Achieving simultaneous removal of carbon and nitrogen by an integrated process of anaerobic membrane bioreactor and flow-through biofilm reactor

Xueshen Wu , Chao Wang , Depeng Wang , Ahmed Tawfik , Ronghua Xu , Zhong Yu , Fangang Meng

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (1) : 100136

PDF (3411KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (1) :100136 DOI: 10.1016/j.engmic.2023.100136
Original Research Article
research-article

Achieving simultaneous removal of carbon and nitrogen by an integrated process of anaerobic membrane bioreactor and flow-through biofilm reactor

Author information +
History +
PDF (3411KB)

Abstract

In this study, a combined system consisting of an anaerobic membrane bioreactor (AnMBR) and flow-through biofilm reactor/CANON (FTBR/CANON) was developed to simultaneously remove carbon and nitrogen from synthetic livestock wastewater. The average removal efficiencies of total nitrogen (TN) were 64.2 and 76.4% with influent ammonium (NH4+-N) concentrations of approximately 200 and 500 mg/L, respectively. The COD removal efficiencies were higher than 98.0% during the entire operation. Mass balance analysis showed that COD and TN were mainly removed by the AnMBR and FTBR/CANON, respectively. The anammox process was the main nitrogen removal pathway in the combined system, with a contribution of over 80%. High functional bacterial activity was observed in the combined system. Particularly, an increase in the NH4+-N concentration considerably improved the anammox activity of the biofilm in the FTBR/CANON. 16S rRNA high-throughput sequencing revealed that Methanosaeta, Candidatus Methanofastidiosum, and Methanobacterium were the dominant methanogens in the AnMBR granular sludge. In the CANON biofilm, Nitrosomonas and Candidatus Kuenenia were identified as aerobic and anaerobic ammonium-oxidizing bacteria, respectively. In summary, this study proposes a combined AnMBR and FTBR/CANON process targeting COD and nitrogen removal, and provides a potential alternative for treating high-strength wastewater.

Keywords

Anaerobic membrane bioreactors / Anammox / Bacterial community / Livestock wastewater / Methanogens / Nitrogen removal

Cite this article

Download citation ▾
Xueshen Wu, Chao Wang, Depeng Wang, Ahmed Tawfik, Ronghua Xu, Zhong Yu, Fangang Meng. Achieving simultaneous removal of carbon and nitrogen by an integrated process of anaerobic membrane bioreactor and flow-through biofilm reactor. Engineering Microbiology, 2024, 4(1): 100136 DOI:10.1016/j.engmic.2023.100136

登录浏览全文

4963

注册一个新账户 忘记密码

Data Availability Statement

All data generated or analyzed during this study are included in this published article and its supplementary information files or are available upon request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Xueshen Wu: Writing - original draft, Investigation, Formal analysis, Data curation. Chao Wang: Methodology, Data curation. Depeng Wang: Methodology, Formal analysis, Data curation. Ahmed Tawfik: Writing - review & editing. Ronghua Xu: Methodology, Data curation. Zhong Yu: Methodology, Formal analysis, Data curation. Fangang Meng: Writing - review & editing, Supervision, Methodology, Funding acquisition.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 32161143031, 22376228 and 52200081), and the Fundamental Research Funds for the Central Universities (Sun Yat-sen University, 23lgzy005).

References

[1]

A. Aslam, S.J. Khan, H.M.A. Shahzad, Anaerobic membrane bioreactors (AnM- BRs) for municipal wastewater treatment- potential benefits, constraints, and fu- ture perspectives: an updated review, Sci. Total Environ. 802(2022) 149612, doi:10.1016/j.scitotenv.2021.149612.

[2]

C. Chen, W.S. Guo, H.H. Ngo, Y. Liu, B. Du, Q. Wei, D. Wei, D.D. Nguyen, S.W. Chang, Evaluation of a sponge assisted-granular anaerobic membrane biore- actor (SG-AnMBR) for municipal wastewater treatment, Renew. Energy. 111 (2017) 620-627, doi:10.1016/j.renene.2017.04.055.

[3]

C. Shin, J. Bae, Current status of the pilot-scale anaerobic membrane bioreactor treat- ments of domestic wastewaters: a critical review, Bioresour. Technol. 247 (2018) 1038-1046, doi:10.1016/j.biortech.2017.09.002.

[4]

M. Kanai, V. Ferre, S. Wakahara, T. Yamamoto, M. Moro, A novel combination of methane fermentation and MBR — Kubota Submerged Anaerobic Membrane Biore- actor process, Desalination 250(2010) 964-967, doi:10.1016/j.desal.2009.09.082.

[5]

H. Lin, J. Chen, F. Wang, L. Ding, H. Hong, Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment, De- salination 280(2011) 120-126, doi:10.1016/j.desal.2011.06.058.

[6]

T. Chen, S. Zhang, R. Zhu, M. Zhao, Y. Zhang, Y. Wang, X. Liao, Y. Wu, J. Mi, Distribution and driving factors of antibiotic resistance genes in treated wastewa- ter from different types of livestock farms, Sci. Total Environ. 849(2022) 157837, doi:10.1016/j.scitotenv.2022.157837.

[7]

Z. Chen, X. Wang, X. Chen, Y. Yang, X. Gu, Pilot study of nitrogen removal from land- fill leachate by stable nitritation-denitrification based on zeolite biological aerated filter, Waste Manag 100 (2019) 161-170, doi:10.1016/j.wasman.2019.09.020.

[8]

A. Kusmayadi, Y.K. Leong, P.-H. Lu, C.-Y. Huang, H.-W. Yen, J.-S. Chang, Simul- taneous nutrients removal and bio-compounds production by cultivating Chlorella sorokiniana SU-1 with unsterilized anaerobic digestate of dairy wastewater, Algal Res. 68(2022) 102896, doi:10.1016/j.algal.2022.102896.

[9]

M. Loosdrecht, D. Brdjanovic, Anticipating the next century of wastewater treat- ment, Science 344 (2014) 1452-1453, doi:10.1126/science.1255183.

[10]

W.R.L. van der Star, A.I. Miclea, U.G.J.M. van Dongen, G. Muyzer, C. Pi- cioreanu, M.C.M. van Loosdrecht, The membrane bioreactor: a novel tool to grow anammox bacteria as free cells, Biotechnol. Bioeng. 101 (2008) 286-294, doi:10.1002/bit.21891.

[11]

A. Sukma Safitri, K. Michelle Kaster, R. Kommedal, Effect of low temperature and municipal wastewater organic loading on anaerobic granule reactor performance, Bioresour. Technol. 360(2022) 127616, doi:10.1016/j.biortech.2022.127616.

[12]

Y. Meng, Z. Zhou, F. Meng, Impacts of diel temperature variations on nitrogen re- moval and metacommunity of anammox biofilm reactors, Water Res. 160 (2019) 1-9, doi:10.1016/j.watres.2019.05.021.

[13]

B. Li, Y. Song, C. Liu, Y. He, B. Ma, Rapid cultivation of anammox bacteria by forming free cells in a membrane bioreactor, Water Environ. Res. (2021), doi:10.1002/wer.1548.

[14]

Z. Li, X. Xu, X. Xu, F. Yang, S. Zhang, Sustainable operation of submerged anammox membrane bioreactor with recycling biogas sparging for alleviating membrane foul- ing, Chemosphere 140 (2015) 106-113, doi:10.1016/j.chemosphere.2014.08.059.

[15]

W. Kwak, P.R. Rout, E. Lee, J. Bae, Influence of hydraulic retention time and tem- perature on the performance of an anaerobic ammonium oxidation fluidized bed membrane bioreactor for low-strength ammonia wastewater treatment, Chem. Eng. J. 386(2020) 123992, doi:10.1016/j.cej.2019.123992.

[16]

W. Liu, H. Zhou, W. Zhao, C. Wang, Q. Wang, J. Wang, P. Wu, Y. Shen, X. Ji, D. Yang, Rapid initiation of a single-stage partial nitritation-anammox process treat- ing low-strength ammonia wastewater: novel insights into biofilm development on porous polyurethane hydrogel carrier, Bioresour. Technol. 357(2022) 127344, doi:10.1016/j.biortech.2022.127344.

[17]

S. Liang, L. Qu, F. Meng, X. Han, J. Zhang, Effect of sludge properties on the filtra- tion characteristics of self-forming dynamic membranes (SFDMs) in aerobic biore- actors: formation time, filtration resistance, and fouling propensity, J. Membr. Sci. 436 (2013) 186-194, doi:10.1016/j.memsci.2013.02.021.

[18]

F. Meng, Y. Wang, L.-N. Huang, J. Li, F. Jiang, S. Li, G.-H. Chen, A novel nonwoven hybrid bioreactor (NWHBR) for enhancing simultaneous nitrification and denitrifi- cation, Biotechnol. Bioeng. 110 (2013) 1903-1912, doi:10.1002/bit.24866.

[19]

F. Meng, G. Su, Y. Hu, H. Lu, L.-N. Huang, G.-H. Chen, Improving nitrogen removal in an anammox reactor using a permeable reactive biobarrier, Water Res. 58 (2014) 82-91, doi:10.1016/j.watres.2014.03.049.

[20]

C. Jin, J. Xing, Z. Chen, Y. Meng, F. Fan, T. Ahmed, F. Meng, Development of a flow-through biofilm reactor for anammox startup and operation: nitrogen removal and metacommunity, ACS EST Water 1 (2021) 573-583, doi:10.1021/acsestwa-ter.0c00107.

[21]

S. Zhang, Y. Huang, J. Xing, Z. Chen, F. Meng, Response of anammox metacom- munity to varying hydrodynamic wash, J. Water Process Eng. 33(2020) 101096, doi:10.1016/j.jwpe.2019.101096.

[22]

X. Luo, L. Shen, F. Meng, Response of microbial community structures and functions of nitrosifying consortia to biorefractory humic substances, ACS Sustain. Chem. Eng. 7 (2019) 4744-4754, doi:10.1021/acssuschemeng.8b04853.

[23]

W. Zhang, W. Liang, Z. Zhang, T. Hao, Aerobic granular sludge (AGS) scouring to mitigate membrane fouling: performance, hydrodynamic mecha- nism and contribution quantification model, Water Res. 188(2021) 116518, doi:10.1016/j.watres.2020.116518.

[24]

X. Sun, B. Liu, L. Zhang, K. Aketagawa, B. Xue, Y. Ren, J. Bai, Y. Zhan, S. Chen, B. Dong, Partial ozonation of returned sludge via high-concentration ozone to re- duce excess sludge production: a pilot study, Sci. Total Environ. 807(2022) 150773, doi:10.1016/j.scitotenv.2021.150773.

[25]

APHA, Standard methods for the examination of water and wastewater, Wash. DC.(2012).

[26]

D. Wang, J. Tao, F. Fan, R. Xu, F. Meng, A novel pilot-scale IFAS-MBR system with low aeration for municipal wastewater treatment: linkages between nutrient removal and core functional microbiota, Sci. Total Environ. 776(2021) 145858, doi:10.1016/j.scitotenv.2021.145858.

[27]

X. Wu, C. Wang, D. Wang, Y.-X. Huang, S. Yuan, F. Meng, Simultaneous methano- genesis and denitrification coupled with nitrifying biofilm for high-strength wastew- ater treatment: performance and microbial mechanisms, Water Res. (2022) 119163, doi:10.1016/j.watres.2022.119163.

[28]

F. Zhang, Y. Peng, Z. Wang, H. Jiang, S. Ren, J. Qiu, L. Zhang, An innovative pro- cess for mature landfill leachate and waste activated sludge simultaneous treatment based on partial nitrification, in situ fermentation, and anammox (PNFA), Environ. Sci. Technol. 56 (2022) 1310-1320, doi:10.1021/acs.est.1c06049.

[29]

C. Rong, Z. Luo, T. Wang, Y. Guo, Z. Kong, J. Wu, J. Ji, Y. Qin, T. Hanaoka, S. Sakemi, M. Ito, S. Kobayashi, M. Kobayashi, Y.-Y. Li, Chemical oxygen demand and nitrogen transformation in a large pilot-scale plant with a combined submerged anaerobic membrane bioreactor and one-stage partial nitritation-anammox for treat- ing mainstream wastewater at 25 °C, Bioresour. Technol. 341(2021) 125840, doi:10.1016/j.biortech.2021.125840.

[30]

S. Pandey, S. Sarkar, Performance evaluation and substrate removal kinetics of an anaerobic packed-bed biofilm reactor, Int. J. Environ. Res. 13 (2019) 223-233, doi:10.1007/s41742-019-00168-x.

[31]

K.A. Third, A.O. Sliekers, J.G. Kuenen, M.S.M. Jetten, The CANON system (com- pletely autotrophic nitrogen-removal over nitrite) under ammonium limitation: in- teraction and competition between three groups of bacteria, Syst. Appl. Microbiol. 24 (2001) 588-596, doi:10.1078/0723-2020-00077.

[32]

Y. Yao, Z. Zhou, D.C. Stuckey, F. Meng, Micro-particles —a neglected but criti- cal cause of different membrane fouling between aerobic and anaerobic mem- brane bioreactors, ACS Sustain. Chem. Eng. 8 (2020) 16680-16690, doi:10.1021/ac-ssuschemeng.0c06502.

[33]

Y. Yao, R. Xu, Z. Zhou, F. Meng, Linking dynamics in morphology, components, and microbial communities of biocakes to fouling evolution: a comparative study of anaerobic and aerobic membrane bioreactors, Chem. Eng. J. 413(2021) 127483, doi:10.1016/j.cej.2020.127483.

[34]

G. Bonassa, B. Venturin, A.C. Bolsan, C.E. Hollas, D. Candido, H.C. Rodrigues, M. E. Cantão, A.M.G. Ibelli, M.C. De Prá, F.G. Antes, A. Kunz, Performance and mi- crobial features of anammox in a single-phase reactor under progressive nitrogen loading rates for wastewater treatment plants, J. Environ. Chem. Eng. 10(2022) 107028, doi:10.1016/j.jece.2021.107028.

[35]

W.-T. Li, S.-Y. Chen, Z.-X. Xu, Y. Li, C.-D. Shuang, A.-M. Li, Characterization of dis- solved organic matter in municipal wastewater using fluorescence PARAFAC analy- sis and chromatography multi-excitation/emission scan: a comparative study, Envi- ron. Sci. Technol. 48 (2014) 2603-2609, doi:10.1021/es404624q.

[36]

E.M. Carstea, J. Bridgeman, A. Baker, D.M. Reynolds, Fluorescence spec- troscopy for wastewater monitoring: a review, Water Res. 95 (2016) 205-219, doi:10.1016/j.watres.2016.03.021.

[37]

X. Yang, D. Li, Z. Yu, Y. Meng, X. Zheng, S. Zhao, F. Meng, Biochemi- cal characteristics and membrane fouling behaviors of soluble microbial prod- ucts during the lifecycle of Escherichia coli, Water Res. 192(2021) 116835, doi:10.1016/j.watres.2021.116835.

[38]

Y.-Z. Lu, N. Li, Z.-W. Ding, L. Fu, Y.-N. Bai, G.-P. Sheng, R.J. Zeng, Track- ing the activity of the anammox-DAMO process using excitation-emission matrix (EEM) fluorescence spectroscopy, Water Res. 122 (2017) 624-632, doi:10.1016/j.watres.2017.06.036.

[39]

T. Yu, L. Tian, X. You, L. Wang, S. Zhao, D. Kang, D. Xu, Z. Zeng, M. Zhang, P. Zheng, Deactivation mechanism of calcified anaerobic granule: space occupation and pore blockage, Water Res. 166(2019) 115062, doi:10.1016/j.watres.2019.115062.

[40]

X. Chen, X. Lian, Y. Wang, S. Chen, Y. Sun, G. Tao, Q. Tan, J. Feng, Impacts of hy- draulic conditions on microplastics biofilm development, shear stresses distribution, and microbial community structures in drinking water distribution pipes, J. Environ. Manage. 325(2023) 116510, doi:10.1016/j.jenvman.2022.116510.

[41]

Z. Fan, W. Zeng, H. Liu, Y. Jia, Y. Peng, A novel partial denitrification, anammox- biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN) process for real domestic wastewater and waste activated sludge treatment, Water Res. 217(2022) 118376, doi:10.1016/j.watres.2022.118376.

[42]

Z. Yang, W. Wang, C. Liu, R. Zhang, G. Liu, Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: selec- tion of strains and reactor performance evaluation, Water Res. 155 (2019) 214-224, doi:10.1016/j.watres.2019.02.048.

[43]

Y. Yan, J. Zhang, L. Tian, X. Yan, L. Du, A. Leininger, M. Zhang, N. Li, Z.J. Ren, X. Wang, DIET-like mutualism of Geobacter and methanogens at specific electrode potential boosts production of both methane and hydrogen from propionate, Water Res. 235(2023) 119911, doi:10.1016/j.watres.2023.119911.

[44]

C. Wang, S. Liu, X. Xu, C. Zhang, D. Wang, F. Yang, Achieving mainstream nitro- gen removal through simultaneous partial nitrification, anammox and denitrifica- tion process in an integrated fixed film activated sludge reactor, Chemosphere 203 (2018) 457-466, doi:10.1016/j.chemosphere.2018.04.016.

[45]

J. Li, Y. Peng, L. Zhang, X. Li, Q. Zhang, S. Yang, Y. Gao, S. Li, Improving efficiency and stability of anammox through sequentially coupling nitritation and denitrita- tion in a single-stage bioreactor, Environ. Sci. Technol. 54 (2020) 10859-10867, doi:10.1021/acs.est.0c01314.

[46]

X. Li, Y. Peng, J. Zhang, R. Du, Multiple roles of complex organics in polishing THP-AD filtrate with double-line anammox: inhibitory relief and bacterial selection, Water Res. 216(2022) 118373, doi:10.1016/j.watres.2022.118373.

[47]

D. Wang, K. Huang, X. He, X.-X. Zhang, Y. Meng, Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single- stage simultaneous anammox and denitrification system, Sci. Total Environ. 813(2022) 152519, doi:10.1016/j.scitotenv.2021.152519.

[48]

S. Guš tin, R. Marinš ek-Logar, Effect of pH, temperature and air flow rate on the con- tinuous ammonia stripping of the anaerobic digestion effluent, Process Saf. Environ. Prot. 89 (2011) 61-66, doi:10.1016/j.psep.2010.11.001.

[49]

C. Liu, G. Huang, P. Song, C. An, P. Zhang, J. Shen, S. Ren, K. Zhao, W. Huang, Y. Xu, R. Zheng, Treatment of decentralized low-strength live- stock wastewater using microcurrent-assisted multi-soil-layering systems: perfor- mance assessment and microbial analysis, Chemosphere 294(2022) 133536, doi:10.1016/j.chemosphere.2022.133536.

[50]

T.T.U. Dinh, S. Soda, T.A.H. Nguyen, J. Nakajima, T.H. Cao, Nutrient re- moval by duckweed from anaerobically treated swine wastewater in lab- scale stabilization ponds in Vietnam, Sci. Total Environ. 722 (2020) 137854, doi:10.1016/j.scitotenv.2020.137854.

[51]

M.T. Matsena, E.M.N. Chirwa, Hexavalent chromium-reducing microbial fuel cell modeling using integrated Monod kinetics and Butler-Volmer equation, Fuel 312 (2022) 122834, doi:10.1016/j.fuel.2021.122834.

[52]

H. Wang, J. Wang, M. Zhou, W. Wang, C. Liu, Y. Wang, A versatile control strat- egy based on organic carbon flow analysis for effective treatment of incinera- tion leachate using an anammox-based process, Water Res. 215 (2022) 118261, doi:10.1016/j.watres.2022.118261.

[53]

W. Dai, X. Xu, B. Liu, F. Yang, Toward energy-neutral wastewater treatment: a membrane combined process of anaerobic digestion and nitritation-anammox for biogas recovery and nitrogen removal, Chem. Eng. J. 279 (2015) 725-734, doi:10.1016/j.cej.2015.05.036.

AI Summary AI Mindmap
PDF (3411KB)

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/