Altered interaction network in the gut microbiota of current cigarette smokers

Zhouhai Zhu , Meng Wang , Ying Guan , Meng Li , Qiyuan Peng , Ning Zheng , Wenbin Ma

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100138

PDF (1681KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100138 DOI: 10.1016/j.engmic.2024.100138
Original Research Article
research-article

Altered interaction network in the gut microbiota of current cigarette smokers

Author information +
History +
PDF (1681KB)

Abstract

The association between cigarette smoking and the gut microbiota remains unclear, and there is no agreement on how smoking affects the composition of gut microorganisms. In this study, the relationship between smoking status and gut microbial composition was investigated by performing 16S rRNA gene amplicon sequencing analysis of stool samples from 80 healthy Chinese adults. The results showed that smoking did not cause significant changes to the composition and microbial functional pathways of the gut microbiota. However, smoking altered the relative abundance of several specific taxa, where Phascolarctobacterium and Fusobacterium increased and Dialister decreased. Notably, our analysis revealed that smoking introduced more microbial interactions to the interaction network and decreased its modularity. Overall, this study provides new insights into the association between smoking status and the gut microbiota.

Keywords

Cigarette smoking / Gut microbiota / China / Co-occurrence network

Cite this article

Download citation ▾
Zhouhai Zhu, Meng Wang, Ying Guan, Meng Li, Qiyuan Peng, Ning Zheng, Wenbin Ma. Altered interaction network in the gut microbiota of current cigarette smokers. Engineering Microbiology, 2024, 4(2): 100138 DOI:10.1016/j.engmic.2024.100138

登录浏览全文

4963

注册一个新账户 忘记密码

Conclusion

In summary, our study revealed that smoking did not cause significant differences in the alpha and beta diversity of the gut microbiota in our cohort. However, smoking affected the relative abundance of specific taxa, where Phascolarctobacterium and Fusobacterium increased and Dialister decreased. Moreover, smoking affected the structure of the co-occurrence network, leading to more interactions between taxa and a decrease in the network modularity. The results of this study provide new insights into the association between smoking and the gut microbiota.

Data Availability Statement

The raw sequence data have been deposited at the Beijing Institute of Genomics Data Center (BIGD) under the genome sequence archive (GSA) number CRA011053 (http://bigd.big.ac.cn/gsa/s/xWfbv74D).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Zhouhai Zhu: Writing - original draft, Methodology. Meng Wang: Writing - original draft, Methodology. Ying Guan: Software, Project administration. Meng Li: Validation, Supervision. Qiyuan Peng: Investigation, Formal analysis. Ning Zheng: Project administration, Formal analysis. Wenbin Ma: Writing - review & editing, Funding acquisition, Conceptualization.

Acknowledgments

This work was supported by Joint Institute of Tobacco and Health Open Project Fund (2021539200340050), Science and Technology Project of China Tobacco Yunnan Industrial Co., Ltd (2021JC07), and the State Key Laboratory of the Microbial Technology Open Projects Fund (M2022-04).

References

[1]

Z. Liu, Y.H. Li, Z.Y. Cui, L. Li, X.Q. Nie, C.D. Yu, G.L. Shan, X.M. Zhou, et al., Preva- lence of tobacco dependence and associated factors in China: findings from nation- wide China Health Literacy Survey during 2018-19, Lancet Reg. Health West Pac. 24 (2022) 100464.

[2]

M.B. Reitsma, L.S. Flor, E.C. Mullany, V. Gupta, S.T. Hay, E. Gakidou, Spatial, tem- poral, and demographic patterns in prevalence of smoking tobacco use and initia- tion among young people in 204 countries and territories,1990-2019, Lancet Public Health 6 (2021) e472-e481.

[3]

GBD 2019 Cancer Risk Factors Collaborators, The global burden of cancer at- tributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019, Lancet 400 (2022) 563-591.

[4]

A. Csordas, D. Bernhard, The biology behind the atherothrombotic effects of cigarette smoke, Nat. Rev. Cardiol. 10 (2013) 219-230.

[5]

J.K. Nicholson, E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, S. Pettersson, Host-gut microbiota metabolic interactions, ScienceScience 336 (2012) 1262-1267.

[6]

L. Zhang, Y.N. Wu, T. Chen, C.H. Ren, X. Li, G.X. Liu, Relationship between intestinal microbial dysbiosis and primary liver cancer. Hepatobiliary Pancreat, Dis. Int. 18 (2019) 149-157.

[7]

T. Yatsunenko, F.E. Rey, M.J. Manary, I. Trehan, M.G. Dominguez-Bello, M. Contr- eras, M. Magris, G. Hidalgo, Human gut microbiota viewed across age and geogra- phy, NatureNature 486 (2012) 222-227.

[8]

S.P. Claus, H. Guillou, S. Ellero-Simatos, The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiotas 2 (2016) 16003.

[9]

L. Biedermann, J. Zeitz, J. Mwinyi, E. Sutter-Minder, A. Rehman, S.J. Ott, C. Steur- er-Stey, A. Frei, Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans, PLoS ONE 8 (2013) e59260.

[10]

I. Kato, A.A. Vasquez, G. Moyerbrailean, S. Land, J. Sun, H.S. Lin, J.L. Ram, Oral microbiota and history of smoking and colorectal cancer, J. Epidemiol. Res. 2 (2016) 92-101.

[11]

S.H. Lee, Y. Yun, S.J. Kim, E.J. Lee, Y. Chang, S. Ryu, H. Shin, H.L. Kim, Associa- tion between cigarette smoking status and composition of gut microbiota: popula- tion-based cross-sectional study, J . Clin. Med. 7 (2018) 282.

[12]

Z. Savin, S. Kivity, H. Yonath, S. Yehuda, Smoking and the intestinal microbiota, Arch. Microbiol. 200 (2018) 677-684.

[13]

J. Wu, B.A. Peters, C. Dominianni, Y. Zhang, Z. Pei, L. Yang, Y. Ma, M.P. Purdue, Cigarette smoking and the oral microbiota in a large study of American adults, ISMe J. 10 (2016) 2435-2446.

[14]

Y.X. Liu, L. Chen, T.F. Ma, X.F. Li, M.S. Zheng, X. Zhou, L. Chen, X. Qian, EasyAm- plicon: an easy-to-use, open-source, reproducible,and community-based pipeline for amplicon data analysisin microbiota research, Imeta 2 (2023) e83.

[15]

N. Segata, J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W.S. Garrett, C. Hutten- hower, Metagenomic biomarker discovery and explanation, Genome Biol. 12 (2011) R60.

[16]

M. Bastian, S. Heymann, M. Jacomy, Gephi: an open source software for exploring and manipulating networks, International AAAI Conference on Weblogs and Social Media, 2009.

[17]

G.M. Douglas, V.J. Maffei, J.R. Zaneveld, S.N. Yurgel, J.R. Brown, C.M. Taylor, C. Huttenhower, M.G.I. Langille, PICRUSt 2 for prediction of metagenome functions, Nat. Biotechnol. 38 (2020) 685-688.

[18]

J. Shiloah, M.R. Patters, M.B. Waring, The prevalence of pathogenic periodontal microflora in healthy young adult smokers, J. Periodontol. 71 (2000) 562-567.

[19]

K. Curtis, C.J. Stewart, M. Robinson, D.L. Molfese, S.N. Gosnell, T.R. Kosten, J.F. Pet- rosino, D.R. Ramiro Salas, Insular resting state functional connectivity is associated with gut microbiota diversity, Eur. J. Neurosci. 50 (2019) 2446-2452.

[20]

J. Chen, E. Ryu, M. Hathcock, K. Ballman, N. Chia, J.E. Olson, H. Nelson, Impact of demographics on human gut microbial diversity in a US Midwest population, Peer J. 4 (2016) e1514.

[21]

H.M. Ishaq, M. Shahzad, X. Wu, C. Ma, J. Xu, Molecular characterization of fecal microbiota of healthy chinese tobacco smoker subjects in Shaanxi Province, Xi’an China, J. Ayub. Med. Coll. Abbottabad. 29 (2017) 3-7.

[22]

Y. He, W. Wu, H.M. Zheng, P. Li, D. McDonald, H.F. Sheng, M.X. Chen, Z.H. Chen, Regional variation limits applications of healthy gut microbiota reference ranges and disease models, Nat. Med. 24 (2018) 1532-1535.

[23]

C. Graham, A. Mullen, K. Whelan, Obesity and the gastrointestinal microbiota: a review of associations and mechanisms, Nutr. Rev. 73 (2015) 376-385.

[24]

X. Zhang, Li Y ZhongH, Z. Shi, H. Ren, Z. Zhang, X. Zhou, S. Tang, et al., Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities, Nat. Aging 1 (2021) 87-100.

[25]

J.D.I. Cuesta-Zuluaga, S.T. Kelley, Y. Chen, J.S. Escobar, N.T. Mueller, R.E. Ley, D. McDonald, S. Huang, et al., Age- and sex-dependent patterns of gut microbial diversity in human adults, mSystems. 4 (2019) e00261-19.

[26]

J.X. Fu, W. Qiu, H. Zheng, C. Qi, S. Hu, W. Wu, H. Wang, G. Wu, et al., Ageing tra- jectory of the gut microbiota is associated with metabolic diseases in a chronological age-dependent manner, GutGut 72 (2023) 1431-1433.

[27]

R. Nolan-Kenney, F. Wu, J. Hu, L. Yang, D. Kelly, H. Li, F. Jasmine, M.G. Kibriya, The association between smoking and gut microbiota in Bangladesh, Nicotine Tob. Res. 2020 (2019) 1339-1346.

[28]

A. Prakash, B.A. Peters, E. Cobbs, D. Beggs, H. Choi, H. Li, R.B. Hayes, J. Ahn, Tobacco Smoking and the Fecal microbiota in a Large, Multi-ethnic Cohort, Cancer Epidem. Biomar. 30 (2021) 1328-1335.

[29]

C.A. Brennan, W.S. Garrett, Fusobacterium nucleatum-symbiont, opportunist and on- cobacterium, Nat. Rev. Microbiol. 17 (2019) 156-166.

[30]

S. Bullman, C.S. Pedamallu, E. Sicinska, T.E. Clancy, X. Zhang, D. Cai, D. Neuberg, K. Huang, Analysis of Fusobacterium persistence and antibiotic response in colorec- tal cancer, ScienceScience 358 (2017) 1443-1448.

[31]

E.R. Shanahan, A. Shah, N. Koloski, M.M. Walker, N.J. Talley, M. Morrison, G.J. Holt- mann, Influence of cigarette smoking on the human duodenal mucosa-associated microbiota, Microbiota 6 (2018) 150.

[32]

F. Wu, X. Guo, J. Zhang, M. Zhang, Z. Ou, Y. Peng, Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract, Exp. Ther. Med. 14 (2017) 3122-3126.

[33]

F. Morio, H. Jean-Pierre, L. Dubreuil, E. Jumas-Bilak, L. Calvet, G. Mercier, R. Devine, H. Marchandin, Antimicrobial susceptibilities and clinical sources of Di- alister species, Antimicrob. Agents Ch 51 (2007) 4498-4501.

[34]

D.A.M. Pedrogo, M.D. Jensen, C.T.V. Dyke, J.A. Murray, J.A. Woods, J. Chen, P. C. Kashyap, V. Nehra, Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet, Mayo Clin. Proc. 93 (2018) 1104-1110.

[35]

M.P. Spindler, J.J. Faith, J. Wang, P.J. Kenny, Gut clues to weight gain after quitting smoking, Nature 600 (2021) 611-612.

[36]

C.B. Wong, T. Odamaki, J. Xiao, Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: modulation of gut microbiota as the principal ac- tion, J. Funct. Foods. 54 (2019) 506-519.

[37]

A. Heinken, M.T. Khan, G. Paglia, D.A. Rodionov, H.J.M. Harmsen, I. Thiele, Func- tional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut mi- crobe, J. Bacteriol. 196 (2014) 3289-3302.

[38]

W. Zhang, J. Li, S. Lu, N. Han, J. Miao, T. Zhang, Y. Qiang, Y. Kong, Gut microbiota community characteristics and disease-related microorganism pattern in a popula- tion of healthy Chinese people, Sci. Rep. 9 (2019) 1594.

[39]

R. Lin, Y. Zhang, L. Chen, Y. Qi, J. He, M. Hu, Y. Zhang, L. Fan, The effects of cigarettes and alcohol on intestinal microbiota in healthy men, J. Microbiol. 58 (2020) 926-937.

[40]

H. Zafar Jr MHS, Gut Bacteroides species in health and disease, Gut Microbes 13 (2021) 1-20.

[41]

B. Chen, L. Sun, G. Zeng, Z. Shen, K. Wang, L. Yin, F. Xu, P. Wang, Gut bacteria alle- viate smoking-related NASH by degrading gut nicotine, Nature 610 (2022) 562-568.

[42]

Y. Zhang, S.A. Niazi, Y. Yang, Y. Wang, X. Cao, Y. Liu, Y. Li, Q. Zhou, Smoking by altering the peri-implant microbial community structure compromises the respon- siveness to treatment, Front. Cell Infect. Microbiol. 12 (2022) 1040765.

AI Summary AI Mindmap
PDF (1681KB)

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/