Heterologous expression facilitates the discovery and characterization of marine microbial natural products

Shuang Zhao , Ruiying Feng , Yuan Gu , Liyuan Han , Xiaomei Cong , Yang Liu , Shuo Liu , Qiyao Shen , Liujie Huo , Fu Yan

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100137

PDF (2386KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (2) : 100137 DOI: 10.1016/j.engmic.2023.100137
Review
research-article

Heterologous expression facilitates the discovery and characterization of marine microbial natural products

Author information +
History +
PDF (2386KB)

Abstract

Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation.

Keywords

Marine natural products / Heterologous expression / Biosynthetic gene clusters / Biosynthetic mechanism

Cite this article

Download citation ▾
Shuang Zhao, Ruiying Feng, Yuan Gu, Liyuan Han, Xiaomei Cong, Yang Liu, Shuo Liu, Qiyao Shen, Liujie Huo, Fu Yan. Heterologous expression facilitates the discovery and characterization of marine microbial natural products. Engineering Microbiology, 2024, 4(2): 100137 DOI:10.1016/j.engmic.2023.100137

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of AI in Scientific Writing

The authors declare no AI in scientific writing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Shuang Zhao: Writing - review & editing, Writing - original draft, Conceptualization. Ruiying Feng: Writing - review & editing, Writing - original draft, Conceptualization. Yuan Gu: Writing - review & editing, Writing - original draft, Conceptualization. Liyuan Han: Writing - review & editing. Xiaomei Cong: Writing - review & editing. Yang Liu: Writing - review & editing. Shuo Liu: Writing - review & editing. Qiyao Shen: Writing - review & editing. Liujie Huo: Writing - review & editing. Fu Yan: Writing - review & editing, Supervision, Conceptualization.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82003639), Taishan Scholars Program of Shandong Province (tsqn201909049) and Qilu Youth Scholar Startup Funding of Shandong University.

References

[1]

D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J Nat Prod 83 (3) (2020) 770-803.

[2]

B.J.H.a.R.A. Shenvi, Natural products in the “Marketplace ”: Interfacing synthesis and biology, J. Am. Chem. Soc 141 (8) (2019) 3332-3346.

[3]

G.M. Cragg, D.J. Newman, Natural products: A continuing source of novel drug leads, Biochim Biophys Acta 1830 (6) (2013) 3670-3695.

[4]

Z Q Xiong, J F Wang, Y Y Hao, Recent advances in the discovery and development of marine microbial natural products, Mar Drugs 11 (3) (2013) 700-717.

[5]

N. Haque, S. Parveen, T. Tang, J. Wei, Z. Huang, Marine natural products in clinical use, Mar Drugs 20 (8) (2022) 528.

[6]

J.A.M. A, T.J. A, M.A. B, C.B. A, Recent highlights of biosynthetic studies on marine natural products, Org Biomol Chem 19 (1) (2021) 123-140.

[7]

P. Banerjee, A. Mandhare, V. Bagalkote, Marine natural products as source of new drugs: an updated patent review (July 2018-July 2021), Expert Opin Ther Pat 32 (3) (2021) 317-363.

[8]

A. Carroll, B. Copp, R. Davis, R. Keyzers, M. Prinsep, Marine natural products, Nat Prod Rep 39 (6) (2022) 1122-1171.

[9]

A.R. Carroll, B.R. Copp, R.A. Davis, R.A. Keyzers, M.R. Prinsep, Marine natural products, Nat Prod Rep 36 (1) (2019) 122-173.

[10]

H.B. Bode, B. Bethe, R. Hofs, A. Zeeck, Big Effects from small changes: possible ways to explore nature’s chemical diversity, Chembiochem 3 (7) (2002) 619-627.

[11]

A. Marmann, A. Aly, W. Lin, B. Wang, P. Proksch, Co-cultivation —a powerful emerging tool for enhancing the chemical diversity of microorganisms, Mar Drugs 12 (2) (2014) 1043-1065.

[12]

D.M. Selegato, I. Castro-Gamboa, Enhancing chemical and biological diversity by co-cultivation, Front Microbiol 14 (2023) 1117559.

[13]

M.N. Gwynn, A. Portnoy, S.F. Rittenhouse, D.J. Payne, Challenges of antibacterial discovery revisited, Ann N Y Acad Sci 1213 (2010) 5-19.

[14]

M. Tulp, L. Bohlin, Rediscovery of known natural compounds: nuisance or gold- mine? Bioorg Med Chem 13 (17) (2005) 5274-5282.

[15]

X. Meng, Y. Fang, M. Ding, Y. Zhang, K. Jia, Z. Li, J. Collemare, W. Liu, De- veloping fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity, Biotechnol Adv 54 (2022) 107866.

[16]

D. Montiel, H.S. Kang, F.Y. Chang, Z. Charlop-Powers, S.F. Brady, Yeast homolo- gous recombination-based promoter engineering for the activation of silent natu- ral product biosynthetic gene clusters, Proc Natl Acad Sci U S A 112 (29) (2015) 8953-8958.

[17]

M. Myronovskyi, A. Luzhetskyy, Native and engineered promoters in natural prod- uct discovery, Nat Prod Rep 33 (8) (2016) 1006-1019.

[18]

M.M. Zhang, F.T. Wong, Y. Wang, S. Luo, Y.H. Lim, E. Heng, W.L. Yeo, R.E. Cobb, B. Enghiad, E.L. Ang, CRISPR-Cas 9 strategy for activation of silent Streptomyces biosynthetic gene clusters, Nat Chem Biol 10 (2017) 2341.

[19]

B. Wang, F. Guo, S.H. Dong, H. Zhao, Activation of silent biosynthetic gene clusters using transcription factor decoys, Nat Chem Biol 15 (2) (2019) 111-114.

[20]

S.S. Choi, Y. Katsuyama, L. Bai, Z. Deng, Y. Ohnishi, E.S. Kim, Genome engineering for microbial natural product discovery, Curr Opin Microbiol 45 (2018) 53-60.

[21]

K. Scherlach, C. Hertweck, Mining and unearthing hidden biosynthetic potential, Nat Commun 12 (1) (2021) 3864.

[22]

E. Kalkreuter, G. Pan, A.J. Cepeda, B. Shen, Targeting bacterial genomes for natural product discovery, Trends Pharmacol Sci 41 (1) (2020) 13-26.

[23]

T.W. Li, S.Y. Kazuo, N. Makoto, K. Tomohisa, Discovery of an antibacterial isoindolinone-containing tetracyclic polyketide by cryptic gene activation and characterization of its biosynthetic gene cluster, ACS Chem Biol 13 (9) (2018) 2615-2622.

[24]

l. Huo, J.J. Hug, C. Fu, X. Bian, Y. Zhang, R. Müller, Heterologous expression of bacterial natural product biosynthetic pathways, Nat Prod Rep 36 (10) (2019) 1412-1436.

[25]

V. Larionov, N. Kouprina, J. Graves, X.N. Chen, J.R. Korenberg, M.A. Resnick, Spe- cific cloning of human DNA as yeast artificial chromosomes by transformation-as- sociated recombination, Proc Natl Acad Sci U S A 93 (1) (1996) 491-496.

[26]

J. Wan, N. Ma, H. Yuan, Recent advances in the direct cloning of large natural product biosynthetic gene clusters, Engineering Microbiology 3 (2023) 100085.

[27]

Y. Zhang, J.P.P. Muyrers, G. Testa, A.F. Stewart, DNA cloning by homologous re- combination in Escherichia coli, Nat Biotechnol 18 (12) (2000) 1314-1317.

[28]

B. Enghiad, C. Huang, F. Guo, G. Jiang, B. Wang, S.K. Tabatabaei, T.A. Martin, H. Zhao, Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombina- tion, Nat Commun 12 (1) (2021) 1171.

[29]

Z.J. Jia, B.S. Moore, T. Xiaoyu, Engineering Salinispora tropica for heterologous expression of natural product biosynthetic gene clusters, Appl Microbiol Biotechnol 102 (19) (2018) 8437-8446.

[30]

K. Yamanaka, K.A. Reynolds, R.D. Kersten, K.S. Ryan, D.J. Gonzalez, V. Nizet, P. C. Dorrestein, B.S. Moore, Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A, Proc Natl Acad Sci U S A 111 (5) (2014) 1957-1962.

[31]

W. Wang, G. Zheng, Y. Lu, Recent Advances in Strategies for the Cloning of Natural Product Biosynthetic Gene Clusters, Front Bioeng Biotechnol (9) (2021) 692797.

[32]

K. Alam, A. Mazumder, S. Sikdar, Y.-M. Zhao, J. Hao, C. Song, Y. Wang, R. Sarkar, S. Islam, Y. Zhang, A. Li, Streptomyces: The biofactory of secondary metabolites, Front Microbiol 13 (2022) 968053.

[33]

J.J. Zhang, X. Tang, B.S. Moore, Genetic platforms for heterologous expression of microbial natural products, Nat Prod Rep 36 (9) (2019) 1313-1332.

[34]

K. Alam, J. Hao, Y. Zhang, A. Li, Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways, Biotechnol Adv 49 (2021) 107759.

[35]

Y. Luo, B.h. Li, D. Liu, L. Zhang, Y. Chen, B. Jia, B.u. Zeng, H. Zhao, Y.i. Yuan, En- gineered biosynthesis of natural products in heterologous hosts, Chemical Society Reviews 46 (2015) 5265-5290.

[36]

R. Xu, H. Zhu, H. Zhang, J. Ju, Q. Li, S. Fu, Six sets of aromatic polyketides differing in size and shape derive from a single biosynthetic gene cluster, Nat Prod Rep 86 (6) (2023) 1512-1519.

[37]

U. Fauth, H.Z Hner, A. MüHLENFELD, H. Achenbach, Galbonolides A and B - two non-glycosidic antifungal macrolides, J Antibiot (Tokyo) 39 (12) (1986) 1760-1764.

[38]

C. Zhen, H. Lu, Y. Jiang, Novel promising antifungal target proteins for conquering invasive fungal infections, Front Microbiol 13 (2022) 911322.

[39]

M.A. Achenbach H, U Fauth, H. Zähner, The galbonolides. Novel, powerful antifun- gal macrolides from Streptomyces galbus ssp. eurythermus, Ann N Y Acad Sci 544 (1988) 128-140.

[40]

C.H. Lu, Y.Y. Li, J.L. Zhang, Y.M. Shen, J. Zhu, In vitro reconstitution of a PKS path- way for the biosynthesis of galbonolides in Streptomyces sp LZ35, Chembiochem 16 (6) (2015) 998-1007.

[41]

C.H. Lu, C. Liu, Y.M. Shen, J.L. Zhang, Heterologous expression of galbonolide biosynthetic genes in Streptomyces coelicolor, Antonie Van Leeuwenhoek 107 (5)(2015) 1359-1366.

[42]

B. Wli, J. Paul, C. Sheldon, H. Richard, Purification and properties of the Strepto- myces peucetius DpsC 𝛽ketoacyl:acyl carrier protein synthase III that specifies the propionate-starter unit for Type II polyketide biosynthesis, Biochemistry 38 (30)(1999) 9752-9757.

[43]

J. Riedlinger, A. Reicke, H. Z?Hner, B. Krismer, A.T. Bull, L.A. Maldonado, A. C. Ward, M. Goodfellow, B. Bister, D. Bischoff, Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032, J Antibiot (Tokyo) 57 (4) (2004) 271-279.

[44]

J.S. Freundlich, M. Lalgondar, J.R. Wei, S. Swanson, E.J. Sorensen, E.J. Rubin, J. C Sacchettini, The Abyssomicin C family as in vitro inhibitors of Mycobacterium tuberculosis, Tuberculosis (Edinb) 90 (5) (2010) 298-300.

[45]

Y. Song, Q. Li, F. Qin, C. Sun, H. Liang, X. Wei, N.K. Wong, L. Ye, Y. Zhang, M. Shao, Neoabyssomicins A-C, polycyclic macrolactones from the deep-sea derived Strep- tomyces koyangensis SCSIO 5802, Tetrahedron (2017) 5366-5372.

[46]

J. Tu, S. Li, J. Chen, Y. Song, S. Fu, J. Ju, Q. Li, Characterization and heterolo- gous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802, Microb Cell Fact 17 (1) (2018) 28.

[47]

J.S. An, B. Shin, T.H. Kim, S. Hwang, Y.H. Shin, J. Cui, Y.E. Du, J. Yi, S.J. Nam, S. Hong, J. Shin, J. Jang, Y.J. Yoon, D.C. Oh, Dumulmycin, an antitubercular bi- cyclic macrolide from a riverine sediment-derived Streptomyces sp, Org Lett 23 (9) (2021) 3359-3363.

[48]

Y. Liu, H. Zhou, Q. Shen, G. Dai, F. Yan, X. Li, X. Ren, Q. Sun, Y.J. Tang, Y. Zhang, Discovery of polycyclic macrolide shuangdaolides by heterologous expression of a Cryptic trans -AT PKS Gene Cluster, Org Lett 23 (17) (2021) 6967-6971.

[49]

B. Zhang, K.B. Wang, W. Wang, S.F. Bi, Y.N. Mei, X.Z. Deng, R.H. Jiao, R. X. Tan, H.M. Ge, Discovery, biosynthesis, and heterologous production of strep- toseomycin, an anti-microaerophilic bacteria macrodilactone, Org Lett 20 (10) (2018) 2967-2971.

[50]

K.B. Wang, W. Wang, B. Zhang, X. Wang, H.M. Ge, A [6 + 4]-cycloaddition adduct is the biosynthetic intermediate in streptoseomycin biosynthesis, Nat Commun 12 (1) (2021) 2092.

[51]

J. Zhang, Y. Jiang, Y. Cao, J. Liu, D. Zheng, X. Chen, L Han, C. Jiang, X. Huang, Violapyrones A-G, alpha-pyrone derivatives from Streptomyces violascens isolated from Hylobates hoolock feces, J Nat Prod 76 (11) (2013) 2126-2130.

[52]

H. Huang, L. Hou, H. Li, Y. Qiu, J. Ju, W. Li, Activation of a plasmid-situated type III PKS gene cluster by deletion of a wbl gene in deepsea-derived Streptomyces somaliensis SCSIO ZH66, Microb Cell Fact 15 (1) (2016) 116.

[53]

L. Hou, S.Y. Wang, H.M. Huang, H.Y. Li, W. Wang, W.L. Li, Generation of methy- lated violapyrones with improved anti-influenza A virus activity by heterologous expression of a type III PKS gene in a marine Streptomyces strain, Bioorg Med Chem Lett 28 (17) (2018) 2865-2868.

[54]

J. Shi, Y.J. Zeng, B. Zhang, F.L. Shao, Y.C. Chen, X. Xu, Y. Sun, Q. Xu, R.X. Tan, H. M. Ge, Comparative genome mining and heterologous expression of an orphan NRPS gene cluster direct the production of ashimides, Chem Sci 10 (10) (2019) 3042-3048.

[55]

R.C.M. Lau, K.L. Rinehart, Berninamycins B, C, and D, minor metabolites from Streptomyces bernensis, J Antibiot (Tokyo) 47 (12) (1994) 1466-1472.

[56]

J.M. Liesch, D.S. Millington, R.C. Pandey, K.L. Rinehart, Berninamycin. 2. Products of acidic hydrolysis, methanolysis, and acetolysis of berninamycin A, J Am Chem Soc 98 (25) (1976) 8237-8249.

[57]

J.M. Liesch, D.S. Millington, R.C. Pandey, K.L.J. Rinehart, ChemInform Abstract: Berninamycin. 2. Products of acidic hydrolysis, methanolysis, and acetolysis of berninamycin A, Chemischer Informationsdienst 8 (10) (1977).

[58]

J.M. Liesch, K.L. Rinehart, Berninamycin. 3. Total structure of berninamycin A1,2, J Am Chem Soc 99 (5) (1977) 1645-1646.

[59]

B.C. De, W. Zhang, G. Zhang, Z. Liu, B. Tan, Q. Zhang, L. Zhang, H. Zhang, Y. Zhu, C. Zhang, Host-dependent heterologous expression of berninamycin gene cluster leads to linear thiopeptide antibiotics, Org Biomol Chem 19 (41) (2021) 8940-8946.

[60]

M.R. Estévez, M. Myronovskyi, N. Gummerlich, S. Nadmid, A. Luzhetskyy, Heterol- ogous expression of the nybomycin gene cluster from the marine strain streptomyces albus subsp. chlorinus NRRL B-24108, Mar Drugs 16 (11) (2018) 435.

[61]

C. Lasch, M. Stierhof, M.R. Estevez, A. Luzhetskyy, Bonsecamin: a new cyclic pen- tapeptide discovered through heterologous expression of a cryptic gene cluster, Microorganisms 9 (8) (2021) 1640.

[62]

L.Q. Song Y, X Liu, Y Chen, Y Zhang, A Sun, W Zhang, J Zhang, J Ju, Cyclic Hexapeptides from the deep south china sea-derived Streptomyces scopuliridis SCSIO ZJ46 active against pathogenic Gram-positive bacteria, J Nat Prod 77 (8) (2014) 1937-1941.

[63]

Q S.Y. Li, X Qin, X Zhang, A Sun, J. Ju, Identification of the biosynthetic gene cluster for the anti-infective desotamides and production of a new analogue in a heterologous host, J Nat Prod 78 (4) (2015) 944-948.

[64]

H. Fujiki, M. Mori, M. Nakayasu, M. Terada, T. Sugimura, R.E. Moore, Indole al- kaloids: dihydroteleocidin B, teleocidin, and lyngbyatoxin A as members of a new class of tumor promoters, Proceedings of the National Academy of Sciences 78 (1981) 3872-3876.

[65]

H. Fujiki, Y. Tanaka, R. Miyake, U. Kikkawa, T. Sugimura, Activation of calcium-ac- tivated, phospholipid-dependent protein kinase (protein kinase C) by new classes of tumor promoters: Teleocidin and debromoaplysiatoxin, Biochem Biophys Res Commun 120 (1984) 339-343.

[66]

J.H. Cardellina, F.-J. Marner, R.E. Moore, Seaweed dermatitis: structure of lyngby- atoxin A, Science 204 (1979) 193-195.

[67]

N. Aimi, H. Odaka, S.-i. Sakai, H. Fujiki, M. Suganuma, R.E. Moore, G.M.L. Patter- son, Lyngbyatoxins B and C, two new irritants from Lyngbya majuscula, J Nat Prod 53 (6) (1990) 1593-1596.

[68]

W. Jiang, W. Zhou, H. Uchida, M. Kikumori, K. Irie, R. Watanabe, T. Suzuki, B. Sakamoto, M. Kamio, H. Nagai, A new lyngbyatoxin from the Hawaiian cyanobacterium Moorea producens, Mar Drugs 12 (5) (2014) 2748-2759.

[69]

W. Jiang, S. Tan, Y. Hanaki, K. Irie, H. Uchida, R. Watanabe, T. Suzuki, B. Sakamoto, M. Kamio, H. Nagai, Two new lyngbyatoxin derivatives from the cyanobacterium, Moorea producens, Mar Drugs 12 (12) (2014) 5788-5800.

[70]

D.J. Edwards, W.H. Gerwick, Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase, J Am Chem Soc 126 (37) (2004) 11432-11433.

[71]

S.E. Ongley, X. Bian, Y. Zhang, R. Chau, W.H. Gerwick, R. Müller, B.A. Neilan, High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium, ACS Chem Biol 8 (9) (2013) 1888-189.

[72]

P. Videau, K. Wells, A.J. Singh, W.H. Gerwick, B. Philmus, Assessment of anabaena sp. Strain PCC 7120 as a Heterologous expression host for cyanobacterial natural products: production of Lyngbyatoxin A, ACS Synth Biol 5 (9) (2016) 978-988.

[73]

D. Degen, Y. Feng, Y. Zhang, K.Y. Ebright, Y.W. Ebright, M. Gigliotti, H. Vahe- dianmovahed, S. Mandal, M. Talaue, N. Connell, Transcription inhibition by the depsipeptide antibiotic salinamide A, Elife 3 (2014) e02451.

[74]

S. Miao, M.R. Anstee, K. Lamarco, J. Matthew, L.H.T. Huang, M.M. Brasseur, In- hibition of bacterial RNA polymerases. peptide metabolites from the cultures of Streptomyces sp, J Nat Prod 60 (8) (1997) 858-861.

[75]

J.A. Trischman, D.M. Tapiolas, P.R. Jensen, R. Dwight, W. Fenical, T.C. Mckee, C.M. Ireland, T.J. Stout, J. Clardy, Salinamides A and B: anti-inflammatory dep- sipeptides from a marine streptomycete, J Am Chem Soc 116 (2) (1994) 757-758.

[76]

J. A.T.B.S. Moore, D. Seng, D. Kho, P.R. Jensen, W. Fenical, Salinamides, antiinflam- matory depsipeptides from a marine streptomycete, J. Org. Chem 64 (4) (1999) 1145-1150.

[77]

H.M. Hassan, D. Degen, K.H. Jang, R.H. Ebright, W. Fenical, Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp, J Antibiot 68 (3) (2015) 206-209.

[78]

L. Ray, K. Yamanaka, B.S Moore, A peptidyl-transesterifying typeI thioesterase in salinamide biosynthesis, Angew Chem Int Ed Engl 55 (1) (2015) 364-367.

[79]

R. Chen, Q. Zhang, B. Tan, L. Zheng, H. Li, Y. Zhu, C. Zhang, Genome mining and activation of a silent PKS/NRPS gene cluster direct the production of totopoten- samides, Org Lett 19 (20) (2017) 5697-5700.

[80]

B. Tan, Q. Zhang, Y. Zhu, H. Jin, C. Zhang, Deciphering biosynthetic enzymes lead- ing to 4-Chloro-6-methyl-5,7-dihydroxyphenylglycine, a non-proteinogenic amino acid in totopotensamides, ACS Chem Biol 15 (3) (2020) 766-773.

[81]

K. Kleigrewe, J. Almaliti, I.Y. Tian, R.B. Kinnel, A. Korobeynikov, E.A. Monroe, B. M. Duggan, V. Di Marzo, D.H. Sherman, P.C. Dorrestein, combining mass spectro- metric metabolic profiling with genomic analysis: a powerful approach for discov- ering natural products from cyanobacteria, J Nat Prod 78 (7) (2015) 1671-1682.

[82]

A. Taton, S.G. Rohrer, B. Diaz, R. Reher, A.M.C. Rodríguez, M.L. Pierce, P. Dor- restein, L. Gerwick, W. Gerwick, J.W. Golden, Heterologous expression in anabaena of the columbamide pathway from the cyanobacterium moorena bouillonii and production of new analogs, ACS Chem Biol 17 (7) (2022) 1910-1923.

[83]

R.B. Kinnel, E. Esquenazi, T. Leao, N. Moss, E. Mevers, A.R. Pereira, E.A. Monroe, A maldiisotopic approach to discover natural products: cryptomaldamide, a hybrid tripeptide from the marine cyanobacterium moorea producens, J Nat Prod 80 (5)(2017) 1514-1521.

[84]

A. Taton, A. Ecker, B. Diaz, N.A. Moss, J.W. Golden, Heterologous expression of cryptomaldamide in a cyanobacterial host, ACS Synth Biol 9 (12) (2020) 3364-3376.

[85]

Z. Chang, P. Flatt, W.H. Gerwick, V.A. Nguyen, C.L. Willis, D.H. Sherman, The bar- bamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involv- ing an unusual trichloroleucyl starter unit, Gene 296 (1-2) (2002) 235-247.

[86]

E.J. Kim, J.H. Lee, H. Choi, A.R. Pereira, Y.H. Ban, Y.J. Yoo, E. Kim, J.W. Park, D.H. Sherman, W.H. Gerwick, Heterologous production of 4- O -Demethylbarbamide, a marine cyanobacterial natural Product, Org Lett 14 (23) (2012) 5824-5827.

[87]

T.B. Rounge, T. Rohrlack, A.J. Nederbragt, T. Kristensen, K.S. Jakobsen, A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain, BMC Genomics 10 (2009) 396.

[88]

R.Castelo-Branco Nádia. Eusébio D. Sousa M. Preto P. D’Agostino T.A.M. Gulder P.N. Leo, Discovery and heterologous expression of microginins from, ACS Synth Biol 11 (10) (2022) 3493-3503.

[89]

M.P. Sobolevskaya, O.F. Smetanina, M. Speitling, L.S. Shevchenko, G.B. Elyakov, Controlling production of brominated cyclic depsipeptides by Pseudoalteromonas maricaloris KMM 636T, Lett Appl Microbiol 40 (4) (2005) 243-248.

[90]

D.D. Nguyen, C.H. Wu, W.J. Moree, A. Lamsa, M.H. Medema, X. Zhao, R.G. Gavilan, M. Aparicio, L. Atencio, C. Jackson, MS/MS networking guided analysis of molecule and gene cluster families, Proc Natl Acad Sci U S A 110 (28) (2013) E2611-E2620.

[91]

A.C. Ross, L.E.S. Gulland, P.C. Dorrestein, B.S. Moore, Targeted capture and het- erologous expression of the pseudoalteromonas alterochromide gene cluster in Es- cherichia coli represents a promising natural product exploratory platform, ACS Synth Biol 4 (4) (2014) 414-420.

[92]

J.D. Hegemann, M. Zimmermann, X. Xie, M.A. Marahiel, Lasso peptides: an intrigu- ing class of bacterial natural products, Acc Chem Res 48 (7) (2015) 1909-1919.

[93]

C. Cheng, Z.-C. Hua, Lasso peptides: heterologous production and potential medical application, Front Bioeng Biotechnol 8 (2020) 571165.

[94]

D. Ovescostales, O. Genilloud, Identification, Cloning and heterologous expression of the gene cluster directing RES-701-3, -4 Lasso peptides biosynthesis from a ma- rine Streptomyces Strain, Mar Drugs 18 (5) (2020) 238.

[95]

M. Shao, J. Ma, Q. Li, J. Ju, Identification of the anti-Infective aborycin biosyn- thetic gene cluster from deep-sea-derived Streptomyces sp. SCSIO ZS0098 enables production in a heterologous host, Mar Drugs 17 (2) (2019).

[96]

C.M. Ireland, A.R. Durso, R.A. Newman, M.P. Hacker, Antineoplastic cyclic pep- tides from the marine tunicate Lissoclinum patella, J Org Chem 47 (10) (1982) 1807-1811.

[97]

B.M. Degnan, C.J. Hawkins, M.F. Lavin, E.J. Mccaffrey, D.L. Parry, d.B. Van, L. Anna, D.J. Watters, New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella, J Med Chem 32 (6) (1989) 1349-1354.

[98]

E.W. Schmidt, J.T. Nelson, D.A. Rasko, S. Sudek, J.A. Eisen, M.G. Haygood, J. Ravel, Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella, Proc Natl Acad Sci U S A 102 (20) (2005) 7315-7320.

[99]

J. Martins, N. Leikoski, M. Wahlsten, J. Azevedo, J. Antunes, J. Jokela, K. Sivo- nen, V. Vasconcelos, D.P. Fewer, P.N. Leão, Sphaerocyclamide, a prenylated cyanobactin from the cyanobacterium Sphaerospermopsis sp. LEGE 00249, Sci Rep 8 (1) (2018) 14537.

[100]

J. Braesel, J.-H. Lee, B. Arnould, B.T. Murphy, A.S. Eustáquio, Diazaquinomycin biosynthetic gene clusters from marine and freshwater actinomycetes, J Nat Prod 82 (4) (2019) 937-946.

[101]

M. Murata, T. Miyasaka, H. Tanaka, S. Omura, Diazaquinomycin A, a new an- tifolate antibiotic, inhibits thymidylate synthase, Journal of Antibiotics 38 (1985) 1025-1033.

[102]

J. Braesel, T.A. Tran, A.S. Eustáquio, Heterologous expression of the diazaquino- mycin biosynthetic gene cluster, J Ind Microbiol Biotechnol 46 (9-10) (2019) 1359-1364.

[103]

N. Ziemert, K. Ishida, A. Liaimer, C.Dr. Hertweck, E.Dr. Dittmann, Ribosomal syn- thesis of tricyclic depsipeptides in bloom-forming cyanobacteria, Angew Chem Int Ed Engl 47 (40) (2008) 7756-7759.

[104]

L.C. Blasiak, J.C. Clardy, Discovery of 3-Formyl-Tyrosine Metabolites from pseu- doalteromonas tunicata through heterologous expression, J Am Chem Soc 132 (3)(2010) 926-927.

[105]

W. Shih-Wei, C. Chih-Ling, Y.C. Kao, R. Martin, C.L. Chen, Pentabromopseudilin: a myosin V inhibitor suppresses TGF- 𝛽 activity by recruiting the type II TGF- 𝛽 recep- tor to lysosomal degradation, J Enzyme Inhib Med Chem 33 (1) (2018) 920-935.

[106]

J.M. Sneed, K.H. Sharp, K.B. Ritchie, V.J. Paul, The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals, Proc Biol Sci 281 (1786) (2014) 130-143.

[107]

K. Ni, Y. Lu, T. Wang, K. Kannan, J. Gosens, L. Xu, Q. Li, L. Wang, S. Liu, A review of human exposure to polybrominated diphenyl ethers (PBDEs) in China, Int J Hyg Environ Health 216 (6) (2013) 607-623.

[108]

A.P. Vonderheide, K.E. Mueller, J. Meija, G.L. Welsh, Polybrominated diphenyl ethers: Causes for concern and knowledge gaps regarding environmental distribu- tion, fate and toxicity, Sci Total Environ 400 ( 1-3) (2008) 425-436.

[109]

V. Agarwal, A.A. El Gamal, K. Yamanaka, D. Poth, R.D. Kersten, M. Schorn, E.E. Allen, B.S. Moore, Biosynthesis of polybrominated aromatic organic com- pounds by marine bacteria, Nat Chem Biol 10 (8) (2014) 640-647.

[110]

S. Saha, W. Zhang, G. Zhang, Y. Zhu, Y. Chen, W. Liu, C. Yuan, Q. Zhang, H. Zhang, L. Zhang, W. Zhang, C. Zhang, Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams, Chem Sci 8 (2) (2017) 1607-1612.

[111]

N. Durán, C.F.M. Menck, Chromobacterium violaceum: A review of pharmacolog- ical and industiral perspectives, Crit Rev Microbiol 27 (3) (2001) 201-222.

[112]

J.M. Pemberton, K.M. Vincent, R.J. Penfold, Cloning and heterologous expression of the violacein biosynthesis gene cluster from Chromobacterium violaceum, Curr Microbiol 22 (1991) 355-358.

[113]

C.J. Balibar, In vitro biosynthesis of violacein from L-tryptophan by the en- zymes VioA-E from Chromobacterium violaceum, Biochemistry 45 (51) (2006) 15444-15457.

[114]

P.R. August, T.H. Grossman, C. Minor, M.P. Draper, I.A. Macneil, J.M. Pemberton, K. M. Call, D. Holt, M.S. Osburne, Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum, J Mol Microbiol Biotechnol 2 (4) (2000) 513-519.

[115]

Y. Wang, A. Ikawa, S. Okaue, S. Taniguchi, I. Osaka, A. Yoshimoto, Y. Kishida, R. Arakawa, K. Enomoto, Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas, Biosci Biotechnol Biochem 72 (7)(2008) 1958-1961.

[116]

X. Zhang, K. Enomoto, Characterization of a gene cluster and its putative promoter region for violacein biosynthesis in Pseudoalteromonas sp. 520P1, Appl Microbiol Biotechnol 90 (6) (2011) 1963-1971.

[117]

J.J. Zhang, X. Tang, M. Zhang, D. Nguyen, B.S. Moore, J.E. Davies, Broad-- Host-Range expression reveals native and host regulatory elements that influence heterologous antibiotic production in Gram-negative bacteria, mBio 8 (5) (2017) e01291-01217.

[118]

E. Goyer, C. Lavaud, G. Massiot, Meroterpenoids? A historical and critical review of this biogenetic determinant, Nat Prod Rep 40 (6) (2023) 1071-1077.

[119]

W. Zhang, L. Du, Z. Qu, X. Zhang, F. Li, Z. Li, F. Qi, X. Wang, Y. Jiang, P. Men, Compartmentalized Biosynthesis of Mycophenolic Acid, Proc Natl Acad Sci U S A. 116 (27) (2019) 13305-13310.

[120]

N. Sin, L. Meng, M.Q. Wang, J.J. Wen, W.G. Bornmann, C.M. Crews, The anti-an- giogenic agent fumagillin covalently binds and inhibits the methionine aminopep- tidase, MetAP-2, Proceedings of the National Academy of Sciences 94 (1997) 6099-6103.

[121]

T. Bai, Z. Quan, R. Zhai, T. Awakawa, Y. Matsuda, I. Abe, Elucidation and het- erologous reconstitution of chrodrimanin B biosynthesis, Org Lett 20 (23) (2018) 7504-7508.

[122]

K. Zhang, G. Zhang, X. Hou, C. Ma, J. Liu, Q. Che, T. Zhu, D. Li, A Fungal Promiscu- ous UbiA Prenyltransferase Expands the Structural Diversity of Chrodrimanin-Type Meroterpenoids, Org Lett 24 (10) (2022) 2025-2029.

[123]

D. Das, T.K. Chakraborty, An overview of the recent synthetic studies toward peni- fulvins and other fenestranes, Tetrahedron Lett 57 (33) (2016) 3665-3677.

[124]

N. Ingavat, C. Mahidol, S. Ruchirawat, P. Kittakoop, Asperaculin A, a Sesquiter- penoid from a marine-derived fungus, aspergillus aculeatus, J Nat Prod 74 (7)(2011) 1650-1652.

[125]

S.H. Shim, D.C. Swenson, J.B. Gloer, P.F. Dowd, D.T. Wicklow, Penifulvin A: A Sesquiterpenoid-derived metabolite containing a novel dioxa[5,5,5,6]fenestrane ring system from a fungicolous Isolate of penicillium griseofulvum, Org Lett 8 (6)(2006) 1225-1228.

[126]

H. Zeng, G. Yin, Q. Wei, D. Li, Y. Wang, Y. Hu, C. Hu, Y. Zou, Unprecedented [5.5.5.6]dioxafenestrane ring construction in fungal insecticidal sesquiterpene biosynthesis, Angew Chem Int Ed Engl 58 (20) (2019) 6569-6573.

[127]

Q. Wei, H.C. Zeng, Y. Zou, Divergent biosynthesis of fungal dioxafenestrane sesquiterpenes by the cooperation of distinctive baeyer-villiger monooxyge- nases and 𝛼-ketoglutarate-dependent dioxygenases, ACS Catalysis 11 (2) (2021) 948-957.

[128]

R. Geris, T.J. Simpson, Meroterpenoids produced by fungi, Nat Prod Rep 26 (8)(2009) 1063-1094.

[129]

Y. Matsuda, I. Abe, Biosynthesis of fungal meroterpenoids, Nat Prod Rep 33 (1)(2016) 26-53.

[130]

X. Cao, Y. Shi, X. Wu, K. Wang, B. Wu, Talaromyolides A-D and talaromytin: poly- cyclic meroterpenoids from the fungus talaromyces sp. CX11, Org Lett 21 (16)(2019) 6539-6542.

[131]

X. Cao, Y. Shi, S. Wu, X. Wu, B. Wu, Polycyclic meroterpenoids, talaromyolides E K for antiviral activity against pseudorabies virus from the endophytic fungus Talaromyces purpureogenus, Tetrahedron 76 (30) (2020) 131349.

[132]

X. Li, T. Awakawa, T. Mori, M. Ling, D. Hu, B. Wu, I. Abe, Heterodimeric Non-heme Iron enzymes in fungal meroterpenoid biosynthesis, J Am Chem Soc 143 (50)(2021) 21425-21432.

[133]

M. Isaka, A. Jaturapat, K. Rukseree, K. Danwisetkanjana, M. Tanticharoen, Y. Theb- taranonth, Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus phomopsis species, J Nat Prod 64 (8) (2001) 1015-1018.

[134]

B. Elssser, K. Krohn, U. Flörke, N. Root, H.-J. Aust, S. Draeger, B. Schulz, S. Antus, T. Kurtán, X-ray Structure Determination, Absolute configuration and biological activity of phomoxanthone A, Eur J Org Chem (2005) 4563-4570.

[135]

C. Wang, L. Engelke, D. Bickel, A. Hamacher, M.U. Kassack, The tetrahydroxan- thone-dimer phomoxanthone A is a strong inducer of apoptosis in cisplatin-resis- tant solid cancer cells, Bioorg Med Chem 27 (19) (2019) 115044.

[136]

M. Frank, H. Niemann, P. Böhler, B. Stork, S. Wesselborg, W. Lin, Proksch, Pho- moxanthone A - from mangrove forests to anticancer therapy, Curr Med Chem 22 (30) (2015) 3523-3532.

[137]

S.W. Yuan, S.H. Chen, H. Guo, L.T. Chen, H.J. Shen, L. Liu, Z.Z. Gao, Elucidation of the complete biosynthetic pathway of phomoxanthone A and Identification of a Para-Para selective phenol coupling dimerase, Org Lett 24 (16) (2022) 3069-3074.

[138]

H. Wei, T. Itoh, M. Kinoshita, N. Kotoku, S. Aoki, M. Kobayashi, Shimalactone A a novel polyketide, from marine-derived fungus Emericella variecolor GF10, Tetrahedron 61 (33) (2005) 8054-8058.

[139]

I. Fujii, M. Hashimoto, K. Konishi, A. Unezawa, H. Sakuraba, K. Suzuki, H. Tsushima, M. Iwasaki, S. Yoshida, A. Kudo, Shimalactone biosynthesis involves spontaneous double bicyclo-ring formation with 8 𝜋-6 𝜋 electrocyclization, Angew Chem Int Ed Engl 59 (22) (2020).

[140]

T. Abu-Izneid, A. Rauf, M.A. Shariati, A.A. Khalil, M. Imran, M. Rebezov, M.S. Ud- din, M.F. Mahomoodally, K.R.R. Rengasamy, Sesquiterpenes and their derivatives-natural anticancer compounds: An update, Pharmacol Res (2020) 161.

[141]

X. Guo, Q. Meng, S. Niu, J. Liu, W. Lin, Epigenetic manipulation to trigger produc- tion of guaiane-type sesquiterpenes from a marine-derived spiromastix sp. fungus with antineuroin flammatory effects, J Nat Prod 84 (7) (2021).

[142]

Z. Yin, J.S. Dickschat, Engineering fungal terpene biosynthesis, Nat Prod Rep 40 (1) (2023) 28-45.

[143]

J. Liu, X. Guo, X. Guo, B. Zhong, T. Wang, D. Liu, H. Jin, J. Ren, Z. Liu, J. Gao, Con- cise biosynthesis of tropone-containing spiromaterpenes by a sesquiterpene cyclase and a multifunctional P450 from a deep-Sea-derived, J Nat Prod 85 (12) (2022) 2723-2730.

[144]

A. Rego, A. Fernandez-Guerra, P. Duarte, P. Assmy, P.N. Leão, C. Magalhães, Sec- ondary metabolite biosynthetic diversity in Arctic Ocean metagenomes, Microb Genom 7 (12) (2021).

[145]

C. Loureiro, A. Galani, A. Gavriilidou, M. Chaib de Mares, J. van der Oost, M. H. Medema, D. Sipkema, Comparative metagenomic analysis of biosynthetic di- versity across sponge microbiomes highlights metabolic novelty, Conservation, and diversification, MSystems 7 (4) (2022) e00357-00322.

AI Summary AI Mindmap
PDF (2386KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/