing / Biochemicals

Cite this article

Download citation ▾
Zhongye Li, Pankajkumar R. Waghmare, Lubbert Dijkhuizen, Xiangfeng Meng, Weifeng Liu. Research advances on the consolidated bioprocessing of lignocellulosic biomass. Engineering Microbiology, 2024, 4(2): 100139 DOI:10.1016/j.engmic.2024.100139

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Zhongye Li: Writing - original draft, Investigation, Writing - review & editing. Pankajkumar R. Waghmare: Writing - review & editing, Writing - original draft. Lubbert Dijkhuizen: Writing - review & editing. Xiangfeng Meng: Writing - review & editing, Funding acquisition. Weifeng Liu: Writing - review & editing, Funding acquisition.

Acknowledgments

This work was supported by grants from the National Key R&D Program of China (No. 2019YFA0905700), the National Natural Science Foundation of China (31970071), the Young Scholars Program of Shandong University, and the Major Basic Research of Shandong Provincial Natural Science Foundation (ZR2019ZD19).

References

[1]

Y.N. Guragain, P.V. Vadlani, Renewable biomass utilization: a way forward to es- tablish sustainable chemical and processing industries, Clean Technol. 3 (2021) 243-259.

[2]

R. Reshmy, T.A.P. Paulose, E. Philip, D. Thomas, A. Madhavan, R. Sirohi, P. Binod, M. Kumar Awasthi, A. Pandey, R. Sindhu, Updates on high value products from cellulosic biorefinery, Fuel 308 (2022) 122056.

[3]

P. Duarah, D. Haldar, A.K. Patel, C.D. Dong, R.R. Singhania, M.K. Purkait, A re- view on global perspectives of sustainable development in bioenergy generation, Bioresour. Technol. 348 (2022) 126791.

[4]

P.K. Mukherjee, B. Das, P.K. Bhardwaj, S. Tampha, H.K. Singh, L.D. Chanu, N. Sharma, S.I. Devi, Socio-economic sustainability with circular economy - An alternative approach, Sci. Total Environ. 904 (2023) 166630.

[5]

X. Shen, R. Sun, Recent advances in lignocellulose prior-fractionation for biomate- rials, biochemicals, and bioenergy, Carbohydr. Polym. 261 (2021) 117884.

[6]

B. Debnath, P. Duarah, D. Haldar, M.K. Purkait, Improving the properties of corn starch films for application as packaging material via reinforcement with micro- crystalline cellulose synthesized from elephant grass, Food Packag. Shelf Life 34 (2022) 100937.

[7]

I. Romashkin, E. Shorohova, E. Kapitsa, N. Galibina, K. Nikerova, Substrate qual- ity regulates density loss, cellulose degradation and nitrogen dynamics in downed woody debris in a boreal forest, For. Ecol. Manag. 491 (2021) 119413.

[8]

H.Z. He, R.Q. Zhang, P.C. Zhang, P. Wang, N. Chen, B.B. Qian, L. Zhang, J.L. Yu, B.Q. Dai, Functional carbon from nature: Biomass-derived carbon materials and the recent progress of their applications, Adv. Sci. 10 (2023) 202205557.

[9]

R.R. Singhania, A.K. Patel, T. Raj, C.-W. Chen, V.K. Ponnusamy, N. Tahir, S.-H. Kim, C.-D. Dong, Lignin valorisation via enzymes: A sustainable approach, Fuel 311 (2022) 122608.

[10]

X.P. Peng, S.X. Nie, X.P. Li, X. Huang, Q.Z. Li, Characteristics of the water- and alkali-soluble hemicelluloses fractionated by sequential acidification and grad- ed-ethanol from sweet maize stems, Molecules 24 (2019) 24010212.

[11]

M.M. Mateus, J.C. Bordado, R.G. dos Santos, Potential biofuel from liquefied cork - Higher heating value comparison, Fuel 174 (2016) 114-117.

[12]

J. Zhang, Y.S. Choi, C.G. Yoo, T.H. Kim, R.C. Brown, B.H. Shanks, Cellulose-hemi- cellulose and cellulose-lignin interactions during fast pyrolysis, ACS Sustain. Chem. Eng. 3 (2015) 293-301.

[13]

W.H. Chen, B.L. Pen, C.T. Yu, W.S. Hwang, Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production, Bioresour. Technol. 102 (2011) 2916-2924.

[14]

D. Haldar, M.K. Purkait, A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements, Chemosphere 264 (2021) 128523.

[15]

S.O. Dahunsi, Mechanical pretreatment of lignocelluloses for enhanced biogas pro- duction: methane yield prediction from biomass structural components, Bioresour. Technol. 280 (2019) 18-26.

[16]

A. Aguilar-Reynosa, A. Romaní, R. Ma. Rodríguez-Jasso, C.N. Aguilar, G. Garrote, H.A. Ruiz, Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview, Energy Convers. Manag. 136 (2017) 50-65.

[17]

R. Ahorsu, G. Cintorrino, F. Medina, M. Constantí, Microwave processes: A viable technology for obtaining xylose from walnut shell to produce lactic acid by Bacillus coagulans, J. Clean. Prod. 231 (2019) 1171-1181.

[18]

A.G. de Souza, D.B. Rocha, F.S. Kano, D.D. Rosa, Valorization of industrial paper waste by isolating cellulose nanostructures with different pretreatment methods, Resour. Conserv. Recy. 143 (2019) 133-142.

[19]

S.H. Mood, A.H. Golfeshan, M. Tabatabaei, G.S. Jouzani, G. Najafi, M. Gholami, M. Ardjmand, Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Renew. Sust. Energ. Rev. 27 (2013) 77-93.

[20]

M.N. Faiz Norrrahim, R.A. Ilyas, N.M. Nurazzi, M.S. Asmal Rani, M.S. Nur Atikah, S.S. Shazleen, Chemical pretreatment of lignocellulosic biomass for the production of bioproducts: an overview, Appl. Sci. Eng. Prog. (2021), doi: 10.14416/J.ASEP.2021.07.004.

[21]

R. Kumar, C.E. Wyman, Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnol. Bioeng. 102 (2009) 1544-1557.

[22]

R. Millati, R. Wikandari, T. Ariyanto, R.U. Putri, M.J. Taherzadeh, Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks, Biore- sour. Technol. 304 (2020) 122998.

[23]

J.F. Xu, Y.T. Han, W.B. Zhu, Z.M. Zhao, Multivariable analysis of the effects of fac- tors in the pretreatment and enzymolysis processes on saccharification efficiency, Ind. Crops Prod. 142 (2019) 111824.

[24]

J.Y. Tan, Y. Li, X. Tan, H.G. Wu, H. Li, S. Yang, Advances in pretreatment of straw biomass for sugar production, Front. Chem. 9 (2021) 696030.

[25]

M. Nieder-Heitmann, K. Haigh, J. Louw, J.F. Gorgens, Economic evaluation and comparison of succinic acid and electricity co-production from sugarcane bagasse and trash lignocelluloses in a biorefinery, using different pretreatment meth- ods: Dilute acid (H 2 SO4 ), alkaline (NaOH), organosolv, ammonia fibre expansion (AFEXTM), steam explosion (STEX), and wet oxidation, Biofuel. Bioprod. Biorefin. 14 (2020) 55-77.

[26]

C.-Y. Ma, X. Gao, X.-P. Peng, Y.-F. Gao, J. Liu, J.-L. Wen, T.-Q. Yuan, Microwave-as- sisted deep eutectic solvents (DES) pretreatment of control and transgenic poplars for boosting the lignin valorization and cellulose bioconversion, Ind. Crops Prod. 164 (2021) 113415.

[27]

A. Shukla, D. Kumar, M. Girdhar, A. Kumar, A. Goyal, T. Malik, A. Mohan, Strate- gies of pretreatment of feedstocks for optimized bioethanol production: Distinct and integrated approaches, Biotechnol. Biof. Biop. 16 (2023) 44.

[28]

L. Zhao, Z.F. Sun, C.C. Zhang, J. Nan, N.Q. Ren, D.J. Lee, C. Chen, Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives, Bioresour. Technol. 343 (2022) 126123.

[29]

N. Jacquet, G. Maniet, C. Vanderghem, F. Delvigne, A. Richel, Application of steam explosion as pretreatment on lignocellulosic material: A review, Ind. Eng. Chem. Res. 54 (2015) 2593-2598.

[30]

C.Y. Li, X.Y. Huang, J. Xi, Steam explosion pretreatment to enhance extraction of active ingredients: current progress and future prospects, Crit. Rev. Food. Sci.(2023) 10408398.

[31]

L.V.D. Serna, C.E.O. Alzate, C.A.C. Alzate, Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass, Bioresour. Technol. 199 (2016) 113-120.

[32]

H. Liu, S. Fu, J.Y. Zhu, H. Li, H. Zhan, Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging, Enzyme. Microb. Technol. 45 (2009) 274-281.

[33]

J.R. dos Santos, L.R.D. Moreira, E.X. Ferreira, Cellulose-degrading enzymes: Key players in biorefinery development, Biologia 78 (2023) 1759-1772.

[34]

D. Kumar, G.S. Murthy, Development and validation of a stochastic molecular model of cellulose hydrolysis by action of multiple cellulase enzymes, Bioresour. Bioprocess. 4 (2017) 54.

[35]

G. Liu, J. Zhang, J. Bao, Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling, Bioprocess. Biosyst. Eng. 39 (2016) 133-140.

[36]

D. Agrawal, A. Tsang, B.S. Chadha, Economizing the lignocellulosic hydroly- sis process using heterologously expressed auxiliary enzymes feruloyl esterase D (CE1) and 𝛽-xylosidase (GH43) derived from thermophilic fungi Scytalidium ther- mophilum, Bioresour. Technol. 339 (2021) 125603.

[37]

B. Bissaro, A. Varnai, A.K. Rohr, V.G.H. Eijsink, Oxidoreductases and reactive oxy- gen species in conversion of lignocellulosic biomass, Microbiol, Mol. Biol. R. 82 (2018) 00029-18.

[38]

F. Li, J.L. Zhang, F.Y. Ma, Q. Chen, Q.Y. Xiao, X.Y. Zhang, S.X. Xie, H.B. Yu, Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose, Environ. Mi- crobiol. 23 (2021) 4547-4560.

[39]

W.X. Zhao, F.G. Zhao, S.T. Zhang, Q.L. Gong, G. Chen, Ethanol production by si- multaneous saccharification and cofermentation of pretreated corn stalk, J. Basic. Microb. 59 (2019) 744-753.

[40]

K. Yan, G.S. Wu, T. Lafleur, C. Jarvis, Production,properties and catalytic hydro- genation of furfural to fuel additives and value-added chemicals, Renew. Sust. En- erg. Rev. 38 (2014) 663-676.

[41]

H.J. Jung, K.K. Oh, Production of bio-based chemicals, acetic acid and furfural, through low-acid hydrothermal fractionation of pine wood ( Pinus densiflora) and combustion characteristics of the residual solid fuel, Appl. Sci. 11 (2021) 7435.

[42]

T.S.P. de Souza, H.Y. Kawaguti, Cellulases, hemicellulases, and pectinases: Ap- plications in the food and beverage industry, Food. Bioprocess. Tech. 14 (2021) 1446-1477.

[43]

Y. Qiu, M. Wu, H. Bao, W. Liu, Y. Shen, Engineering of Saccharomyces cerevisiae for co-fermentation of glucose and xylose: Current state and perspectives, Eng. Microbiol. 3 (2023) 100084.

[44]

P. Baral, V. Kumar, D. Agrawal, Emerging trends in high-solids enzymatic saccha- rification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform, Crit. Rev. Biotechnol. 42 (2022) 873-891.

[45]

J. Li, Q. Liu, D. Liu, Y. Zhang, X. Zheng, X. Zhu, P. Liu, L. Gao, J. Wang, Y. Lin, Y. Zhang, X. Zhang, C. Tian, Plant biomass degradation by filamentous fungi and production of renewable chemicals: A review, Chin. J. Biotechnol. 38 (2022) 4283-4310.

[46]

J. Lu, Y. Lv, Y. Jiang, M. Wu, B. Xu, W. Zhang, J. Zhou, W. Dong, F. Xin, M. Jiang, Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system, ACS Sustain. Chem. Eng. 8 (2020) 9035-9045.

[47]

Y.J. Jiang, W.K. Jiang, F.X. Xin, W.M. Zhang, M. Jiang, Thermophiles: Potential chassis for lignocellulosic biorefinery, Trends Biotechnol 40 (2022) 643-646.

[48]

S.K. Bhujbal, M. Kumar, V.K. Vijay, V. Kumar, P. Ghosh, Potential of termite gut microbiota for biomethanation of lignocellulosic wastes: Current status and future perspectives, Rev. Environ. Sci. BioTechnol. 20 (2021) 419-438.

[49]

P.E. Puentes-Tellez, J.F. Salles, Construction of effective minimal active microbial consortia for lignocellulose degradation, Microb. Ecol. 76 (2018) 419-429.

[50]

D. Nagarajan, D.-J. Lee, J.-S. Chang, Recent insights into consolidated bioprocess- ing for lignocellulosic biohydrogen production, Inter. J. Hydrog. Energy 44 (2019) 14362-14379.

[51]

X. Xie, C. Yang, L.L. Guan, J. Wang, M. Xue, J.X. Liu, Persistence of cellulolytic bac- teria Fibrobacter and Treponema after short-term corn stover-based dietary interven- tion reveals the potential to improve rumen fibrolytic function, Front. Microbiol. 9 (2018) 1363.

[52]

X. An, X. Chen, Y. Wang, X. Zhao, X. Xiao, H. Long, H. Li, Q. Zhang, Cellulolytic bacterium characterization and genome functional analysis: An attempt to lay the foundation for waste management, Bioresour. Technol. 321 (2021) 124462.

[53]

M. Patel, H.M. Patel, N. Vohra, S. Dave, Complete genome sequencing and compar- ative genome characterization of the lignocellulosic biomass degrading bacterium Pseudomonas stutzeri MP4687 from cattle rumen, Biotechnol. Rep. (Amst) 28 (2020) e00530.

[54]

H. Tang, J.F. Ou, M.J. Zhu, Development of a quantitative real-time PCR assay for direct detection of growth of cellulose-degrading bacterium Clostridium thermocel- lum in lignocellulosic degradation, J. Appl. Microbiol. 118 (2015) 1333-1344.

[55]

C.M. Fontes, H.J. Gilbert, Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates, Annu. Rev. Biochem. 79 (2010) 655-681.

[56]

Y.Y. Bao, J. Dolfing, B.Z. Wang, R.R. Chen, M.S. Huang, Z.P. Li, X.G. Lin, Y.Z. Feng, Bacterial communities involved directly or indirectly in the anaerobic degradation of cellulose, Biol. Fert. Soils 55 (2019) 201-211.

[57]

E.A. Bayer, R. Lamed, B.A. White, H.J. Flint, From cellulosomes to cellulosomics, Chem. Rec. 8 (2008) 364-377.

[58]

H.P. Fierobe, E.A. Bayer, C. Tardif, M. Czjzek, A. Mechaly, A. Belaich, R. Lamed, Y. Shoham, J.P. Belaich, Degradation of cellulose substrates by cellulosome chimeras: Substrate targeting versus proximity of enzyme components, J. Biol. Chem. 277 (2002) 49621-49630.

[59]

A.R. Mudinoor, P.M. Goodwin, R.U. Rao, N. Karuna, A. Hitomi, J. Nill, T. Jeoh, Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose, Biotechnol. Biofuels 13 (2020) 10.

[60]

Q. Xu, M.G. Resch, K. Podkaminer, S. Yang, J.O. Baker, B.S. Donohoe, C. Wilson, D. M. Klingeman, D.G. Olson, S.R. Decker, R.J. Giannone, R.L. Hettich, S.D. Brown, L.R. Lynd, E.A. Bayer, M.E. Himmel, Y.J. Bomble, Dramatic performance of Clostrid- ium thermocellum explained by its wide range of cellulase modalities, Sci. Adv. 2 (2016) e1501254.

[61]

J.E. Walker, A.A. Lanahan, T.Y. Zheng, C. Toruno, L.R. Lynd, J.C. Cameron, D.G. Ol- son, C.A. Eckert, Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum, Metab. Eng. Commun. 10 (2020) e00116.

[62]

D.A. Argyros, S.A. Tripathi, T.F. Barrett, S.R. Rogers, L.F. Feinberg, D.G. Olson, J. M. Foden, B.B. Miller, L.R. Lynd, D.A. Hogsett, N.C. Caiazza, High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes, Appl. Environ. Microbiol. 77 (2011) 8288-8294.

[63]

P.P. Lin, L. Mi, A.H. Morioka, K.M. Yoshino, S. Konishi, S.C. Xu, B.A. Papanek, L. A. Riley, A.M. Guss, J.C. Liao, Consolidated bioprocessing of cellulose to isobu- tanol using Clostridium thermocellum, Metab. Eng. 31 (2015) 44-52.

[64]

L. Tian, P.M. Conway, N.D. Cervenka, J. Cui, M. Maloney, D.G. Olson, L.R. Lynd, Metabolic engineering of Clostridium thermocellum for n -butanol production from cellulose, Biotechnol. Biofuels 12 (2019) 186.

[65]

S. Garcia, R.A. Thompson, R.J. Giannone, S. Dash, C.D. Maranas, C.T. Trinh, De- velopment of a genome-scale metabolic model of Clostridium thermocellum and its applications for integration of multi-omics datasets and computational strain de- sign, Front. Bioeng. Biotechnol. 8 (2020) 772.

[66]

C. Weber, A. Farwick, F. Benisch, D. Brat, H. Dietz, T. Subtil, E. Boles, Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels, Appl. Microbiol. Biotechnol. 87 (2010) 1303-1315.

[67]

T.A. Warnick, B.A. Methe, S.B. Leschine, Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil, Int. J. Syst. Evol. Microbiol. 52 (2002) 1155-1160.

[68]

M. Jin, V. Balan, C. Gunawan, B.E. Dale, Consolidated bioprocessing (CBP) per- formance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production, Biotechnol. Bioeng. 108 (2011) 1290-1297.

[69]

T. Bao, J.B. Zhao, J. Li, X. Liu, S.T. Yang, n -Butanol and ethanol produc- tion from cellulose by Clostridium cellulovorans overexpressing heterologous alde- hyde/alcohol dehydrogenases, Bioresour. Technol. 285 (2019) 121316.

[70]

Z.Q. Wen, R. Ledesma-Amaro, J.P. Lin, Y. Jiang, S. Yang, Improved n -butanol pro- duction from Clostridium cellulovorans by integrated metabolic and evolutionary engineering, Appl. Environ. Microb. 85 (2019) e02518-e02560.

[71]

A.V. Gusakov, Alternatives to Trichoderma reesei in biofuel production, Trends Biotechnol 29 (2011) 419-425.

[72]

I. Gutierrez-Rojas, N. Moreno-Sarmiento, D. Montoya, Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: Classical cases and new models, Rev. Iberoam. Micol. 32 (2015) 1-12.

[73]

J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes: An update, Curr. Opin. Biotechnol. 14 (2003) 438-443.

[74]

Q. Xu, A. Singh, M.E. Himmel, Perspectives and new directions for the produc- tion of bioethanol using consolidated bioprocessing of lignocellulose, Curr. Opin. Biotechnol. 20 (2009) 364-371.

[75]

A. Schuster, M. Schmoll, Biology and biotechnology of Trichoderma, Appl. Micro- biol. Biotechnol. 87 (2010) 787-799.

[76]

J.J. Rautio, B.A. Smit, M. Wiebe, M. Penttila, M. Saloheimo, Transcriptional mon- itoring of steady state and effects of anaerobic phases in chemostat cultures of the filamentous fungus Trichoderma reesei, BMC Genom 7 (2006) 247.

[77]

P. Liu, G.X. Zhang, Y.M. Chen, J. Zhao, W. Wang, D.Z. Wei, Enhanced cellulase production by decreasing intercellular pH through H+ -ATPase gene deletion in Tri- choderma reesei RUT-C30, Biotechnol. Biofuels 12 (2019) 195.

[78]

X. Chen, Y. Liang, J. Hua, L. Tao, W.S. Qin, S.F. Chen, Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene, Int. J. Biol. Sci. 6 (2010) 96-106.

[79]

M. Dashtban, G. Kepka, B. Seiboth, W. Qin, Xylitol production by genetically engi- neered Trichoderma reesei strains using barley straw as feedstock, Appl. Biochem. Biotechnol. 169 (2013) 554-569.

[80]

A. Peciulyte, G.E. Anasontzis, K. Karlstrom, P.T. Larsson, L. Olsson, Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates, Fungal. Genet. Biol. 72 (2014) 64-72.

[81]

N.V. Callow, L.K. Ju, Promoting pellet growth of Trichoderma reesei Rut C30 by surfactants for easy separation and enhanced cellulase production, Enzyme Microb. Technol. 50 (2012) 311-317.

[82]

D. Haab, B. Gassner, C.P. Kubicek, Protein hypersecretory Trichoderma-reesei mu- tant Rut C-30 displays increased ethanol and polyene resistance, J. Biotechnol. 29 (1993) 97-108.

[83]

B. Jovanovic, R.L. Mach, A.R. Mach-Aigner, Erythritol production on wheat straw using Trichoderma reesei, AMB Express 4 (2014) 34.

[84]

A. Karnaouri, E. Topakas, I. Antonopoulou, P. Christakopoulos, Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila, Front. Mi- crobiol. 5 (2014) 281.

[85]

R.M. Berka, I.V. Grigoriev, R. Otillar, A. Salamov, J. Grimwood, I. Reid, N. Ish- mael, T. John, C. Darmond, M.C. Moisan, B. Henrissat, P.M. Coutinho, V. Lombard, D. O. Natvig, E. Lindquist, J. Schmutz, S. Lucas, P. Harris, J. Powlowski, A. Belle- mare, D. Taylor, G. Butler, R.P. de Vries, I.E. Allijn, J. van den Brink, S. Ushin- sky, R. Storms, A.J. Powell, I.T. Paulsen, L.D. Elbourne, S.E. Baker, J. Magnuson, S. Laboissiere, A.J. Clutterbuck, D. Martinez, M. Wogulis, A.L. de Leon, M.W. Rey, A. Tsang, Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris, Nat. Biotechnol. 29 (2011) 922-927.

[86]

B. Singh, Myceliophthora thermophila syn. Sporotrichum thermophile: A thermophilic mould of biotechnological potential, Crit. Rev. Biotechnol. 36 (2016) 59-69.

[87]

J. Li, L. Lin, T. Sun, J. Xu, J. Ji, Q. Liu, C. Tian, Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila, Metab. Eng. 61 (2020) 416-426.

[88]

J.G. Li, B.C. Chen, S.Y. Gu, Z. Zhao, Q. Liu, T. Sun, Y.L. Zhang, T.J. Wu, D.F. Liu, W. L. Sun, C.G. Tian, Coordination of consolidated bioprocessing technology and carbon dioxide fixation to produce malic acid directly from plant biomass in Myce- liophthora thermophila, Biotechnol. Biofuels 14 (2021) 186.

[89]

G. Bokinsky, P.P. Peralta-Yahya, A. George, B.M. Holmes, E.J. Steen, J. Dietrich, T.S. Lee, D. Tullman-Ercek, C.A. Voigt, B.A. Simmons, J.D. Keasling, Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli, Proc. Natl. Acad. Sci. U S A 108 (2011) 19949-19954.

[90]

H.G. Lawford, J.D. Rousseau, Performance testing of Zymomonas mobilis metabol- ically engineered for cofermentation of glucose, xylose, and arabinose, Appl. Biochem. Biotechnol. 98-100 (2002) 429-448.

[91]

B.E. Wood, L.P. Yomano, S.W. York, L.O. Ingram, Development of industrial-medi- um-required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca, Biotechnol. Prog. 21 (2005) 1366-1372.

[92]

J. Arnthong, J. Ponjarat, P. Bussadee, P. Deenarn, P. Prommana, A. Phienluphon, S. Charoensri, V. Champreda, X.-Q. Zhao, S. Suwannarangsee, Enhanced surface display efficiency of 𝛽-glucosidase in Saccharomyces cerevisiae by disruption of cell wall protein-encoding genes YGP1 and CWP2, Biochem. Eng. J. 179 (2022) 108305.

[93]

S.A. Davison, N.T. Keller, W.H. van Zyl, R. den Haan, Improved cellulase expression in diploid yeast strains enhanced consolidated bioprocessing of pretreated corn residues, Enzyme Microb. Technol. 131 (2019) 109382.

[94]

R. Yamada, Y. Nakatani, C. Ogino, A. Kondo, Efficient direct ethanol produc- tion from cellulose by cellulase- and cellodextrin transporter-co-expressing Sac- charomyces cerevisiae, AMB Express 3 (2013) 34.

[95]

M. Schallmey, A. Singh, O.P. Ward, Developments in the use of Bacillus species for industrial production, Can. J. Microbiol. 50 (2004) 1-17.

[96]

Y. Su, C. Liu, H. Fang, D. Zhang, Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine, Microb. Cell Fact. 19 (2020) 173.

[97]

H.Q. Yang, J.F. Qu, W. Zou, W. Shen, X.Z. Chen, An overview and future prospects of recombinant protein production in Bacillus subtilis, Appl. Microbiol. Biot. 105 (2021) 6607-6626.

[98]

W.J. Cui, L.C. Han, F.Y. Suo, Z.M. Liu, L. Zhou, Z.M. Zhou, Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond, World J. Microb. Biot. 34 (2018) 145.

[99]

C.G. Acevedo-Rocha, L.S. Gronenberg, M. Mack, F.M. Commichau, H.J. Genee, Mi- crobial cell factories for the sustainable manufacturing of B vitamins, Curr. Opin. Biotechnol. 56 (2019) 18-29.

[100]

P.K. Cherukuri, P. Songkiatisak, F. Ding, J.M. Jault, X.H.N. Xu, Antibiotic drug nanocarriers for probing of multidrug ABC membrane transporter of Bacillus subtilis, ACS Omega 5 (2020) 1625-1633.

[101]

H. Zhu, S.M. Yang, Z.M. Yuan, R. Ban, Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis, Microb. Cell Fact. 14 (2015) 54.

[102]

P. Jin, Z. Kang, P.H. Yuan, G.C. Du, J. Chen, Production of specific-molecu- lar-weight hyaluronan by metabolically engineered Bacillus subtilis 168, Metab. Eng. 35 (2016) 21-30.

[103]

F. Kunst, N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bert- ero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S.C. Brignell, S. Bron, S. Brouillet, C.V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S.K. Choi, J.J. Codani, I.F. Connerton, N.J. Cummings, R.A. Daniel, F. Denizot, K.M. Devine, A. Dusterhoft, S.D. Ehrlich, P.T. Emmerson, K.D. Entian, J. Errington, C. Fabret, E. Ferrari, D. Foulger, C. Fritz, M. Fujita, Y. Fujita, S. Fuma, A. Galizzi, N. Galleron, S.Y. Ghim, P. Glaser, A. Goffeau, E.J. Golightly, G. Grandi, G. Guiseppi, B.J. Guy, K. Haga, J. Haiech, C.R. Harwood, A. Henaut, H. Hilbert, S. Holsappel, S. Hosono, M.F. Hullo, M. Itaya, L. Jones, B. Joris, D. Karamata, Y. Kasahara, M. KlaerrBlanchard, C. Klein, Y. Kobayashi, P. Koetter, G. Koningstein, S. Krogh, M. Kumano, K. Kurita, A. Lapidus, S. Lardinois, J. Lauber, V. Lazarevic, S.M. Lee, A. Levine, H. Liu, S. Masuda, C. Mauel, C. Medigue, N. Medina, R.P. Mel- lado, M. Mizuno, D. Moestl, S. Nakai, M. Noback, D. Noone, M. OReilly, K. Ogawa, A. Ogiwara, B. Oudega, S.H. Park, V. Parro, T.M. Pohl, D. Portetelle, S. Porwollik, A.M. Prescott, E. Presecan, P. Pujic, B. Purnelle, G. Rapoport, M. Rey, S. Reynolds, M. Rieger, C. Rivolta, E. Rocha, B. Roche, M. Rose, Y. Sadaie, T. Sato, E. Scanlan, S. Schleich, R. Schroeter, F. Scoffone, J. Sekiguchi, A. Sekowska, S.J. Seror, P. Ser- ror, B.S. Shin, B. Soldo, A. Sorokin, E. Tacconi, T. Takagi, H. Takahashi, K. Take- maru, M. Takeuchi, A. Tamakoshi, T. Tanaka, P. Terpstra, A. Tognoni, V. Tosato, S. Uchiyama, M. Vandenbol, F. Vannier, A. Vassarotti, A. Viari, R. Wambutt, E. Wedler, H. Wedler, T. Weitzenegger, P. Winters, A. Wipat, H. Yamamoto, K. Yamane, K. Yasumoto, K. Yata, K. Yoshida, H.F. Yoshikawa, E. Zumstein, H. Yoshikawa, A. Danchin, The complete genome sequence of the Gram-positive bacterium Bacillus subtilis, Nature 390 (1997) 249-256.

[104]

X.-Z. Zhang, Y.-H.P. Zhang, One-step production of biocommodities from ligno- cellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges, Eng. Life Sci. 10 (2010) 398-406.

[105]

X.Z. Zhang, N. Sathitsuksanoh, Z. Zhu, Y.H. Percival Zhang, One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis, Metab. Eng. 13 (2011) 364-372.

[106]

Y. Zhang, Y. Song, Lipid accumulation by xylose metabolism engineered Mucor circinelloides strains on corn straw hydrolysate, Appl. Biochem. Biotechnol. 193 (2021) 856-868.

[107]

M.A. Abdel-Rahman, S.E. Hassan, A. Fouda, A.A. Radwan, M.G. Barghoth, S.G. Des- ouky, Evaluating the effect of lignocellulose-derived microbial inhibitors on the growth and lactic acid production by Bacillus coagulans Azu-10, Fermentation 7 (2021).

[108]

A.S. Qureshi, J. Zhang, L. da Costa Sousa, J. Bao, Antibacterial peptide secreted by Pediococcus acidilactici enables efficient cellulosic open l -lactic acid fermentation, ACS Sustain. Chem. Eng. 5 (2017) 9254-9262.

[109]

N. He, J. Jia, Z. Qiu, C. Fang, G. Liden, X. Liu, J. Bao, Cyclic l -lactide synthesis from lignocellulose biomass by biorefining with complete inhibitor removal and highly simultaneous sugars assimilation, Biotechnol. Bioeng. 119 (2022) 1903-1915.

[110]

Z. Qiu, X. Han, J. He, Y. Jiang, G. Wang, Z. Wang, X. Liu, J. Xia, N. Xu, A. He, H. Gu, J. Xu, One-pot d -lactic acid production using undetoxified acid-pretreated corn- cob slurry by an adapted Pediococcus acidilactici, Bioresour. Technol. 363 (2022) 127993.

[111]

S.D. Zhou, L.O. Ingram, Simultaneous saccharification and fermentation of amor- phous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supple- mental cellulase, Biotechnol. Lett. 23 (2001) 1455-1462.

[112]

M.X. He, B. Wu, H. Qin, Z.Y. Ruan, F.R. Tan, J.L. Wang, Z.X. Shui, L.C. Dai, Q.L. Zhu, K. Pan, X.Y. Tang, W.G. Wang, Q.C. Hu, Zymomonas mobilis: A novel platform for future biorefineries, Biotechnol. Biofuels 7 (2014) 101.

[113]

J.P. Belaich, J.C. Senez, Influence of aeration and of pantothenate on growth yields of Zymomonas Mobilis, J. Bacteriol. 89 (1965) 1195-1200.

[114]

U. Kalnenieks, Physiology of Zymomonas mobilis: Some unanswered questions,in: R. K. Ed.), Adv.Microb. Physiol., Academic Press, 2006, pp. 73-117.

[115]

X. Wang, Q.N. He, Y.F. Yang, J.W. Wang, K. Haning, Y. Hu, B. Wu, M.X. He, Y.P. Zhang, J. Bao, L.M. Contreras, S.H. Yang, Advances and prospects in metabolic engineering of Zymomonas mobilis, Metab. Eng. 50 (2018) 57-73.

[116]

K. Zhang, X.X. Lu, Y. Li, X.B. Jiang, L. Liu, H. Wang, New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis, Appl. Microbiol. Biot. 103 (2019) 2087-2099.

[117]

P.T. Vasan, P.S. Piriya, D.I.G. Prabhu, S.J. Vennison, Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae, Bioresour. Technol. 102 (2011) 2585-2589.

[118]

B. Wu, M.X. He, H. Feng, Z.X. Shui, X.Y. Tang, Q.C. Hu, Y.Z. Zhang, Construction of a novel secretion expression system guided by native signal peptide of PhoD in Zymomonas mobilis, Biosci. Biotech. Bioch. 78 (2014) 708-713.

[119]

M. Zhang, C. Eddy, K. Deanda, M. Finkestein, S. Picataggio, Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas Mobilis, Science 267 (1995) 240-243.

[120]

J.G. Linger, W.S. Adney, A. Darzins, Heterologous expression and extracellular se- cretion of cellulolytic enzymes by Zymomonas mobilis, Appl. Environ. Microb. 76 (2010) 6360-6369.

[121]

T. Todhanakasem, A. Sowatad, P. Kanokratana, P.O. Havanapan, V. Champreda, Expression and extracellular secretion of endo-glucanase and xylanase by Zy- momonas mobilis, Appl. Biochem. Biotech. 187 (2019) 239-252.

[122]

Y. He, B. Wu, W. Xia, K.Y. Zhao, Y. Qin, Q. Tan, Q.H. Yu, P.T. Liu, G.Q. Hu, M.X. He, Metabolic engineering of Zymomonas moblis for ethylene production from straw hydrolysate, Appl. Microbiol. Biot. 105 (2021) 1709-1720.

[123]

J.G. Elkins, B. Raman, M. Keller, Engineered microbial systems for enhanced con- version of lignocellulosic biomass, Curr. Opin. Biotechnol. 21 (2010) 657-662.

[124]

T. Hasunuma, A. Kondo, Consolidated bioprocessing and simultaneous sacchari- fication and fermentation of lignocellulose to ethanol with thermotolerant yeast strains, Process Biochem. 47 (2012) 1287-1294.

[125]

J. Sharma, V. Kumar, R. Prasad, N.A. Gaur, Engineering of Saccharomyces cere- visiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges, Biotechnol. Adv. 56 (2022) 107925.

[126]

C.G. Tian, W.T. Beeson, A.T. Iavarone, J.P. Sun, M.A. Marletta, J.H.D. Cate, N. L. Glass, Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa, P. Natl. Acad. Sci. USA 106 (2009) 22157-22162.

[127]

S.L. Tsai, Q. Sun, W. Chen, Advances in consolidated bioprocessing using synthetic cellulosomes, Curr. Opin. Biotechnol. 78 (2022) 102840.

[128]

S.T. Chen, Z.X. Xu, B.N. Ding, Y.W. Zhang, S.M. Liu, C.G. Cai, M.Z. Li, B.E. Dale, M. J. Jin, Big data mining, rational modification, and ancestral sequence recon- struction inferred multiple xylose isomerases for biorefinery, Sci. Adv. 9 (2023) eadd8835.

[129]

V.E. Vijayakumar, K. Venkataraman, A systematic review of the potential of Pichia pastoris ( Komagataella phafi) as an alternative host for biologics production, Mol. Biotechnol. (2023).

[130]

M. Karbalaei, S.A. Rezaee, H. Farsiani, Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins, J. . Cell Physiol. 235 (2020) 5867-5881.

[131]

Z.L. Yang, Z.S. Zhang, Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review, Biotechnol. Adv. 36 (2018) 182-195.

[132]

R.J. Zahrl, D.A. Peña, D. Mattanovich, B. Gasser, Systems biotechnology for protein production in Pichia pastoris, FEMS Yeast Res. 17 (2017) 7.

[133]

A. Puseenam, S. Tanapongpipat, N. Roongsawang, Co-expression of endoxylanase and endoglucanase in Scheffersomyces stipitis and its application in ethanol produc- tion, Appl. Biochem. Biotech. 177 (2015) 1690-1700.

[134]

H. Lee, P. Biely, R.K. Latta, M.F.S. Barbosa, H. Schneider, Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains, Appl. Environ. Microb. 52 (1986) 320-324.

[135]

C. Dong, J. Qiao, X. Wang, W. Sun, L. Chen, S. Li, K. Wu, L. Ma, Y. Liu, Engi- neering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production, Biotechnol. Biofuels 13 (2020) 108.

[136]

J.J. Chang, F.J. Ho, C.Y. Ho, Y.C. Wu, Y.H. Hou, C.C. Huang, M.C. Shih, W.H. Li, Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production, Biotechnol. Biofuels 6 (2013) 19.

[137]

S. Yanase, T. Hasunuma, R. Yamada, T. Tanaka, C. Ogino, H. Fukuda, A. Kondo, Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes, Appl. Microbiol. Biotechnol. 88 (2010) 381-388.

[138]

Y.K. Park, J.M. Nicaud, R. Ledesma-Amaro, The engineering potential of Rho- dosporidium toruloides as a workhorse for biotechnological applications, Trends Biotechnol. 36 (2018) 304-317.

[139]

Z.Q. Wen, S.F. Zhang, C.K. Odoh, M.J. Jin, Z.B.K. Zhao, Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond, FEMS Yeast Res. 20 (2020) foaa308.

[140]

A. Rodriguez, N. Ersig, G.M. Geiselman, K. Seibel, B.A. Simmons, J.K. Magnuson, A. Eudes, J.M. Gladden, Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts, Bioresour. Technol. 286 (2019) 121365.

[141]

L.C. Nora, M. Wehrs, J. Kim, J.F. Cheng, A. Tarver, B.A. Simmons, J. Magnuson, M. Harmon-Smith, R. Silva-Rocha, J.M. Gladden, A. Mukhopadhyay, J.M. Skerker, J. Kirby, A toolset of constitutive promoters for metabolic engineering of Rho- dosporidium toruloides, Microb. Cell Fact. 18 (2019) 117.

[142]

G.M. Geiselman, X. Zhuang, J. Kirby, M.B. Tran-Gyamfi, J.P. Prahl, E.R. Sund- strom, Y. Gao, N.M. Munoz, C.D. Nicora, D.M. Clay, G. Papa, K.E. Burnum-Johnson, J.K. Magnuson, D. Tanjore, J.M. Skerker, J.M. Gladden, Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides, Microb. Cell Fact. 19 (2020) 24.

[143]

M. Wehrs, J.M. Gladden, Y. Liu, L. Platz, J.-P. Prahl, J. Moon, G. Papa, E. Sund- strom, G.M. Geiselman, D. Tanjore, J.D. Keasling, T.R. Pray, B.A. Simmons, A. Mukhopadhyay, Sustainable bioproduction of the blue pigment indigoidine: Ex- panding the range of heterologous products in R. toruloidesto include non-ribosomal peptides, Green Chem. 21 (2019) 3394-3406.

[144]

P.B. Otoupal, G.M. Geiselman, A.M. Oka, C.A. Barcelos, H. Choudhary, D. Dinh, W. Zhong, H. Hwang, J.D. Keasling, A. Mukhopadhyay, E. Sundstrom, R.W. Haushalter, N. Sun, B.A. Simmons, J.M. Gladden, Advanced one-pot decon- struction and valorization of lignocellulosic biomass into triacetic acid lactone us- ing Rhodosporidium toruloides, Microb. Cell Fact. 21 (2022) 254.

[145]

A.K. Carvalho, J.D. Rivaldi, J.C. Barbosa, H.F. de Castro, Biosynthesis, character- ization and enzymatic transesterification of single cell oil of Mucor circinelloid es -A sustainable pathway for biofuel production, Bioresour. Technol. 181 (2015) 47-53.

[146]

S.M. Cragg, G.T. Beckham, N.C. Bruce, T.D. Bugg, D.L. Distel, P. Dupree, A.G. Etx- abe, B.S. Goodell, J. Jellison, J.E. McGeehan, S.J. McQueen-Mason, K. Schnorr, P.H. Walton, J.E. Watts, M. Zimmer, Lignocellulose degradation mechanisms across the Tree of Life, Curr. Opin. Chem. Biol. 29 (2015) 108-119.

[147]

G. Padmaperuma, R.V. Kapoore, D.J. Gilmour, S. Vaidyanathan, Microbial consor- tia: a critical look at microalgae co-cultures for enhanced biomanufacturing, Crit. Rev. Biotechnol. 38 (2018) 690-703.

[148]

L.K. Parambil, D. Sarkar, In silico analysis of bioethanol overproduction by ge- netically modified microorganisms in coculture fermentation, Biotechnol. Res. Int. 2015 (2015) 238082.

[149]

V. Kumar, B.G. Fox, T.E. Takasuka, Consolidated bioprocessing of plant biomass to polyhydroxyalkanoate by co-culture of Streptomyces sp. SirexAA-E and Priestia megaterium, Bioresour. Technol. 376 (2023) 128934.

[150]

Z. Wen, R. Ledesma-Amaro, M. Lu, Y. Jiang, S. Gao, M. Jin, S. Yang, Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community, Biotechnol. Bioeng. 117 (2020) 2008-2022.

[151]

Z. Wen, Z. Tu, N. Al makishah, D. Fang, R. Ledesma-Amaro, J. Zhu, Q. Li, Y. Li, M. Jin, Genetic manipulation of a twin Clostridia consortium for co-production of n -butanol and isobutanol by consolidated bioprocessing, ACS Sustain. Chem. Eng. 10 (2022) 14671-14684.

[152]

R.H. Bischof, J. Ramoni, B. Seiboth, Cellulases and beyond: The first 70 years of the enzyme producer Trichoderma reesei, Microb. Cell Fact. 15 (2016) 106.

[153]

Q. Ding, C. Ye, Microbial cell factories based on filamentous bacteria, yeasts, and fungi, Microb. Cell Fact. 22 (2023) 20.

[154]

R. Wikandari, N. Hasniah, M.J. Taherzadeh, The role of filamentous fungi in ad- vancing the development of a sustainable circular bioeconomy, Bioresour. Technol. 345 (2022) 126531.

[155]

S.A. Scholz, I. Graves, J.J. Minty, X.N. Lin, Production of cellulosic organic acids via synthetic fungal consortia, Biotechnol. Bioeng. 115 (2018) 1096-1100.

[156]

M. Couturier, D. Navarro, C. Olive, D. Chevret, M. Haon, A. Favel, L. Lesage-Meessen, B. Henrissat, P.M. Coutinho, J.G. Berrin, Post-genomic anal- yses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis, BMC Genom. 13 (2012) 57.

[157]

I. Schlembach, H. Hosseinpour Tehrani, L.M. Blank, J. Buchs, N. Wierckx, L. Regestein, M.A. Rosenbaum, Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis, Biotechnol. Biofuels 13 (2020) 207.

[158]

H. Fang, Y. Deng, Y. Pan, C. Li, L. Yu, Distributive and collaborative push-and-pull in an artificial microbial consortium for improved consolidated bioprocessing, AIChE J. 68 (2022) 17844.

[159]

J.J. Minty, M.E. Singer, S.A. Scholz, C.H. Bae, J.H. Ahn, C.E. Foster, J.C. Liao, X. N. Lin, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, Proc. Natl. Acad. Sci. U S A 110 (2013) 14592-14597.

[160]

K.M. Smith, J.C. Liao, An evolutionary strategy for isobutanol production strain development in Escherichia coli, Metab. Eng. 13 (2011) 674-681.

[161]

M. Gupta, M. Wong, K. Jawed, K. Gedeon, H. Barrett, M. Bassalo, C. Morrison, D. Eqbal, S.S. Yazdani, R.T. Gill, J.Q. Huang, M. Douaisi, J. Dordick, G. Belfort, M.A.G. Koffas, Isobutanol production by combined in vivo and in vitro metabolic engineering, Metab. Eng. Commun. 15 (2022) e00210.

[162]

T.R. Zuroff, S.B. Xiques, W.R. Curtis, Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans /yeast co-culture, Biotech- nol. Biofuels 6 (2013) 59.

[163]

M. Andlar, T. Rezic, N. Mardetko, D. Kracher, R. Ludwig, B. Santek, Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation, Eng. Life. Sci. 18 (2018) 768-778.

[164]

R.L. Shahab, J.S. Luterbacher, S. Brethauer, M.H. Studer, Consolidated bioprocess- ing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consor- tium, Biotechnol. Bioeng. 115 (2018) 1207-1215.

[165]

R.L. Shahab, S. Brethauer, M.P. Davey, A.G. Smith, S. Vignolini, J.S. Luterbacher, M. H. Studer, A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose, Science 369 (2020) 1214.

[166]

Y.J. Liu, B. Li, Y.G. Feng, Q. Cui, Consolidated bio-saccharification: Leading ligno- cellulose bioconversion into the real world, Biotechnol. Adv. 40 (2020) 107535.

[167]

G.L. Liu, X.Y. Bu, C.Y. Chen, C.X. Fu, Z. Chi, A. Kosugi, Q. Cui, Z.M. Chi, Y.J. Liu, Bioconversion of non-food corn biomass to polyol esters of fatty acid and single-cell oils, Biotechnol. Biof. Biop. 16 (2023) 9.

[168]

Y.J. Liu, Y.D. Zhang, F. Chi, C.Y. Chen, W.J. Wan, Y.A. Feng, X.J. Song, Q. Cui, Inte- grated lactic acid production from lignocellulosic agricultural wastes under thermal conditions, J. Environ. Manage. 342 (2023) 118281.

[169]

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya- suvunakool, R. Bates, A. Ž ídek, A. Potapenko, A. Bridgland, C. Meyer, S.A.A. Kohl, A.J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A.W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583-589.

[170]

A. Althuri, L.K.S. Gujjala, R. Banerjee, Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production, Bioresour. Technol. 245 (2017) 530-539.

[171]

A. Cosgun, M.E. Günay, R. Yildirim, Analysis of lipid production from Yarrowia lipolytica for renewable fuel production by machine learning, Fuel 315 (2022) 122817.

[172]

J.S.M. Pappu, S.N. Gummadi, Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models, Bioresour. Technol. 220 (2016) 490-499.

[173]

P. Moodley, D.C.S. Rorke, E. Bosco, G. Kana, Development of artificial neural net- work tools for predicting sugar yields from inorganic salt-based pretreatment of lignocellulosic biomass, Bioresour. Technol. 273 (2019) 682-686.

[174]

L. Gao, Z. Yu, S. Wang, Y. Hou, S. Zhang, C. Zhou, X. Wu, A new paradigm in ligno- cellulolytic enzyme cocktail optimization: Free from expert-level prior knowledge and experimental datasets, Bioresour. Technol. 388 (2023) 129758.

[175]

L. Minnaar, R. den Haan, Engineering natural isolates of Saccharomyces cere- visiae for consolidated bioprocessing of cellulosic feedstocks, Appl. Microbiol. Biot.(2023) 7013-7028.

[176]

X.Y. Huang, T.J. Ao, X. Zhang, K. Li, X.Q. Zhao, V. Champreda, W. Runguphan, C. Sakdaronnarong, C.G. Liu, F.W. Bai, Developing high-dimensional machine learning models to improve generalization ability and overcome data insufficiency for mixed sugar fermentation simulation, Bioresour. Technol. 385 (2023) 129375.

AI Summary AI Mindmap
PDF (1304KB)

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/