Identification and application of a strong bidirectional acmN2p promoter from actinomycin D-producing streptomycetes

Sainan Li , Danfeng Tang , Xu Zhao , Manxiang Zhu , Xiangcheng Zhu , Yanwen Duan , Yong Huang

Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (1) : 100121

PDF (1814KB)
Engineering Microbiology ›› 2024, Vol. 4 ›› Issue (1) :100121 DOI: 10.1016/j.engmic.2023.100121
Short Communication
research-article

Identification and application of a strong bidirectional acmN2p promoter from actinomycin D-producing streptomycetes

Author information +
History +
PDF (1814KB)

Abstract

Natural product biosynthesis is controlled at multiple levels. Characterization of naturally occurring promoters has facilitated the study of the synthetic biology of natural products. Herein, we report the discovery of two high-yield actinomycin D (ActD)-producing streptomycetes and the identification of a strong bidirectional acmN2p promoter from the ActD gene clusters and its application in heterologous expression of three core genes involved in the bacterial alkaloid bohemamine biosynthesis, providing a good example for identification of new promoters for synthetic biological applications.

Keywords

Actinomycin D / Bidirectional promoter / Bohemamine / Streptomyces

Cite this article

Download citation ▾
Sainan Li, Danfeng Tang, Xu Zhao, Manxiang Zhu, Xiangcheng Zhu, Yanwen Duan, Yong Huang. Identification and application of a strong bidirectional acmN2p promoter from actinomycin D-producing streptomycetes. Engineering Microbiology, 2024, 4(1): 100121 DOI:10.1016/j.engmic.2023.100121

登录浏览全文

4963

注册一个新账户 忘记密码

Conclusion

In conclusion, natural BDP acmN2p was identified in two ActD-producing Streptomyces strains and was found to drive the expression of tsrr and kanr in three model Streptomyces hosts. The acmN2p BDP was further demonstrated to drive the expression of three genes from the bohemamine BGC in heterologous Streptomyces hosts, which led to the production of bohemamine analogs 2 and 3. This study may inspire the discovery of additional BDPs from natural BGCs for synthetic biological applications.

Data Availability Statement

All data generated or analyzed during this study are included in this published article and its supplementary information files or are available upon request.

Declaration of Competing Interest

No potential conflict of interest was reported by the authors.

CRediT authorship contribution statement

Sainan Li: Formal analysis, Investigation, Methodology, Writing - original draft. Danfeng Tang: Funding acquisition, Investigation, Methodology, Writing - original draft. Xu Zhao: Investigation, Methodology. Manxiang Zhu: Formal analysis, Writing - original draft. Xiangcheng Zhu: Formal analysis. Yanwen Duan: Funding acquisition, Supervision. Yong Huang: Conceptualization, Funding acquisition, Supervision, Writing - review & editing.

Acknowledgments

This work was supported in parts by National Natural Science Foundation of China grants (82173688 and 82373772), The science and technology innovation Program of Hunan Province (2021RC4067), and a research fund from Institute of Health and Medicine (IHM), Hefei Comprehensive National Science Center (to Y.H.), the Chinese Ministry of Education 111 Project (BP0820034) (to Y.D.), and the Fundamental Research Funds for the Central Universities of Central South University 2020zzts247 (to D.T.). We thank the core facility of IHM for FACS analysis.

References

[1]

O. Genilloud, I. González, O. Salazar, J. Martín, J.R. Tormo, F. Vicente, Current approaches to exploit actinomycetes as a source of novel natural products, J. Ind. Microbiol. Biotechnol. 38 (2011) 375-389.

[2]

C.N. Teijaro, A. Adhikari, B. Shen, Challenges and opportunities for natural prod- uct discovery, production, and engineering in native producers versus heterologous hosts, J. Ind. Microbiol. Biotechnol. 46 (2019) 433-444.

[3]

Z. Liu, Y. Zhao, C. Huang, Y. Luo, Recent advances in silent gene cluster activation in Streptomyces, Front. Bioeng. Biotechnol. 9 (2021) 632230.

[4]

M. Myronovskyi, A. Luzhetskyy, Native and engineered promoters in natural product discovery, Nat. Prod. Rep. (33) (2016) 1006-1019.

[5]

W. Wang, X. Li, J. Wang, S. Xiang, X. Feng, K. Yang, An engineered strong promoter for streptomycetes, Appl. Environ. Microbiol. (79) (2013) 4484-4492.

[6]

W. Wang, T. Yang, Y. Li, S. Li, S. Yin, K. Styles, C. Corre, K. Yang, Development of a synthetic oxytetracycline-inducible expression system for streptomycetes using de novo characterized genetic parts, ACS Synth. Biol. (5) (2016) 765-773.

[7]

Y. Chen, M. Yin, G.P. Horsman, B. Shen, Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus, J. Nat. Prod. (74) (2011) 420-424.

[8]

Y.P. Li, P. Yu, J.F. Li, Y.L. Tang, Q.T. Bu, X.M. Mao, Y.Q. Li, FadR1, a pathway-spe- cific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1, Appl. Microbiol. Biotechnol. (103) (2019) 7583-7596.

[9]

J.T. Zheng, S.L. Wang, K.Q. Yang, Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae, Appl. Microbiol. Biotechnol. (76) (2007) 883-888.

[10]

V. Dangel, L. Westrich, M.C.M. Smith, L. Heide, B. Gust, Use of an inducible pro- moter for antibiotic production in heterologous host, Appl. Microbiol. Biotechnol. (87) (2010) 261-269.

[11]

J.B. Lalanne, J.C. Taggart, M.S. Guo, L. Herzel, A. Schieler, G.W. Li, Evolution- ary convergence of pathway-specific enzyme expression stoichiometry, Cell (173)(2018) 749-761 e38.

[12]

T. Yang, K. Yang, Y. Chen, K. Fan, Characterization of a bi-directional pro- moter OtrRp involved in oxytetracycline biosynthesis, Curr. Microbiol. (76) (2019) 1264-1269.

[13]

L. Gou, T. Han, X. Wang, J. Ge, W. Liu, F. Hu, Z. Wang, A novel TetR family transcrip- tional regulator, CalR3, negatively controls calcimycin biosynthesis in Streptomyces chartreusis NRRL 3882, Front. Microbiol. (8) (2017) 2371.

[14]

X. He, R. Li, Y. Pan, G. Liu, H. Tan, A transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN-sanO intergenic region in Streptomyces ansochromogenes, Microbiology (Reading) (156) (2010) 828-837.

[15]

T. Vogl, T. Kickenweiz, J. Pitzer, L. Sturmberger, A. Weninger, B.W. Biggs, E.M. Köh- ler, A. Baumschlager, J.E. Fischer, P. Hyden, M. Wagner, M. Baumann, N. Borth, M. Geier, P.K. Ajikumar, A. Glieder, Engineered bidirectional promoters enable rapid multi-gene co-expression optimization, Nat. Commun. (9) (2018) 3589.

[16]

W. Cai, X. Wang, S.I. Elshahawi, L.V. Ponomareva, X. Liu, M.R. McErlean, Z. Cui, A. L. Arlinghaus, J.S. Thorson, S.G. Van Lanen, Antibacterial and cytotoxic actino- mycins Y6-Y9 and Zp from Streptomyces sp. strain Go-GS12, J. Nat. Prod. (79) (2016) 2731-2739.

[17]

J.T. Taylor, S. Ellison, A. Pandele, S. Wood, E. Nathan, G. Forte, H. Parker, E. Zindy, M. Elvin, A. Dickson, K.J. Williams, K. Karabatsou, M. McCabe, C. McBain, B.W. Big- ger, Actinomycin D downregulates Sox2 and improves survival in preclinical models of recurrent glioblastoma, Neuro. Oncol. (22) (2020) 1289-1301.

[18]

J.M. Rusert, E.F. Juarez, S. Brabetz, J. Jensen, A. Garancher, L.Q. Chau, S.K. Tacheva-Grigorova, S. Wahab, Y.T. Udaka, D. Finlay, H. Seker-Cin, B. Reardon, S. Gröbner, J. Serrano, J. Ecker, L. Qi, M. Kogiso, Y. Du, P.A. Baxter, J.J. Henderson, M.E. Berens, K. Vuori, T. Milde, Y.J. Cho, X.N. Li, J.M. Olson, I. Reyes, M. Snud- erl, T.C. Wong, D.P. Dimmock, S.A. Nahas, D. Malicki, J.R. Crawford, M.L. Levy, E.M. Van Allen, S.M. Pfister, P. Tamayo, M. Kool, J.P. Mesirov, R.J. Wechsler-Reya, Functional precision medicine identifies new therapeutic candidates for medul- loblastoma, Cancer Res. (80) (2020) 5393-5407.

[19]

U. Keller, M. Lang, I. Crnovcic, F. Pfennig, F. Schauwecker, The actinomycin biosyn- thetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry, J. Bacteriol. (192) (2010) 2583-2595.

[20]

I. Crnovcic, M. Lang, I. Ortel, R.D. Sussmuth, U. Keller, J. Comparison of actino- mycin peptide synthetase formation in Streptomyces chrysomallus and Streptomyces antibioticus, Basic. Microbiol. (59) (2019) 148-157.

[21]

L. Liu, S. Li, R. Sun, X.X. Qin, J. Ju, C.S. Zhang, Y.W. Duan, Y. Huang, Activation and characterization of bohemamine biosynthetic gene cluster from Streptomyces sp. CB02009, Org. Lett. (22) (2002) 4614-4619.

[22]

W. Sun, S.K. Dai, S.M. Jiang, G.H. Wang, G.H. Liu, H.B. Wu, X. Li, Culture-depen- dent and culture-independent diversity of actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea, Antonie Van Leeuwenhoek (98) (2010) 65-75.

[23]

N.V. Machushynets, S.S. Elsayed, C. Du, M.A. Siegler, M. de la Cruz, O. Genilloud, T. Hankemeier, G.P. van Wezel, Discovery of actinomycin L, a new member of the actinomycin family of antibiotics, Sci. Rep. (12) (2022) 2813.

[24]

K.A. Qureshi, I. Al Nasr, W.S. Koko, T.A. Khan, M.Q. Fatmi, M. Imtiaz, R.A. Khan, H.A. Mohammed, M. Jaremko, A.H. Emwas, F. Azam, A.D. Bholay, G.O. Elhassan, D. K. Prajapati, In vitro and in silico approaches for the antileishmanial activity eval- uations of actinomycins isolated from novel Streptomyces smyrnaeus strain UKAQ_23, Antibiotics (Basel) (10) (2021) 887.

[25]

Z. Wei, C. Xu, J. Wang, F. Lu, X. Bie, Z. Lu, Identification and characterization of Streptomyces flavogriseus NJ-4 as a novel producer of actinomycin D and holomycin, PeerJ (19) (2017) e3601.

[26]

T. Nishizawa, T. Miura, C. Harada, Y. Guo, K. Narisawa, H. Ohta, H. Takahashi, M. Shirai, Complete genome sequence of Streptomyces parvulus 2297, integrating site-specifically with actinophage R4, Genome Announc. (4) (2016) e00875 -16.

[27]

C. Chen, F. Song F, Q. Wang, W.M. Abdel-Mageed, H. Guo, C. Fu, W. Hou, H. Dai, X. Liu, N. Yang, F. Xie, K. Yu, R. Chen, L. Zhang, A marine-derived Streptomyces sp. MS 449 produces high yield of actinomycin X2 and actinomycin D with potent anti-tuberculosis activity, Appl Microbiol. Biotechnol. (95) (2012) 919-927.

[28]

Z.Q. Xiong, Z.P. Zhang, J.H. Li, S.J. Wei, G.Q. Tu, Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic, Appl. Environ. Microbiol. (78) (2012) 589-592.

[29]

I. Sajid, K.A. Shaaban, S. Hasnain, Antitumour compounds from a saline soil isolate, Streptomyces griseoincarnatus CTF15, Nat. Prod. Res. (25) (2011) 549-559.

[30]

M. Liu, Y. Jia, Y. Xie, C. Zhang, J. Ma, C. Sun, J. Ju, Identification of the actino- mycin D biosynthetic pathway from marine-derived Streptomyces costaricanus SCSIO ZS0073, Mar. Drugs (17) (2019) 240.

[31]

P. Chanthasena, Y. Hua, A. Rosyidah, W. Pathom-Aree, W. Limphirat, N. Nan- tapong, Isolation and identification of bioactive compounds from Streptomyces acti- nomycinicus PJ85 and their in vitro antimicrobial activities against Methicillin-resis- tant Staphylococcus aureus, Antibiotics (Basel) 11 (12) (2022) 1797.

[32]

B. Gong, E. Bai, X. Feng, L. Yi, Y. Wang, X. Chen, X. Zhu, Y. Duan, Y. Huang, Char- acterization of chalkophomycin, a copper(II) metallophore with an unprecedented molecular architecture, J. Am. Chem. Soc. (143) (2021) 20579-20584.

[33]

S. Zhu, Y. Wang, Z. Wen, Y. Duan, Y. Huang, Discovery of a DNA topoisomerase I inhibitor huanglongmycin N and its congeners from Streptomyces sp. CB09001, J. Org. Chem. (86) (2021) 16675-16683.

[34]

Z. Wang, Z. Wen, L. Liu, X. Zhu, B. Shen, X. Yan, Y. Duan, Y. Huang, Yangpumicins F and G, enediyne congeners from Micromonospora yangpuensis DSM 45577, J. Nat. Prod. (82) (2019) 2483-2488.

[35]

H. Komaki, T. Tamura, T. Differences at species level and in repertoires of sec- ondary metabolite biosynthetic gene clusters among Streptomyces coelicolor A3(2) and type strains of S. coelicolor and its taxonomic neighbors, Appl. Microbiol. (1)(2021) 573-585.

[36]

H. Cook, D.W. Ussery, Sigma factors in a thousand E. coli genomes, Environ. Micro- biol. (15) (2013) 3121-3129.

[37]

Z. Xie, Z. Zhang, Z. Cao, M. Chen, P. Li, W. Liu, H. Qin, X. Zhao, Y. Tao, Y. Chen, An external substrate-free blue/white screening system in Escherichia coli, Appl. Mi- crobiol. Biotechnol. (101) (2017) 3811-3820.

[38]

J. Robertson, K. Stevens, Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis, Nat. Prod. Rep. (34) (2017) 62-89.

[39]

E.J. Culp, D. Sychantha, C. Hobson, A.C. Pawlowski, G. Prehna G, G.D. Wright, ClpP inhibitors are produced by a widespread family of bacterial gene clusters, Nat. Mi- crobiol. (7) (2022) 451-462.

[40]

E. Kalkreuter, G. Pan, A.J. Cepeda, B. Shen, Targeting bacterial genomes for natural product discovery, Trends Pharmacol. Sci. (41) (2020) 13-26.

AI Summary AI Mindmap
PDF (1814KB)

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/