Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins

Shuo Yang , Liyun Song , Jing Wang , Jianzhi Zhao , Hongting Tang , Xiaoming Bao

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (1) : 100122

PDF (1366KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (1) :100122 DOI: 10.1016/j.engmic.2023.100122
Review
research-article

Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins

Author information +
History +
PDF (1366KB)

Abstract

Saccharomyces cerevisiae is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in S. cerevisiae engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in S. cerevisiae.

Keywords

Saccharomyces cerevisiae / Microbial cell factory / Recombinant proteins / Transcriptional regulation / Secretory pathway / Global metabolic pathway optimization

Cite this article

Download citation ▾
Shuo Yang, Liyun Song, Jing Wang, Jianzhi Zhao, Hongting Tang, Xiaoming Bao. Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins. Engineering Microbiology, 2024, 4(1): 100122 DOI:10.1016/j.engmic.2023.100122

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Shuo Yang: Investigation, Writing - original draft. Liyun Song: Investigation, Writing - original draft. Jing Wang: Investigation, Writing - original draft. Jianzhi Zhao: Writing - review & editing. Hongting Tang: Conceptualization, Writing - original draft, Writing - review & editing. Xiaoming Bao: Conceptualization, Writing - review & editing, Funding acquisition.

Acknowledgements

This work was supported by supported by the Key innovation Project of Qilu University of Technology (Shandong Academy of Sciences) (2022JBZ01-06), the Shandong Provincial Technical Innovation Boot Program (02055183), and the Shandong Provincial Natural Science Foundation (ZR2020MC016).

References

[1]

K.E. Tyo, Z. Liu, Y. Magnusson, D. Petranovic, J. Nielsen, Impact of protein up- take and degradation on recombinant protein secretion in yeast, Appl. Microbiol. Biotechnol. 98 (2014) 7149-7159, doi:10.1007/s00253-014-5783-7.

[2]

A. Madhavan, K.B. Arun, R. Sindhu, P. Binod, S.H. Kim, A. Pandey, Tailoring of microbes for the production of high value plant-derived compounds: from pathway engineering to fermentative production, Biochim. Biophys. Acta Proteins Proteom. 1867(2019) 140262, doi:10.1016/j.bbapap.2019.140262.

[3]

M. Kesik-Brodacka, Progress in biopharmaceutical development, Biotechnol. Appl. Biochem 65 (2018) 306-322, doi:10.1002/bab.1617.

[4]

B. Ismail, S.S. Nielsen, Invited review: plasmin protease in milk: current knowl- edge and relevance to dairy industry, J. Dairy. Sci. 93 (2010) 4999-5009, doi:10.3168/jds.2010-3122.

[5]

Y. Bai, H. Huang, K. Meng, P. Shi, P. Yang, H. Luo, C. Luo, Y. Feng, W. Zhang, B. Yao, Identification of an acidic 𝛼-amylase from Alicyclobacillus sp. A4 and assess- ment of its application in the starch industry, Food Chem. 131 (2012) 1473-1478, doi:10.1016/j.foodchem.2011.10.036.

[6]

C.R. Gomes-Ruffi, R.H.d. Cunha, E.L. Almeida, Y.K. Chang, C.J. Steel, Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amy- lase on the quality of pan bread during storage, LWT 49(2012) 96-101, doi:10.1016/j.lwt.2012.04.014.

[7]

O. Kirk, T.V. Borchert, C.C. Fuglsang, Industrial enzyme applications, Curr. Opin. Biotechnol. 13 (2002) 345-351, doi:10.1016/s0958-1669(02)00328-2.

[8]

M. Huang, G. Wang, J. Qin, D. Petranovic, J. Nielsen, Engineering the pro- tein secretory pathway of Saccharomyces cerevisiae enables improved pro- tein production, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) E11025-e11032, doi:10.1073/pnas.1809921115.

[9]

A. Idiris, H. Tohda, H. Kumagai, K. Takegawa, Engineering of protein secretion in yeast: strategies and impact on protein production, Appl. Microbiol. Biot. 86 (2010) 403-417, doi:10.1007/s00253-010-2447-0.

[10]

M. Bazaz, A. Adeli, M. Azizi, M. Soleimani, F. Mahboudi, N. Davoudi, Recent de- velopments in miRNA based recombinant protein expression in CHO, Biotechnol. Lett. 44 (2022) 671-681, doi:10.1007/s10529-022-03250-1.

[11]

H.N. Liu, W.H. Dong, Y. Lin, Z.H. Zhang, T.Y. Wang, The effect of microRNA on the production of recombinant protein in CHO cells and its mechanism, Front. Bioeng. Biotechnol. 10 (2022) 832065, doi:10.3389/fbioe.2022.832065.

[12]

T. Yu, Y.J. Zhou, M. Huang, Q. Liu, R. Pereira, F. David, J. Nielsen, Reprogram- ming yeast metabolism from alcoholic fermentation to lipogenesis, Cell 174(2018) 1549-1558.e1514, doi:10.1016/j.cell.2018.07.013.

[13]

S. Yang, J. Shen, J. Deng, H. Li, J. Zhao, H. Tang, X. Bao, Engineering cell polariza- tion improves protein production in Saccharomyces cerevisiae, Microorganisms 10 (2022), doi:10.3390/microorganisms10102005.

[14]

A. Madhavan, K.B. Arun, R. Sindhu, J. Krishnamoorthy, R. Reshmy, et al., Cus- tomized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up, Microb. Cell Factory 20 (2021) 124, doi:10.1186/s12934-021-01617-z.

[15]

R.G. Werner, Economic aspects of commercial manufacture of biopharmaceuticals, J. Biotechnol. 113 (2004) 171-182, doi:10.1016/j.jbiotec.2004.04.036.

[16]

R.A. Rader, B. Associates, Biopharmaceutical Products in the U.S. and European Markets, 2006.

[17]

M.W.T. Werten, G. Eggink, M.A. Cohen Stuart, F.A. de Wolf, Production of protein-based polymers in Pichia pastoris, Biotechnol. Adv. 37 (2019) 642-666, doi:10.1016/j.biotechadv.2019.03.012.

[18]

J. Nielsen, Production of biopharmaceutical proteins by yeast: advances through metabolic engineering, Bioengineered 4 (2013) 207-211, doi:10.4161/bioe.22856.

[19]

T. Vogl, F.S. Hartner, A. Glieder, New opportunities by synthetic biology for bio- pharmaceutical production in Pichia pastoris, Curr. Opin. Biotechnol. 24 (2013) 1094-1101, doi:10.1016/j.copbio.2013.02.024.

[20]

N.-Y. Kang, J.-N. Park, J.-E. Chin, H. Blaise Lee, S.-Y. Im, S. Bai, Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwan- niomyces occidentalis 𝛼-amylase gene, Biotechnol. Lett. 25 (2003) 1847-1851, doi:10.1023/A:1026281627466.

[21]

S. Li, S. Sing, Z. Wang, Improved expression of Rhizopus oryzae 𝛼-amylase in the methylotrophic yeast Pichia pastoris, Protein Expr. Purif. 79(2011) 142-148, doi:10.1016/j.pep.2011.05.007.

[22]

U. Ábrego, Z. Chen, C. J.A.i.b. Wan, Consolidated bioprocessing systems for cellulosic biofuel production, Adv. Bioenergy 2 (2017) 143-182, doi:10.1016/bs.aibe.2017.01.002.

[23]

J. Yang, L. Deng, C. Zhao, H. Fang, Heterologous expression of Neurospora crassa cbh1 gene in Pichia pastoris resulted in production of a neutral cellobiohydrolase I, Biotechnol. Prog. 35 (2019) e2795, doi:10.1002/btpr.2795.

[24]

L. Liao, H. Huang, Y. Wang, G. Du, Z. Kang, Yeast surface display of leech hyaluronidase for the industrial production of hyaluronic acid oligosaccharides, Eng. Microbiol. 3(2023) 100086, doi:10.1016/j.engmic.2023.100086.

[25]

S. Bidlingmaier, B. Liu, Utilizing yeast surface human proteome display libraries to identify small molecule-protein interactions, Methods Mol. Biol. 1319 (2015) 203-214, doi:10.1007/978-1-4939-2748-7_11.

[26]

T. Tanaka, A. Kondo, Cell-surface display of enzymes by the yeast Saccha- romyces cerevisiae for synthetic biology, FEMS Yeast Res. 15 (2015) 1-9, doi:10.1111/1567-1364.12212.

[27]

T. Tanaka, R. Yamada, C. Ogino, A. Kondo, Recent developments in yeast cell surface display toward extended applications in biotechnology, Appl. Microbiol. Biotechnol. 95 (2012) 577-591, doi:10.1007/s00253-012-4175-0.

[28]

J. Wang, H. Zhai, R. Rexida, Y. Shen, J. Hou, X. Bao, Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccha- romyces cerevisiae, FEMS Yeast Res. 18 (2018), doi:10.1093/femsyr/foy098.

[29]

J. Bassel, R. Mortimer, Genetic order of the galactose structural genes in Saccharomyces cerevisiae, J. Bacteriol. 108 (1971) 179-183, doi:10.1128/jb.108.1.179-183.1971.

[30]

L. Guarente, 27 - Yeast promoters and lacZ fusions designed to study expres- sion of cloned genes in yeast, in: L. Grossman, K. Moldave (Eds.), Re- combinant DNA Methodology, Academic Press, San Diego, 1989, pp. 477-487, doi:10.1016/B978-0-12-765560-4.50033-2. pp. 477-487.

[31]

D.K. Ro, E.M. Paradise, M. Ouellet, K.J. Fisher, K.L. Newman, J.M. Ndungu, K.A. Ho, R.A. Eachus, T.S. Ham, J. Kirby, M.C. Chang, S.T. Withers, Y. Shiba, R. Sar- pong, J.D. Keasling, Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature 440 (2006) 940-943, doi:10.1038/nature04640.

[32]

C. Lu, T. Jeffries, Shuffling of promoters for multiple genes to optimize xylose fer- mentation in an engineered Saccharomyces cerevisiae strain, Appl. Environ. Micro- biol. 73 (2007) 6072-6077, doi:10.1128/aem.00955-07.

[33]

H.W. Wisselink, M.J. Toirkens, M. del Rosario Franco Berriel, A.A. Winkler, J.P. van Dijken, J.T. Pronk, A.J. van Maris, Engineering of Saccharomyces cerevisiae for ef- ficient anaerobic alcoholic fermentation of L-arabinose, Appl. Environ. Microbiol. 73 (2007) 4881-4891, doi:10.1128/aem.00177-07.

[34]

S. Partow, V. Siewers, S. Bjørn, J. Nielsen, J. Maury, Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae, Yeast 27 (2010) 955-964, doi:10.1002/yea.1806.

[35]

R.W. West Jr., S.M. Chen H. Putz G. Butler M. Banerjee, GAL1-GAL 10 divergent promoter region of Saccharomyces cerevisiae contains negative control elements in addition to functionally separate and possibly overlapping upstream activating se- quences, Genes Dev. 1(1987) 1118-1131, doi:10.1101/gad.1.10.1118.

[36]

C.M. Paton, J.M. Ntambi, Biochemical and physiological function of stearoyl-CoA desaturase, Am. J. Physiol. Endocrinol. Metab. 297 (2009) E28-E37, doi:10.1152/ajpendo.90897.2008.

[37]

A. Reider Apel, L. d’Espaux, M. Wehrs, D. Sachs, R.A. Li, G.J. Tong, M. Garber, O. Nnadi, W. Zhuang, N.J. Hillson, J.D. Keasling, A. Mukhopadhyay, A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae, Nucleic Acids Res. 45 (2016) 496-508, doi:10.1093/nar/gkw1023.

[38]

B. Peng, R.J. Wood, L.K. Nielsen, C.E. Vickers, An expanded heterologous GAL promoter collection for Diauxie-Inducible expression in Saccharomyces cerevisiae, ACS Synth. Biol. 7 (2018) 748-751, doi:10.1021/acssynbio.7b00355.

[39]

Y. Wu, J. Deng, Z. Zheng, N. Chen, X. Luo, H. Tang, Engineering an efficient ex- pression using heterologous GAL promoters and transcriptional activators in Sac- charomyces cerevisiae, ACS Synth. Biol. 12 (2023) 1859-1867, doi:10.1021/acssyn- bio.3c00243.

[40]

J. Deng, Y. Wu, Z. Zheng, N. Chen, X. Luo, H. Tang, J.D. Keasling, A syn- thetic promoter system for well-controlled protein expression with different car- bon sources in Saccharomyces cerevisiae, Microb. Cell Factory 20 (2021) 202, doi:10.1186/s12934-021-01691-3.

[41]

Y. Yuan, H. Zhao, Directed evolution of a highly efficient cellobiose utilizing path- way in an industrial Saccharomyces cerevisiae strain, Biotechnol. Bioeng. 110 (2013) 2874-2881, doi:10.1002/bit.24946.

[42]

U. Lagerkvist, Two out of three": an alternative method for codon reading, Proc. Natl. Acad. Sci. U.S.A. 75 (1978) 1759-1762, doi:10.1073/pnas.75.4.1759.

[43]

T. Ikemura, Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system, J. Mol. Biol. 151 (1981) 389-409, doi:10.1016/0022-2836(81)90003-6.

[44]

P.M. Sharp, E. Cowe, D.G. Higgins, D.C. Shields, K.H. Wolfe, F. Wright, Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccha- romyces pombe, Drosophila melanogaster and Homo sapiens; a review of the consider- able within-species diversity, Nucleic. Acids. Res. 16 (1988) 8207-8211 %J Nucleic Acids Research, doi:10.1093/nar/16.17.8207.

[45]

J.B. Plotkin, G. Kudla, Synonymous but not the same: the causes and consequences of codon bias, Nat. Rev. Genet. 12 (2011) 32-42, doi:10.1038/nrg2899.

[46]

J.M. Fox, I. Erill, Relative codon adaptation: a generic codon bias in- dex for prediction of gene expression, DNA Res. 17 (2010) 185-196, doi:10.1093/dnares/dsq012.

[47]

C. Gustafsson, S. Govindarajan, J. Minshull, Codon bias and het- erologous protein expression, Trends Biotechnol. 22 (2004) 346-353, doi:10.1016/j.tibtech.2004.04.006.

[48]

B. Wiedemann, E. Boles, Codon-optimized bacterial genes improve L-Arabinose fer- mentation in recombinant Saccharomyces cerevisiae, Appl. Environ. Microbiol. 74 (2008) 2043-2050, doi:10.1128/aem.02395-07.

[49]

L. Kotula, P.J. Curtis, Evaluation of foreign gene codon optimization in yeast: ex- pression of a mouse IG kappa chain, Bioresour. Technol. 9 (1991) 1386-1389, doi:10.1038/nbt1291-1386.

[50]

S. Partow, V. Siewers, L. Daviet, M. Schalk, J. Nielsen, Reconstruction and evalua- tion of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae, PLoS One 7 (2012) e52498, doi:10.1371/journal.pone.0052498.

[51]

H.J. Kim, H.L. Kwag, H.J. Kim, Codon optimization of the human papillomavirus type 58 L1 gene enhances the expression of soluble L1 protein in Saccharomyces cerevisiae, Biotechnol. Lett. 35(2013) 413-421, doi:10.1007/s10529-012-1097-y.

[52]

K.A. Curran, J.M. Leavitt, A.S. Karim, H.S. Alper, Metabolic engineering of mu- conic acid production in Saccharomyces cerevisiae, Metab. Eng. 15 (2013) 55-66, doi:10.1016/j.ymben.2012.10.003.

[53]

D. Agashe, N.C. Martinez-Gomez, D.A. Drummond, C.J. Marx, Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme, Mol. Biol. Evol. 30 (2013) 549-560, doi:10.1093/mol- bev/mss273.

[54]

F. Buhr, S. Jha, M. Thommen, J. Mittelstaet, F. Kutz, H. Schwalbe, M. V. Rodnina, A.A. Komar, Synonymous codons direct cotranslational fold- ing toward different protein conformations, Mol. Cell 61 (2016) 341-351, doi:10.1016/j.molcel.2016.01.008.

[55]

J.F. Curran, M. Yarus, Rates of aminoacyl-tRNA selection at 29 sense codons in vivo, J Mol. Biol. 209(1989) 65-77, doi:10.1016/0022-2836(89)90170-8.

[56]

F. Bonekamp, H. Dalbøge, T. Christensen, K.F. Jensen, Translation rates of in- dividual codons are not correlated with tRNA abundances or with frequen- cies of utilization in Escherichia coli, J. Bacteriol. 171 (1989) 5812-5816, doi:10.1128/jb.171.11.5812-5816.1989.

[57]

G.-W. Li, E. Oh, J.S. Weissman, The anti-Shine-Dalgarno sequence drives trans- lational pausing and codon choice in bacteria, Nature 484 (2012) 538-541, doi:10.1038/nature10965.

[58]

A.C. Forster, Synthetic biology challenges long-held hypotheses in trans- lation, codon bias and transcription, J. Biotechnol. 7 (2012) 835-845, doi:10.1002/biot.201200002.

[59]

M. Frenkel-Morgenstern, T. Danon, T. Christian, T. Igarashi, L. Cohen, Y.M. Hou, L. J. Jensen, Genes adopt non-optimal codon usage to generate cell cycle- dependent oscillations in protein levels, Mol. Syst. Biol. 8 (2012) 572, doi:10.1038/msb.2012.3.

[60]

H. Gingold, Y. Pilpel, Determinants of translation efficiency and accuracy, Mol. Syst. Biol. 7 (2011) 481, doi:10.1038/msb.2011.14.

[61]

F.F. Chevance, S. Le Guyon, K.T. Hughes, The effects of codon context on in vivo translation speed, PLos Genet. 10 (2014) e1004392, doi:10.1371/jour- nal.pgen.1004392.

[62]

C.E. Brule, E.J. Grayhack, Synonymous codons: choose wisely for expression, Trends Genet. 33(2017) 283-297, doi:10.1016/j.tig.2017.02.001.

[63]

H. Zhao, K. Blazanovic, Y. Choi, C. Bailey-Kellogg, K.E. Griswold, Gene and pro- tein sequence optimization for high-level production of fully active and aglycosy- lated lysostaphin in Pichia pastoris, Appl. Environ. Microbiol. 80 (2014) 2746-2753, doi:10.1128/aem.03914-13.

[64]

A.M. Lanza, K.A. Curran, L.G. Rey, H.S. Alper, A condition-specific codon opti- mization approach for improved heterologous gene expression in Saccharomyces cerevisiae, BMC Syst. Biol. 8 (2014) 33, doi:10.1186/1752-0509-8-33.

[65]

R.A. Cripwell, S.H. Rose, M. Viljoen-Bloom, W.H. van Zyl, Improved raw starch amylase production by Saccharomyces cerevisiae using codon optimisation strate- gies, FEMS Yeast Res. 19 (2019), doi:10.1093/femsyr/foy127.

[66]

E.J. Thak, S.J. Yoo, H.Y. Moon, H.A. Kang, Yeast synthetic biology for designed cell factories producing secretory recombinant proteins, FEMS Yeast Res. 20 (2020), doi:10.1093/femsyr/foaa009.

[67]

H. Kim, S.J. Yoo, H.A. Kang, Yeast synthetic biology for the produc- tion of recombinant therapeutic proteins, FEMS Yeast Res. 15 (2015) 1-16, doi:10.1111/1567-1364.12195.

[68]

S. Shi, J.O. Valle-Rodríguez, V. Siewers, J. Nielsen, Engineering of chromoso- mal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters, Biotechnol. Bioeng. 111 (2014) 1740-1747, doi:10.1002/bit.25234.

[69]

J. Hou, K. Tyo, Z. Liu, D. Petranovic, J. Nielsen, Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae, Metab. Eng. 14 (2012) 120-127, doi:10.1016/j.ymben.2012.01.002.

[70]

Z. Liu, K.E. Tyo, J.L. Martínez, D. Petranovic, J. Nielsen, Different expression sys- tems for production of recombinant proteins in Saccharomyces cerevisiae, Biotech- nol. Bioeng. 109 (2012) 1259-1268, doi:10.1002/bit.24409.

[71]

X. Song, Q. Liu, J. Mao, Y. Wu, Y. Li, K. Gao, X. Zhang, Y. Bai, H. Xu, M. Qiao, POT1-mediated 𝛿-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae, FEMS Yeast Res. 17 (2017), doi:10.1093/fem- syr/fox064.

[72]

H. Tang, J. Hou, Y. Shen, L. Xu, H. Yang, X. Fang, X. Bao, High 𝛽-glucosidase secre- tion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation, J. Microbio. Biotechnol. 23 (2013) 1577-1585, doi:10.4014/jmb.1305.05011.

[73]

A. Reider Apel, L. d’Espaux, M. Wehrs, D. Sachs, R.A. Li, G.J. Tong, M. Garber, O. Nnadi, W. Zhuang, N.J. Hillson, J.D. Keasling, A. Mukhopadhyay, A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae, Nucleic Acids Res. 45 (2017) 496-508, doi:10.1093/nar/gkw1023.

[74]

B. Dujon, The yeast genome project: what did we learn? Trends Genet. 12 (1996) 263-270, doi:10.1016/0168-9525(96)10027-5.

[75]

R. Yamada, N. Taniguchi, T. Tanaka, C. Ogino, H. Fukuda, A. Kondo, Cocktail 𝛿-integration: a novel method to construct cellulolytic enzyme ex- pression ratio-optimized yeast strains, Microb. Cell Factories 9 (2010) 32, doi:10.1186/1475-2859-9-32.

[76]

S. Shi, Y. Liang, M.M. Zhang, E.L. Ang, H. Zhao, A highly efficient single- step, markerless strategy for multi-copy chromosomal integration of large bio- chemical pathways in Saccharomyces cerevisiae, Metab. Eng. 33 (2016) 19-27, doi:10.1016/j.ymben.2015.10.011.

[77]

E.O. Long, I.B. Dawid, Repeated genes in eukaryotes, Annu. Rev. Biochem. 49 (1980) 727-764, doi:10.1146/annurev.bi.49.070180.003455.

[78]

H. Zheng, K. Wang, X. Xu, J. Pan, X. Sun, J. Hou, W. Liu, Y. Shen, Highly efficient rDNA-mediated multicopy integration based on the dynamic balance of rDNA in Saccharomyces cerevisiae, Microb. Biotechnol. 15 (2022) 1511-1524, doi:10.1111/1751-7915.14010.

[79]

U. Berndt, S. Oellerer, Y. Zhang, A.E. Johnson, S. Rospert, A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from in- side the exit tunnel, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 1398-1403, doi:10.1073/pnas.0808584106.

[80]

A. Mori, S. Hara, T. Sugahara, T. Kojima, Y. Iwasaki, Y. Kawarasaki, T. Sahara, S. Ohgiya, H. Nakano, Signal peptide optimization tool for the secretion of recombi- nant protein from Saccharomyces cerevisiae, J. Biosci. Bioeng. 120 (2015) 518-525, doi:10.1016/j.jbiosc.2015.03.003.

[81]

S. Xue, X. Liu, Y. Pan, C. Xiao, Y. Feng, L. Zheng, M. Zhao, M. Huang, Compre- hensive analysis of signal peptides in Saccharomyces cerevisiae reveals features for efficient secretion, Adv. Sci. 10 (2023) 2203433, doi:10.1002/advs.202203433.

[82]

T. Hongting, H. Jin, S. Yu, X. Lili, Y. Hui, F. Xu, High 𝛽-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation, J. Micro- biol. Biotechnol. 23 (2013) 1577-1585, doi:10.4014/jmb.1305.05011.

[83]

J.S. Cho, H.J. Oh, Y.E. Jang, H.J. Kim, A. Kim, J.A. Song, E.J. Lee, J. Lee, Synthetic pro-peptide design to enhance the secretion of heterologous proteins by Saccha- romyces cerevisiae, Microbiologyopen 11 (2022) e1300, doi:10.1002/mbo3.1300.

[84]

J.H. Bae, B.H. Sung, H.J. Kim, S.H. Park, K.M. Lim, M.J. Kim, C.R. Lee, J.H. Sohn, An efficient genome-wide fusion partner screening system for secretion of recom- binant proteins in yeast, Sci. Rep. 5 (2015) 12229, doi:10.1038/srep12229.

[85]

S.J. Lee, J.K. Rose, A yeast secretion trap assay for identification of secreted pro- teins from eukaryotic phytopathogens and their plant hosts, Methods Mol. Biol. 835 (2012) 519-530, doi:10.1007/978-1-61779-501-5_32.

[86]

H. Tang, X. Bao, Y. Shen, M. Song, S. Wang, C. Wang, J. Hou, Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae, Biotechnol. Bioeng. 112 (2015) 1872-1882, doi:10.1002/bit.25596.

[87]

S. Itskanov, E. Park, Structure of the posttranslational Sec protein-translocation channel complex from yeast, Science 363 (2019) 84-87, doi:10.1093/genet- ics/156.2.501.

[88]

A.J. McClellan, J.L. Brodsky, Mutation of the ATP-binding pocket of SSA1 indi- cates that a functional interaction between Ssa1p and Ydj1p is required for post- translational translocation into the yeast endoplasmic reticulum, Genetics 156(2000) 501-512, doi:10.1093/genetics/156.2.501.

[89]

J. Bao, M. Huang, D. Petranovic, J. Nielsen, Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae, Appl. Environ. Microbiol. (2017) 83, doi:10.1128/aem.03400-16.

[90]

L. Ellgaard, A. Helenius, Quality control in the endoplasmic reticulum, Nat. Rev. Mol. Cell Biol. 4 (2003) 181-191, doi:10.1038/nrm1052.

[91]

R.D. Klausner, Architectural editing: determining the fate of newly synthesized membrane proteins, New Biol 1 (1989) 3-8.

[92]

T. Payne, C. Hanfrey, A.L. Bishop, A.J. Michael, S.V. Avery, D.B. Archer, Transcript- specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae, FEBS Lett. 582 (2008) 503-509, doi:10.1016/j.febslet.2008.01.009.

[93]

I.A. van Gemeren, P.J. Punt, A. Drint-Kuyvenhoven, M.P. Broekhuijsen, A. van ’t Hoog, A. Beijersbergen, C.T. Verrips, C. A.M.J.J. van den Hondel, The ER chaper- one encoding bipA gene of black Aspergilli is induced by heat shock and unfolded proteins, Gene 198 (1997) 43-52, doi:10.1016/S0378-1119(97)00290-4.

[94]

C.-L. Hsu, R. Prasad, C. Blackman, D.T.W. Ng, Endoplasmic reticulum stress reg- ulation of the Kar2p/BiP chaperone alleviates proteotoxicity via dual degradation pathways, Mol. Biol. Cell 23 (2012) 630-641, doi:10.1091/mbc.e11-04-0297.

[95]

M. van der Heide, C. Hollenberg, I. van der Klei, M. Veenhuis, Overproduc- tion of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha, Appl. Microbiol. Biot. 58 (2002) 487-494, doi:10.1091/mbc.e11-04-0297.

[96]

K.J. Kauffman, E.M. Pridgen, F.J. Doyle 3rd, P.S. Dhurjati, A.S. Robinson, De- creased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae, Biotechnol. Prog. 18 (2002) 942-950, doi:10.1021/bp025518g.

[97]

S. Nishikawa, T. Endo, The yeast JEM1p is a DnaJ-like protein of the endoplas- mic reticulum membrane required for nuclear fusion, J. Biol. Chem. 272 (1997) 12889-12892, doi:10.1074/jbc.272.20.12889.

[98]

M. Kabani, J.M. Beckerich, C. Gaillardin, Sls1p stimulates Sec63p- mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum, Mol. Cell Biol. 20 (2000) 6923-6934, doi:10.1128/mcb.20.18.6923-6934.2000.

[99]

J.R. Tyson, C.J. Stirling, LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum, EMBO J. 19(2000) 6440-6452, doi:10.1093/emboj/19.23.6440.

[100]

T. Payne, C. Finnis, L.R. Evans, D.J. Mead, S.V. Avery, D.B. Archer, D. Sleep, Modu- lation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased produc- tion of multiple heterologous proteins, Appl. Environ. Microbiol. 74 (2008) 7759-7766, doi:10.1128/AEM.01178-08.

[101]

A.S. Robinson, V. Hines, K.D. Wittrup, Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae, Biotechnology 12 (1994) 381-384, doi:10.1038/nbt0494-381.

[102]

L. Wang, X. Wang, C.C. Wang, Protein disulfide-isomerase, a folding cata- lyst and a redox-regulated chaperone, Free Radic Biol. Med.(2015) 305-313, doi:10.1016/j.freeradbiomed.2015.02.007.

[103]

R.E. Mares, A.Z. Minchaca, S. Villagrana, S.G. Meléndez-López, M.A. Ramos, Analy- sis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI), BioMed Res. Int. (2015) 286972 2015, doi:10.1155/2015/286972.

[104]

E.V. Shusta, R.T. Raines, A. Plückthun, K.D. Wittrup, Increasing the secretory ca- pacity of Saccharomyces cerevisiae for production of single-chain antibody frag- ments, Nat. Biotechnol. 16 (1998) 773-777, doi:10.1038/nbt0898-773.

[105]

J.D. Smith, B.C. Tang, A.S. Robinson, Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast, Biotechnol. Bioeng. 85 (2004) 340-350, doi:10.1002/bit.10853.

[106]

M. Schröder, R.J. Kaufman, The mammalian unfolded protein response, Annu. Rev. Biochem. 74 (2005) 739-789, doi:10.1146/annurev.biochem.73.011303.074134.

[107]

M. Valkonen, M. Penttilä, M. Saloheimo, Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae, Appl. Environ. Microbiol. 69 (2003) 2065-2072, doi:10.1128/aem.69.4.2065-2072.2003.

[108]

K. De Pourcq, K. De Schutter, N. Callewaert, Engineering of glycosylation in yeast and other fungi: current state and perspectives, Appl. Microbiol. Biotechnol. 87 (2010) 1617-1631, doi:10.1007/s00253-010-2721-1.

[109]

R.G. Spiro, Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds, Glycobiology 12 (2002) 43r-56r, doi:10.1093/glycob/12.4.43r.

[110]

C. De Wachter, L. Van Landuyt, N. Callewaert, Engineering of yeast gly- coprotein expression, Adv. Biochem. Eng. Biotechnol. 175 (2021) 93-135, doi:10.1007/10_2018_69.

[111]

A. Sarkar, P.L. Wintrode, Effects of glycosylation on the stability and flexibility of a metastable protein: the human serpin 𝛼(1)-antitrypsin, Int. J. Mass Spectrom. 302 (2011) 69-75, doi:10.1016/j.ijms.2010.08.003.

[112]

H. Hoshida, T. Fujita, K. Cha-aim, R. Akada, N-glycosylation deficiency en- hanced heterologous production of a Bacillus licheniformis thermostable 𝛼-amylase in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 97 (2013) 5473-5482, doi:10.1007/s00253-012-4582-2.

[113]

T.U. Gerngross, Advances in the production of human therapeutic proteins in yeasts and filamentous fungi, Nat. Biotechnol. 22 (2004) 1409-1414, doi:10.1038/nbt1028.

[114]

T. Nagasu, Y. Shimma, Y. Nakanishi, J. Kuromitsu, K. Iwama, K. Nakayama, K. Suzuki, Y. Jigami, Isolation of new temperature-sensitive mutants of Saccha- romyces cerevisiae deficient in mannose outer chain elongation, Yeast 8 (1992) 535-547, doi:10.1002/yea.320080705.

[115]

H. Tang, S. Wang, J. Wang, M. Song, M. Xu, M. Zhang, Y. Shen, J. Hou, X. Bao, N- hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae, Sci. Rep. 6 (2016) 25654, doi:10.1038/srep25654.

[116]

H. Matsuoka, K. Hashimoto, A. Saijo, Y. Takada, A. Kondo, M. Ueda, H. Ooshima, T. Tachibana, M. Azuma, Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae, Yeast 31 (2014) 67-76, doi:10.1002/yea.2995.

[117]

H. Suzuki, T. Imaeda, T. Kitagawa, K. Kohda, Deglycosylation of cellulosomal en- zyme enhances cellulosome assembly in Saccharomyces cerevisiae, J. Biotechnol. 157 (2012) 64-70, doi:10.1016/j.jbiotec.2011.11.015.

[118]

T.Y. Wang, C.J. Huang, H.L. Chen, P.C. Ho, H.M. Ke, H.Y. Cho, S.K. Ruan, K.Y. Hung, I.L. Wang, Y.W. Cai, H.M. Sung, W.H. Li, M.C. Shih, Systematic screen- ing of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion, BMC Biotechnol. 13 (2013) 71, doi:10.1186/1472-6750-13-71.

[119]

D. Bartkevici ū te, K. Sasnauskas, Disruption of the MNN10 gene enhances protein secretion in Kluyveromyces lactis and Saccharomyces cerevisiae, FEMS Yeast Res. 4 (2004) 833-840, doi:10.1016/j.femsyr.2004.03.001.

[120]

H. Abe, Y. Takaoka, Y. Chiba, N. Sato, S. Ohgiya, A. Itadani, M. Hirashima, C. Shi- moda, Y. Jigami, K.-i. Nakayama, Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycopro- teins, Glycobiology 19 (2009) 428-436, doi:10.1093/glycob/cwn157.

[121]

F. Parsaie Nasab, M. Aebi, G. Bernhard, A.D. Frey, A combined system for engi- neering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae, Appl. Environ. Microbiol. 79 (2013) 997-1007, doi:10.1128/aem.02817-12.

[122]

M.A. Piirainen, H. Salminen, A.D. Frey, Production of galactosylated complex-type N- glycans in glycoengineered Saccharomyces cerevisiae, Appl. Microbiol. Biotech- nol. 106 (2022) 301-315, doi:10.1007/s00253-021-11727-8.

[123]

H. Cai, K. Reinisch, S. Ferro-Novick, Coats tethers, Rabs, and SNAREs work to- gether to mediate the intracellular destination of a transport vesicle, Dev. Cell 12 (2007) 671-682, doi:10.1016/j.devcel.2007.04.005.

[124]

M. Huang, G. Wang, J. Qin, D. Petranovic, J. Nielsen, Engineering the pro- tein secretory pathway of Saccharomyces cerevisiae enables improved pro- tein production, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) E11025-E11032, doi:10.1073/pnas.1809921115.

[125]

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nat. Rev. Mol. Cell Biol. 10 (2009) 513-525, doi:10.1038/nrm2728.

[126]

D. Ortiz, M. Medkova, C. Walch-Solimena, P. Novick, Ypt 32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast, J. Cell Biol. 157(2002) 1005-1016, doi:10.1083/jcb.200201003.

[127]

J.H. Toikkanen, K.J. Miller, H. Söderlund, J. Jäntti, S. Keränen, The 𝛽 sub- unit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae, J. Biol. Chem. 278 (2003) 20946-20953, doi:10.1074/jbc.M213111200.

[128]

J.R. Whyte, S. Munro, Vesicle tethering complexes in membrane traffic, J. Cell Sci. 115 (2002) 2627-2637, doi:10.1242/jcs.115.13.2627.

[129]

H. Tang, M. Song, Y. He, J. Wang, S. Wang, Y. Shen, J. Hou, X. Bao, Engineer- ing vesicle trafficking improves the extracellular activity and surface display effi- ciency of cellulases in Saccharomyces cerevisiae, Biotechnol. Biofuels 10 (2017) 53, doi:10.1186/s13068-017-0738-8.

[130]

L. Ruohonen, J. Toikkanen, M. Outola, H. Soderlund, S. Keranen, Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery, Yeast 13 (1997) 337-351. 10.1002/

[131]

( 1097- 0061(19970330 ) 13:4 < 337::AID-YEA98>3.0.CO;2-K

[132]

L. Xu, Y. Shen, J. Hou, B. Peng, H. Tang, X. Bao, Secretory pathway engineering en- hances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae, J. Biosci. Bioeng. (2013), doi:10.1016/j.jbiosc.2013.06.017.

[133]

J. Hou, K. Tyo, Z. Liu, D. Petranovic, J. Nielsen, Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae, Metab. Eng. 14 (2012) 120-127, doi:10.1016/j.ymben.2012.01.002.

[134]

A. Idiris, H. Tohda, M. Sasaki, K. Okada, H. Kumagai, Y. Giga-Hama, K. Takegawa, Enhanced protein secretion from multiprotease-deficient fission yeast by modifi- cation of its vacuolar protein sorting pathway, Appl. Microbiol. Biot. 85 (2010) 667-677, doi:10.1007/s00253-009-2151-0.

[135]

H. Holkeri, M. Makarow, Different degradation pathways for het- erologous glycoproteins in yeast, FEBS Lett. 429 (1998) 162-166, doi:10.1016/s0014-5793(98)00586-9.

[136]

I. Fitzgerald, B.S. Glick, Secretion of a foreign protein from budding yeasts is en- hanced by cotranslational translocation and by suppression of vacuolar targeting, Microb. Cell Factories 13 (2014) 125, doi:10.1186/s12934-014-0125-0.

[137]

B. Zhang, A. Chang, T.B. Kjeldsen, P. Arvan, Intracellular retention of newly synthe- sized insulin in yeast is caused by endoproteolytic processing in the Golgi complex, J. Cell Biol. 153 (2001) 1187-1198, doi:10.1083/jcb.153.6.1187.

[138]

K. Takegawa, S. Tokudomi, M.S.A. Bhuiyan, M. Tabuchi, Y. Fujita, T. Iwaki, S. Utsumi, N. Tanaka, Heterologous expression and characterization of Schizosac- charomyces pombe vacuolar carboxypeptidase Y in Saccharomyces cerevisiae, Curr. Genet. 42 (2003) 252-259, doi:10.1007/s00294-002-0357-0.

[139]

C.J. Bonangelino, E.M. Chavez, J.S. Bonifacino, Genomic screen for vacuolar pro- tein sorting genes in Saccharomyces cerevisiae, Mol. Biol. Cell 13 (2002) 2486-2501, doi:10.1091/mbc.02-01-0005.

[140]

N. Kanjou, A. Nagao, Y. Ohmiya, S. Ohgiya, Yeast mutant with efficient secretion identified by a novel secretory reporter, Cluc, Biochem. Biophys. Res. Commun. 358 (2007) 429-434, doi:10.1016/j.bbrc.2007.04.140.

[141]

D. Pruyne, A. Bretscher, Polarization of cell growth in yeast, J. Cell. Sci. 113 (Pt 4)(2000) 571-585, doi:10.1242/jcs.113.4.571.

[142]

J. Hou, K.E. Tyo, Z. Liu, D. Petranovic, J. Nielsen, Metabolic engineering of recom- binant protein secretion by Saccharomyces cerevisiae, FEMS Yeast Res. 12 (2012) 491-510, doi:10.1111/j.1567-1364.2012.00810.x.

[143]

J. Li, Y. Zeng, W.-B. Wang, Q.-Q. Wan, C.-G. Liu, R. den Haan, W.H. van Zyl, X.-Q. Zhao, Increasing extracellular cellulase activity of the recombinant Saccha- romyces cerevisiae by engineering cell wall-related proteins for improved consoli- dated processing of carbon neutral lignocellulosic biomass, Bioresour. Technol. 365(2022) 128132, doi:10.1016/j.biortech.2022.128132.

[144]

G. Wang, M. Huang, J. Nielsen, Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production, Curr. Opin. Biotechnol. 48 (2017) 77-84, doi:10.1016/j.copbio.2017.03.017.

[145]

M. Huang, Y. Bai, S.L. Sjostrom, B.M. Hallström, Z. Liu, D. Petranovic, M. Uh- lén, H.N. Joensson, H. Andersson-Svahn, J. Nielsen, Microfluidic screening and whole-genome sequencing identifies mutations associated with improved pro- tein secretion by yeast, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) E4689-E4696, doi:10.1073/pnas.1506460112.

[146]

M. Huang, J. Bao, B.M. Hallström, D. Petranovic, J. Nielsen, Efficient protein pro- duction by yeast requires global tuning of metabolism, Nat. Commun. 8 (2017) 1131, doi:10.1038/s41467-017-00999-2.

[147]

G. Wang, S.M. Björk, M. Huang, Q. Liu, K. Campbell, J. Nielsen, H.N. Joensson, D. Petranovic, RNAi expression tuning, microfluidic screening, and genome recom- bineering for improved protein production in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 9324-9332, doi:10.1073/pnas.1820561116.

[148]

N. Chen, S. Yang, D. You, J. Shen, B. Ruan, M. Wu, J. Zhang, X. Luo, H. Tang, Sys- tematic genetic modifications of cell wall biosynthesis enhanced the secretion and surface-display of polysaccharide degrading enzymes in Saccharomyces cerevisiae, Metab. Eng. (77) (2023) 273-282, doi:10.1016/j.ymben.2023.04.011.

[149]

H.A. Kang, E.S. Choi, W.K. Hong, J.Y. Kim, S.M. Ko, et al., Prote- olytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 53 (2000) 575-582, doi:10.1038/s41467-017-00999-2.

[150]

O.P. Ishchuk, A.T. Frost, F. Muñiz-Paredes, S. Matsumoto, N. Laforge, et al., Im- proved production of human hemoglobin in yeast by engineering hemoglobin degradation, Metab. Eng. 66 (2021) 259-267, doi:10.1007/s002530051659.

[151]

V. Gast, A. Sandegren, F. Dunås, S. Ekblad, R. Güler, et al., Engineering Saccha- romyces cerevisiae for the production and secretion of affibody molecules, Microb. Cell Factory 21 (1) (2022) 36, doi:10.1186/s12934-022-01761-0.

[152]

J.O. Ahn, E.S. Choi, H.W. Lee, S.H. Hwang, C.S. Kim, et al., Engineering Saccha- romyces cerevisiae for the production and secretion of affibody molecules, Appl. Microbiol. Biotechnol. 64 (2004) 833-839, doi:10.1186/s12934-022-01761-0.

[153]

F. Li, Y. Chen, Q. Qi, Y. Wang, L. Yuan, M. Huang, I.E. Elsemman, A. Feizi, E.J. Kerkhoven, J. Nielsen, Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints, Nat. Commun. 13 (2022) 2969, doi:10.1038/s41467-022-30689-7.

PDF (1366KB)

376

Accesses

0

Citation

Detail

Sections
Recommended

/