Advancements and Challenges in Aqueous Zinc-Iodine Batteries: Strategies for Enhanced Performance and Stability

Ling Wang , Peng Ji , Na Li , Jing Li , Yi-Lin Liu , Jinpeng Guan , Zhaoyu Wang , Haiyang Fu , Yongbiao Mu , Lin Zeng

Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 34

PDF
Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) :34 DOI: 10.1007/s41918-025-00274-9
Review Article
review-article

Advancements and Challenges in Aqueous Zinc-Iodine Batteries: Strategies for Enhanced Performance and Stability

Author information +
History +
PDF

Abstract

Aqueous zinc-iodine batteries (AZIBs) offer intrinsic safety, low cost, and high theoretical capacity, yet their practical performance is hindered by three coupled challenges: polyiodide shuttling that depletes active material and reduces coulombic efficiency; sluggish I2/I/

I3-
redox kinetics that limit rate capability; and uncontrolled zinc dendrite growth that causes anode instability and parasitic reactions. This review summarizes recent advances addressing these issues across four domains. Cathode strategies include carbon-based hosts (hierarchical porosity, heteroatom doping, surface functionalization, electrocatalyst integration), ordered mesoporous frameworks, polymer matrices, iodine-containing perovskites, and emerging carriers. Anode designs involving artificial interfacial layers, three-dimensional zinc scaffolds, and anode-free configurations are evaluated for their ability to regulate Zn2+ flux and suppress dendrites. Separator and membrane modifications that block iodide crossover while maintaining ion transport are evaluated. Electrolyte developments encompass aqueous formulations with functional additives, water-in-salt systems, and solid/quasi-solid electrolytes that enhance stability and mechanical robustness. The review concludes with perspectives on key research priorities, including complete shuttle suppression, accelerated redox kinetics, durable dendrite control, and system-level feasibility through integrated material and interface engineering. This concise overview aims to guide the rational design of next-generation AZIBs with enhanced performance and durability.

Graphical Abstract

Keywords

Aqueous zinc-iodine batteries / Zinc dendrites / Iodine shuttle effect / Aqueous electrolyte / Energy storage devices

Cite this article

Download citation ▾
Ling Wang, Peng Ji, Na Li, Jing Li, Yi-Lin Liu, Jinpeng Guan, Zhaoyu Wang, Haiyang Fu, Yongbiao Mu, Lin Zeng. Advancements and Challenges in Aqueous Zinc-Iodine Batteries: Strategies for Enhanced Performance and Stability. Electrochemical Energy Reviews, 2025, 8(1): 34 DOI:10.1007/s41918-025-00274-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng SM, Zhu JC, Wu TZ, et al. . SOH early prediction of lithium-ion batteries based on voltage interval selection and features fusion. Energy, 2024, 308132993

[2]

Wang JX, Ji HC, Li JF, et al. . Direct recycling of spent cathode material at ambient conditions via spontaneous lithiation. Nat. Sustain., 2024, 7: 1283-1293.

[3]

Jing PP, Liu MT, Ho HP, et al. . Tailoring the Wadsley–Roth crystallographic shear structures for high-power lithium-ion batteries. Energy Environ. Sci., 2024, 17: 6571-6581.

[4]

Wu YJ, Shuang W, Wang Y, et al. . Recent progress in sodium-ion batteries: advanced materials, reaction mechanisms and energy applications. Electrochem. Energy Rev., 2024, 7: 17

[5]

Jia LN, Zhu JH, Zhang X, et al. . Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries. Electrochem. Energy Rev., 2024, 7: 12

[6]

Guo GJ, Dai QL, Li WD, et al. . Intercatenation weaves MOFs with conductive networks as iodine hosts for zinc-iodine batteries. Chem. Eng. J., 2025, 514163100

[7]

Ding JW, Han JQ, Ji DF, et al. . Tungsten-regulated metal-phase vanadium dioxide (M) for high-performance aqueous zinc-iodine batteries. J. Power. Sources, 2025, 647237337

[8]

Ren GL, Yang JX, Wang JJ, et al. . Activating and stabilizing of four-electron zinc-iodine batteries via dual reaction strategy. J. Colloid Interface Sci., 2025, 696137821

[9]

Wang QY, O’Carroll T, Shi FC, et al. . Designing organic material electrodes for lithium-ion batteries: progress, challenges, and perspectives. Electrochem. Energy Rev., 2024, 7: 15

[10]

Kong LY, Li JY, Liu HX, et al. . A universal interfacial reconstruction strategy based on converting residual alkali for sodium layered oxide cathodes: marvelous air stability, reversible anion redox, and practical full cell. J. Am. Chem. Soc., 2024, 146: 32317-32332.

[11]

Lyu W, Fu H, Rao AM, et al. . Permeable void-free interface for all-solid-state alkali-ion polymer batteries. Sci. Adv., 2024, 10eadr9602

[12]

Wan YH, Huang BY, Liu WS, et al. . Fast-charging anode materials for sodium-ion batteries. Adv. Mater., 2024, 362404574

[13]

Xu Y, Du Y, Chen H, et al. . Recent advances in rational design for high-performance potassium-ion batteries. Chem. Soc. Rev., 2024, 53: 7202-7298.

[14]

Zhang N, He Q, Zhang L, et al. . Homogeneous fluorine doping toward highly conductive and stable Li10GeP2S12 solid electrolyte for all-solid-state lithium batteries. Adv. Mater., 2024, 36e2408903

[15]

Girirajan M, Bojarajan AK, Pulidindi IN, et al. . An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors. Coord. Chem. Rev., 2024, 518216080

[16]

Guelfo JL, Ferguson PL, Beck J, et al. . Lithium-ion battery components are at the nexus of sustainable energy and environmental release of per- and polyfluoroalkyl substances. Nat. Commun., 2024, 15: 5548

[17]

Ji D, Kim J. Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nanomicro Lett., 2023, 16: 2

[18]

Wu BK, Mu YB, He JF, et al. . In situ characterizations for aqueous rechargeable zinc batteries. Carbon Neutralization, 2023, 2: 310-338.

[19]

Zhou YL, Li J, Fu HY, et al. . Additive-free Ti3C2Tx MXene/carbon nanotube aqueous inks enable energy density enriched 3d-printed flexible micro-supercapacitors for modular self-powered systems. Carbon Energy, 2025, 7e698

[20]

Gao TJ, Luo W, Yang Y, et al. . Engineering hierarchically porous carbon nanorods electrode materials for high performance zinc ion hybrid supercapacitors. Colloids Surf. A Physicochem. Eng. Aspects, 2024, 684133057

[21]

Gao TJ, Li N, Yang Y, et al. . Mechanical reliable, NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life. J. Energy Chem., 2024, 92: 63-73.

[22]

Yang Y, Zhou YL, Ji P, et al. . Zinc-ion hybrid supercapacitors with hierarchically n-doped porous carbon electrodes and ZnSO4/ZnI2 redox electrolyte exhibit boosted energy density. Colloids Surf. A Physicochem. Eng. Aspects, 2024, 694134122

[23]

Zou Y, Wu Y, Wei W, et al. . Establishing pinhole deposition mode of Zn via scalable monolayer graphene film. Adv. Mater., 2024, 36e2313775

[24]

Yang XZ, Lu Y, Liu ZT, et al. . Facet-governed Zn homoepitaxy via lattice potential regulation. Energy Environ. Sci., 2024, 17: 5563-5575.

[25]

Liu Z, Liu J, Xiao X, et al. . Unraveling paradoxical effects of large current density on Zn deposition. Adv. Mater., 2024, 36e2404140

[26]

Liu Z, Liu J, Zhong X, et al. . Breaking the reversibility barrier in Zn-air systems with dual-electrolyte engineering. Adv. Mater., 2025, 37e2507851

[27]

Liu Y, Liu Z, Xiao Z, et al. . Suppressing spontaneous acidic corrosion and hydrogen evolution for stable Zn// MnO2 batteries. Angew. Chem. Int. Ed., 2025, 64e202502896

[28]

Qiu LY, Zhang LQ, Liang ZT, et al. . Viologen-based polymers with extended π-conjugation structure to boost zinc-iodine battery performance by constructing efficient electric double layers. Chem. Eng. J., 2025, 514162992

[29]

Zheng XY, Shen HJ, Wei JJ, et al. . Wood-derived carbon as self-supporting cathode and current collector for static zinc-iodine batteries. Bioresour. Technol., 2025, 434132779

[30]

Feng JD, Han WK, He JJ, et al. . Covalent organic frameworks coupled with redox center and adsorption site for efficient shuttle-free Zn-iodine batteries. Angew. Chem. Int. Ed., 2025, 64e202506006

[31]

Yang J, Yan H, Zhang Q, et al. . A high-voltage alkaline zinc-iodine flow battery enabled by a dual-functional electrolyte additive strategy. Adv. Funct. Mater., 2025

[32]

Sun MH, Wei LS, Peng JS, et al. . High yield porous carbon framework with co-active BN sites to promote polyiodide conversion for high performance Zn-I2 batteries. J. Colloid Interface Sci., 2025, 698138070

[33]

Zhang L, Luo K, Gong J, et al. . Unlocking durable and sustainable zinc-iodine batteries via molecularly engineered polyiodide reservoirs. Angew. Chem. Int. Ed., 2025, 64e202506822

[34]

Ye JH, Tian W, Du YP, et al. . Defect-engineered ZIF-derived carbon hosts for long-life aqueous zinc-iodine batteries. Adv. Funct. Mater., 2025

[35]

Jiang XW, Zhou YN, Wang YD, et al. . Stabilizing zinc-iodine batteries via amyloid fibril-based electrolytes: ion transport and pH regulation through hierarchical networks. Adv. Funct. Mater., 2025

[36]

Wang Y, Qi Y, Bi G, et al. . Temperature-adaptive aqueous zinc-iodine batteries enabled by ionic covalent organic framework modified separator. J. Phys. Chem. Lett., 2025, 16: 5515-5522.

[37]

Huang X, Pan T, Zhang B, et al. . Functionally segregated ion regulation enables dual confinement effect for highly stable zinc-iodine batteries. Adv. Mater., 2025, 37e2500500

[38]

Hu XL, Huang T, Wang M, et al. . Regulating triazine number in covalent organic frameworks modified separator to achieve high-energy-density performance in aqueous zinc-iodine batteries. J. Colloid Interface Sci., 2025, 695137783

[39]

Zhang SJ, Hao J, Wu H, et al. . Coordination chemistry toward advanced Zn-I2 batteries with four-electron I/I0/I+ conversion. J. Am. Chem. Soc., 2025, 147: 16350-16361.

[40]

Su TT, Ren WF, Xu M, et al. . A reusable biomass electrolyte with dual-interface regulation towards flexible and durable zinc-iodine batteries. Energy Storage Mater., 2025, 78104279

[41]

Chen ZT, Yang J, Li RT, et al. . Boosting iodine redox kinetics by nickel-cobalt diatomic electrocatalyst for zinc-iodine batteries. Small, 2025, 212500936

[42]

Zhang MM, Zhou YT, Fan K, et al. . Ultrafast plasma-assisted synthesis of bio-inspired bi-functional interlayer on zinc anode with enhanced lewis-base sites for long-life zinc-iodine batteries. Adv. Funct. Mater., 2025, 352502870

[43]

Chen S, Ma JZ, Chen QW, et al. . Phase junction induction through atomic ratio tuning of molybdenum carbides for enhanced stepwise iodine conversion. Adv. Funct. Mater., 2025, 352505201

[44]

Zhang X, Li JY, Xie FJ, et al. . Polyzwitterionic gel electrolyte: dual optimization of polyiodide shuttle suppression and anode stabilization in aqueous Zn-I2 batteries. Adv. Funct. Mater., 2025, 352505132

[45]

Wen HK, Wen HY, Sun Y, et al. . The frontiers of aqueous zinc-iodine batteries: a comprehensive review on mechanisms, optimization, and industrial prospects. Adv. Funct. Mater., 2025, 352500323

[46]

Kang P, Yuan Y, Mo F, et al. . Surface laser texturing and alloying: front-end design optimization of zinc metal anode for dendrite-free deposition. ACS Nano, 2025, 19: 15994-16010.

[47]

Li Y, Guo X, Wang S, et al. . Nano/micro metal-organic framework-derived porous carbon with rich nitrogen sites as efficient iodine hosts for aqueous zinc-iodine batteries. Adv. Sci., 2025, 12e2502563

[48]

Wu C, Pan Y, Jiao Y, et al. . α-methyl group reinforced amphiphilic poly(ionic liquid) additive for high-performance zinc-iodine batteries. Angew. Chem. Int. Ed., 2025, 64e202423326

[49]

Yang X, Xie MH, Yan ZJ, et al. . High-iodine-loading quasi-solid-state zinc-iodine batteries enabled by a continuous ion-transport network. Energy Environ. Sci., 2025, 18: 4730-4739.

[50]

Nie R, Wu JJ, Nie YZ, et al. . Anion-type solvation structure enables stable zinc-iodine flow batteries. J. Energy Storage, 2025, 118116260

[51]

Chen M, Chen G, Sun C, et al. . SiO2 nanoparticles-induced antifreezing hydrogel electrolyte enables Zn-I2 batteries with complete and reversible four-electron-transfer mechanisms at low temperatures. Angew. Chem. Int. Ed., 2025, 64e202502005

[52]

Liu Q, Wang S, Lang J, et al. . Atomic synergy catalysis enables high-performing aqueous zinc-iodine batteries. Nano Lett., 2025, 25: 6661-6669.

[53]

Kang JM, Zhang JJ, Wan W, et al. . A dynamic cathode interlayer for ultralow self-discharge and high iodide utilization in zinc-iodine batteries. Energy Environ. Sci., 2025, 18: 4800-4810.

[54]

Zeng S, Chen S, Ao Z, et al. . Dual-mechanism anchoring of iodine species by pitch-derived porous carbon for enhanced zinc-iodine battery performance. Small, 2025, 21e2501695

[55]

Wang C, Wang H, Ma X, et al. . General oxygen vacancy engineering by molten zinc to regulate anode redox for durable aqueous zinc-iodine batteries. Nano Lett., 2025, 25: 6556-6566.

[56]

Wang K, He Y, Yuan R, et al. . A bioimmune mechanism-inspired targeted elimination mechanism on the anode interface for zinc-iodine batteries. Chem. Sci., 2025, 16: 7227-7238.

[57]

Xie C, Zhang H, Xu W, et al. . A long cycle life, self-healing zinc-iodine flow battery with high power density. Angew. Chem. Int. Ed., 2018, 57: 11171-11176.

[58]

Hong JJ, Zhu L, Chen C, et al. . A dual plating battery with the iodine/[ZnIx (OH2)4–x] 2–x cathode. Angew. Chem. Int. Ed., 2019, 58: 15910-15915.

[59]

Wang Z, Huang JH, Guo ZW, et al. . A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule, 2019, 3: 1289-1300.

[60]

Yang HJ, Qiao Y, Chang Z, et al. . A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater., 2020, 322004240

[61]

Li XL, Li N, Huang ZD, et al. . Enhanced redox kinetics and duration of aqueous I2/I conversion chemistry by MXene confinement. Adv. Mater., 2021, 332006897

[62]

Yang S, Li C, Lv H, et al. . High-rate aqueous aluminum-ion batteries enabled by confined iodine conversion chemistry. Small Methods, 2021, 5e2100611

[63]

Zhang SJ, Hao J, Li H, et al. . Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries. Adv. Mater., 2022, 34e2201716

[64]

Liu M, Chen Q, Cao X, et al. . Physicochemical confinement effect enables high-performing zinc-iodine batteries. J. Am. Chem. Soc., 2022, 144: 21683-21691.

[65]

Ma W, Liu T, Xu C, et al. . A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution. Nat. Commun., 2023, 145508

[66]

Ma W, Li J, Wang H, et al. . High efficiency alkaline iodine batteries with multi-electron transfer enabled by Bi/Bi2O3 redox mediator. Angew. Chem. Int. Ed., 2024, 63e202410994

[67]

Hei P, Sai Y, Li WJ, et al. . Diatomic catalysts for aqueous zinc-iodine batteries: mechanistic insights and design strategies. Angew. Chem. Int. Ed., 2024, 63e202410848

[68]

Mu YB, Zhou YK, Chu YQ, et al. . Robust piezoelectric-derived bilayer solid electrolyte interphase for Zn anodes operating from –60 to 60 ℃. ACS Nano, 2025, 19: 14161-14176.

[69]

Hou YT, Wei LS, Sun N, et al. . Mesoporous dominated porous carbon with high nitrogen and phosphorus doping levels toward high area capacity zinc-iodine batteries. J. Energy Storage, 2025, 120116495

[70]

Yin L, Guo X, Hu J, et al. . Strategic nitrogen site alignment in covalent organic frameworks for enhanced performance in aqueous zinc-iodide batteries. Angew. Chem. Int. Ed., 2025, 64e202423265

[71]

Wang XY, Sun YB, Wang Q, et al. . Laser-induced ultrafine Cu-anchored 3D CNT-rGO carrier for flexible and durable zinc-iodine micro-batteries. Adv. Funct. Mater., 2025, 352502268

[72]

Bu J, Liu P, Ou G, et al. . Interfacial adsorption layers based on amino acid analogues to enable dual stabilization toward long-life aqueous zinc iodine batteries. Adv. Mater., 2025, 37e2420221

[73]

Li LX, Bu R, Zhong W, et al. . Densely packed and vertically oriented covalent organic framework membrane enabled efficient ion sieving for zinc iodine battery. Nano Energy, 2025, 138110886

[74]

Li XX, Xu WY, Feng JZ, et al. . Anion-cation synergy enables reversible seven-electron redox chemistry for energetic aqueous zinc-iodine batteries. Nano Energy, 2025, 138110884

[75]

Zhu JH, Guo S, Zhang Y, et al. . Plant derived multifunctional binders for shuttle-free zinc-iodine batteries. Nano Energy, 2025, 138110876

[76]

Wang R, Liu YY, Luo QQ, et al. . Remolding the interface stability for practical aqueous Zn/I2 batteries via sulfonic acid-rich electrolyte and separator design. Adv. Mater., 2025, 372419502

[77]

Cao SC, Zhang AW, Fang HY, et al. . Skin-like quasi-solid-state electrolytes for spontaneous zinc-ion dehydration toward ultra-stable zinc-iodine batteries. Energy Environ. Sci., 2025, 18: 3395-3406.

[78]

Zhang Y, Ali U, Hao YH, et al. . Anchoring polyiodide with flexible interlayer for high-performance aqueous zinc-iodine batteries. J. Colloid Interface Sci., 2025, 688: 132-139.

[79]

Yuan WT, Qu XH, Wang YY, et al. . Polycationic polymer functionalized separator to stabilize aqueous zinc-iodine batteries. Energy Storage Mater., 2025, 76104130

[80]

Zhu L, Guan X, Zhang Z, et al. . Polar-nonpolar synergy toward high-performance aqueous zinc-iodine batteries. Small, 2025, 21e2500223

[81]

Chen S, Ma JZ, Chen QW, et al. . Exploring interfacial electrocatalysis for iodine redox conversion in zinc-iodine battery. Sci. Bull., 2025, 70: 546-555.

[82]

Zhang J, Qiu C, Zhou CC, et al. . Liner-chain polysaccharide binders with strong chemisorption capability for iodine species enables shuttle-free zinc-iodine batteries. Nano Energy, 2025, 133110519

[83]

Dong CX, Yu YK, Ma CN, et al. . Tailoring zinc diatomic bidirectional catalysts achieving orbital coupling-hybridization for ultralong-cycling zinc-iodine batteries. Energy Environ. Sci., 2025, 18: 3014-3025.

[84]

Qu H, Liang LB, Fang J, et al. . Constructing an artificial cathode-electrolyte interface to stabilize high-loading iodine electrode based on positively charged chitosan for high-energy and stable flexible zinc-iodine batteries. J. Power. Sources, 2025, 635236536

[85]

Wu X, Wei W, Yang X, et al. . Triethyl methyl ammonium ionic liquid as an effective electrolyte additive for high-performance zinc-iodine batteries. Chem. Commun., 2025, 61: 4543-4546.

[86]

Shen ZZ, Yu DH, Ding HY, et al. . Advancements in metal-iodine batteries: progress and perspectives. Rare Met., 2025, 44: 2143-2179.

[87]

Liu YY, Zhang LH, Liu L, et al. . All-climate energy-dense cascade aqueous Zn-I2 batteries enabled by a polycationic hydrogel electrolyte. Adv. Mater., 2025

[88]

Chen H, Zhou L, Sun YC, et al. . Bio-inspired biomass hydrogel interface with ion-selective responsive sieving mechanism for corrosion-resistant and dendrite-free zinc-iodine batteries. Energy Storage Mater., 2025, 76104113

[89]

Wang Y, Zhou KM, Sun ZH, et al. . Impressive improvement of zinc-iodine battery performance by doping poly(vinyl alcohol) into the cathode. Chem. Commun., 2025, 61: 3916-3919.

[90]

Huang T, Wang SL, Hu H, et al. . Ionic-rich triazine-based two-dimensional covalent organic framework materials for high-performance zinc-iodine battery. J. Power. Sources, 2025, 633236449

[91]

Zhao YL, Wang YY, Xue WJ, et al. . Elucidating synergistic mechanism of zinc single-atom sites and lewis acid-base pairs to boost zinc-iodine batteries performance. Adv. Funct. Mater., 2025, 352422677

[92]

Zhang LQ, Ding H, Gao HQ, et al. . An integrated design for high-energy, durable zinc-iodine batteries with ultra-high recycling efficiency. Energy Environ. Sci., 2025, 18: 2462-2473.

[93]

Pei LH, Xu DM, Luo YZ, et al. . Zinc single-atom catalysts encapsulated in hierarchical porous bio-carbon synergistically enhances fast iodine conversion and efficient polyiodide confinement for Zn-I2 batteries. Adv. Mater., 2025, 37e2420005

[94]

Qu WT, Yuan YZ, Wen CY, et al. . Ultra-long life and high rate performance zinc-iodine batteries simultaneously enabled by a low-spin electrode. Energy Storage Mater., 2025, 75103993

[95]

Li YX, Jia HF, Hao YH, et al. . Multi-site high-entropy immobilizer for all-iodine species fixation in high-performance zinc-iodine batteries. Adv. Funct. Mater., 2025, 352419821

[96]

Liu YL, Yan C, Wang GG, et al. . Self-templated formation of (NiCo)9S8 yolk-shelled spheres for high-performance hybrid supercapacitors. Nanoscale, 2020, 12: 23497-23505.

[97]

Liu YL, Yan C, Wang GG, et al. . Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices. Nanoscale, 2020, 12: 4040-4050.

[98]

Cao WW, Hu T, Zhao YY, et al. . Tailoring C3N4 host to enable a high-loading iodine electrode for high energy and long cycling Zn-iodine battery. ACS Energy Lett., 2025, 10: 320-329.

[99]

Gao YT, Liu YR, Guo X, et al. . Trimetallic atom-doped functional carbon catalyst enables fast redox kinetics and durable cyclic stability of zinc-iodine batteries. Adv. Funct. Mater., 2025, 352421714

[100]

Liu JS, Chen S, Shang WS, et al. . In situ formation of 3D ZIF-8/MXene composite coating for high-performance zinc-iodine batteries. Adv. Funct. Mater., 2025, 352422081

[101]

Qian Y, Chang G, Huang C, et al. . A transformed prussian blue analog as host of I2 for long-life aqueous zinc-iodine battery. Chem. Eng. J., 2025, 503158392

[102]

Yin D, Li B, Zhao L, et al. . Polymeric iodine transport layer enabled high areal capacity dual plating zinc-iodine battery. Angew. Chem. Int. Ed., 2025, 64e202418069

[103]

Bi HH, Tian DX, Zhao ZB, et al. . Multifunctional janus separator engineering for modulating zinc oriented aspectant growth and iodine conversion kinetics toward advanced zinc-iodine batteries. Adv. Funct. Mater., 2025, 352423115

[104]

Xu J, Dai QY, Yang YT, et al. . Wide-temperature zinc-iodine batteries enabling by a Zn-ion conducting covalent organic framework buffer layer. Chem. Eng. J., 2024, 502157984

[105]

Xiong Y, Cheng HR, Jiang YK, et al. . A novel water-reducer-based hydrogel electrolyte for robust and flexible Zn-I2 battery. Energy Storage Mater., 2025, 74103981

[106]

Zhao, Y., Wang, Y., Han, Y., et al.: Ultra-long lifespan aqueous zinc-iodine batteries enabled by a defect-rich covalent triazine framework. Small, e2408312(2024). https://doi.org/10.1002/smll.202408312

[107]

Li C, Li H, Ren X, et al. . Urea chelation of I+ for high-voltage aqueous zinc-iodine batteries. ACS Nano, 2025, 19: 2633-2640.

[108]

Li X, Liu T, Li P, et al. . Aqueous alkaline zinc-iodine battery with two-electron transfer. ACS Nano, 2025, 19: 2900-2908.

[109]

Liu Z, Wu X, Xiao X, et al. . Electrochemical dendrite management via voltage-controlled rearrangement. Natl. Sci. Rev., 2025, 12nwaf013

[110]

Xu YQ, Li YX, Jia HF, et al. . Hierarchical micro-mesoporous carbon firmly confined iodine for high performance zinc-iodine batteries. Mater. Lett., 2023, 353135241

[111]

Zhang Y, Zhang X, Li X, et al. . Enabling high-areal-capacity zinc-iodine batteries: constructing high-density microporous carbon framework with large surface area. J. Alloys Compd., 2024, 976173041

[112]

He JF, Hong H, Hu SL, et al. . Chemisorption effect enables high-loading zinc-iodine batteries. Nano Energy, 2024, 119109096

[113]

Xu JW, Ma WQ, Ge LH, et al. . Confining iodine into a biomass-derived hierarchically porous carbon as cathode material for high performance zinc-iodine battery. J. Alloys Compd., 2022, 912165151

[114]

Lu K, Zhang H, Song B, et al. . Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta, 2019, 296: 755-761.

[115]

Liu W, Liu P, Lyu Y, et al. . Advanced Zn-I2 battery with excellent cycling stability and good rate performance by a multifunctional iodine host. ACS Appl. Mater. Interfaces, 2022, 14: 8955-8962.

[116]

Chen SS, Tian L, Feng XQ, et al. . Biomaterial-derived porous carbon doped with heteroatoms as a separator coating for high-energy-density Zn-I batteries. Biochar, 2024, 699

[117]

Jin X, Song L, Dai C, et al. . A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater., 2022, 34e2109450

[118]

Pan HL, Li B, Mei DH, et al. . Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett., 2017, 2: 2674-2680.

[119]

Yang X, Fan H, Hu F, et al. . Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Letters, 2023, 15126

[120]

Wang Y, Jin X, Xiong J, et al. . Ultrastable electrolytic Zn-I2 batteries based on nanocarbon wrapped by highly efficient single-atom Fe-NC iodine catalysts. Adv. Mater., 2024, 36e2404093

[121]

Chen S, He YL, Ding SY, et al. . In situ formation of tungsten nitride among porous carbon polyhedra for high performance zinc-iodine batteries. J. Phys. Chem. C, 2023, 127: 7609-7617.

[122]

Ma JK, Azizi A, Zhang EH, et al. . Unleashing the high energy potential of zinc-iodide batteries: high-loaded thick electrodes designed with zinc iodide as the cathode. Chem. Sci., 2024, 15: 4581-4589.

[123]

Qu W, Zhu J, Cao G, et al. . Ni single-atom bual catalytic electrodes for long life and high energy efficiency zinc-iodine batteries. Small, 2024, 20e2310475

[124]

Chen ZH, Wang FF, Ma RL, et al. . Molecular catalysis enables fast polyiodide conversion for exceptionally long-life zinc-iodine batteries. ACS Energy Lett., 2024, 9: 2858-2866.

[125]

Wu JW, Yang JL, Zhang B, et al. . Immobilizing polyiodides with expanded Zn2+ channels for high-rate practical zinc-iodine battery. Adv. Energy Mater., 2024, 142302738

[126]

Yang JL, Liu HH, Zhao XX, et al. . Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn-I2 batteries. J. Am. Chem. Soc., 2024, 146: 6628-6637.

[127]

Wang KX, Li H, Xu Z, et al. . An iodine-chemisorption binder for high-loading and shuttle-free Zn-iodine batteries. Adv. Energy Mater., 2024, 142304110

[128]

Yu ZT, Gong ZS, Wen RH, et al. . Gelatinized starch as a low-cost and bifunctional binder enables shuttle-free aqueous zinc-iodine batteries. Rare Met., 2024, 43: 6351-6361.

[129]

Qian JF, Wu C, Cao YL, et al. . Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater., 2018, 81702619

[130]

Gao WZ, Cheng ST, Zhang YX, et al. . Efficient charge storage in zinc-iodine batteries based on pre-embedded iodine-ions with reduced electrochemical reaction barrier and suppression of polyiodide self-shuttle effect. Adv. Funct. Mater., 2023, 332211979

[131]

Ma L, Ying Y, Chen S, et al. . Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed., 2021, 60: 3791-3798.

[132]

Guo X, Xu H, Tang Y, et al. . Confining iodine into metal-organic framework derived metal-nitrogen-carbon for long-life aqueous zinc-iodine batteries. Adv. Mater., 2024, 36e2408317

[133]

Kalybekkyzy S, Kopzhassar AF, Kahraman MV, et al. . Fabrication of UV-crosslinked flexible solid polymer electrolyte with PDMS for Li-ion batteries. Polymers, 2020, 13E15

[134]

Zhu CG, Li ZY, Zhong WK, et al. . Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cell with an efficiency of 13.8%. Chem. Commun., 2021, 57: 935-938.

[135]

Zeng XM, Meng XJ, Jiang W, et al. . Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries. ACS Sustainable Chem. Eng., 2020, 8: 14280-14285.

[136]

Hu J, Zhang Z, Deng T, et al. . Porous aromatic frameworks enabling polyiodide confinement toward high capacity and long lifespan zinc-iodine batteries. Adv. Mater., 2024, 36e2401091

[137]

Li XL, Wang SX, Wang TR, et al. . Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. Nano Energy, 2022, 98107278

[138]

Zhang L, Zhang M, Guo H, et al. . A universal polyiodide regulation using quaternization engineering toward high value-added and ultra-stable zinc-iodine batteries. Adv. Sci., 2022, 9e2105598

[139]

Li XL, Wang SX, Zhang DC, et al. . Perovskite cathodes for aqueous and organic iodine batteries operating under one and two electrons redox modes. Adv. Mater., 2024, 362304557

[140]

Wang SX, Huang ZD, Tang B, et al. . Conversion-type organic-inorganic tin-based perovskite cathodes for durable aqueous zinc-iodine batteries. Adv. Energy Mater., 2023, 132300922

[141]

Gong J, Zhang H, Liang XY, et al. . Cation engineering perovskite cathodes for fast and stable anion redox chemistry in zinc-iodine batteries. Adv. Funct. Mater., 2024, 342411137

[142]

Wang C, Ji X, Liang J, et al. . Activating and stabilizing a reversible four electron redox reaction of I/I+ for aqueous Zn-iodine battery. Angew. Chem. Int. Ed., 2024, 63e202403187

[143]

Zhang L, Ge J, Wang T, et al. . Langmuir-blodgett film formed by amphiphilic molecules for facile and rapid construction of zinc-iodine cell. Nano Lett., 2024, 24: 3036-3043.

[144]

Zhang ZS, Ling W, Ma NG, et al. . Ultralong cycle life and high rate of Zn‖I2 battery enabled by MBene-hosted I2 cathode. Adv. Funct. Mater., 2024, 342310294

[145]

Wei FC, Zhang TT, Xu HY, et al. . 2D mesoporous naphthalene-based conductive heteroarchitectures toward long-life, high-capacity zinc-iodine batteries. Adv. Funct. Mater., 2024, 342310693

[146]

Wang M, Ma J, Zhang H, et al. . Bidirectional confined redox catalysis manipulated quasi-solid iodine conversion for shuttle-free solid-state Zn-I2 battery. Small, 2024, 20e2307021

[147]

Song ZH, Zhao Y, Wang HR, et al. . Dual mechanism with graded energy storage in long-term aqueous zinc-ion batteries achieved using a polymer/vanadium dioxide cathode. Energy Environ. Sci., 2024, 17: 6666-6675.

[148]

Zhu ZT, Luo D, Wei L, et al. . Long-life aqueous zinc-iodine batteries enabled by selective adsorption of polyiodide anions in nonporous adaptive organic cages. Energy Storage Mater., 2025, 75103994

[149]

Zhang K, Wu C, Yan S, et al. . Inherent water competition effect-enabled colloidal electrode for ultra-stable aqueous Zn-I batteries. J. Am. Chem. Soc., 2024, 146: 29513-29522.

[150]

Kundu DP, Adams BD, Duffort V, et al. . A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy, 2016, 1: 16119

[151]

Zhang Y, Liu ZP, Li X, et al. . Loosening zinc ions from separator boosts stable Zn plating/striping behavior for aqueous zinc ion batteries. Adv. Energy Mater., 2023, 132302126

[152]

Zhao C, Liu Z, Zhang Y, et al. . Tolerant molecular engineering for high-rate and ultra-long cycle life zinc anode. Adv. Sci. (Weinh.)., 2025, 12e08628

[153]

Liu Z, Xu G, Zhang Y, et al. . Unveiling zinc stripping and molecular engineering for high-performance zinc anode. Angew. Chem. Int. Ed., 2025, 64e202501960

[154]

Guo ZK, Liu ZP, Zhang Y, et al. . Ultrastrong bioinspired “brick-and-mortar” artificial SEI for dendrite-free Zn anode. Matter, 2025, 8102269

[155]

Wang GL, Yao Q, Dong JJ, et al. . In situ construction of multifunctional surface coatings on zinc metal for advanced aqueous zinc-iodine batteries. Adv. Energy Mater., 2024, 142303221

[156]

Wang K, Le JB, Zhang SJ, et al. . A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc-iodine batteries. J. Mater. Chem. A, 2022, 10: 4845-4857.

[157]

Xu YT, Zhang MH, Tang R, et al. . A plant root cell-inspired interphase layer for practical aqueous zinc-iodine batteries with super-high areal capacity and long lifespan. Energy Environ. Sci., 2024, 17: 6656-6665.

[158]

Zhang Y, Wang L, Li Q, et al. . Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett., 2022, 14208

[159]

Shi WC, Song ZJ, Zhang WW, et al. . Identifying iodide-ion regulation of early-stage zinc nucleation and growth for high-rate anode-free zinc metal batteries. Energy Environ. Sci., 2024, 17: 7372-7381.

[160]

Wang JD, Cai Z, Xiao R, et al. . A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces, 2020, 12: 23028-23034.

[161]

Zhou YR, Wang XN, Shen XF, et al. . 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J. Mater. Chem. A, 2020, 8: 11719-11727.

[162]

Wang L, Guan JP, Li N, et al. . Amine-functionalized MIL-125 separator and MOF-derived carbon host for high-performance aqueous zinc-iodine batteries. Adv. Energy Mater., 2025

[163]

Kang YH, Chen GH, Hua HM, et al. . A Janus separator based on cation exchange resin and Fe nanoparticles-decorated single-wall carbon nanotubes with triply synergistic effects for high-areal capacity Zn-I2 batteries. Angew. Chem. Int. Ed., 2023, 62e202300418

[164]

Huang T, Wang SL, Wu JY, et al. . Triazine and hydroxyl covalent organic framework modified separator for Zn-ion fast and selective transport and dendrite-free deposition in zinc-iodine battery. J. Power. Sources, 2024, 608234658

[165]

Xu H, Zhang R, Luo D, et al. . Synergistic ion sieve and solvation regulation by recyclable clay-based electrolyte membrane for stable Zn-iodine battery. ACS Nano, 2023, 17: 25291-25300.

[166]

Chen Q, Hao J, Zhu Y, et al. . Anti-swelling microporous membrane for high-capacity and long-life Zn-I2 batteries. Angew. Chem. Int. Ed., 2025, 64e202413703

[167]

Zhang Q, Ma YL, Lu Y, et al. . Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc., 2022, 144: 18435-18443.

[168]

Wu H, Hao J, Zhang S, et al. . Aqueous zinc-iodine pouch cells with long cycling life and low self-discharge. J. Am. Chem. Soc., 2024, 146: 16601-16608.

[169]

Wang FF, Liang WB, Liu XY, et al. . A bifunctional electrolyte additive features preferential coordination with iodine toward ultralong-life zinc-iodine batteries. Adv. Energy Mater., 2024, 142400110

[170]

Back S, Xu L, Moon J, et al. . A versatile redox-active electrolyte for solid fixation of polyiodide and dendrite-free operation in sustainable aqueous zinc-iodine batteries. Small, 2024, 20e2405487

[171]

Ji Y, Xie JP, Shen ZX, et al. . Advanced zinc-iodine batteries with ultrahigh capacity and superior rate performance based on reduced graphene oxide and water-in-salt electrolyte. Adv. Funct. Mater., 2023, 332210043

[172]

Wang LM, Wang HC, et al. . Restructuring hydrogen bond networks in polyacrylamide hydrogels via trehalose additives for wide-temperature-range Zn-ion batteries. ACS Nano, 2025, 19: 28397-28409.

[173]

Huang YX, Wang YQ, Peng XY, et al. . Enhancing performance and longevity of solid-state zinc-iodine batteries with fluorine-rich solid electrolyte interphase. Mater. Futures, 2024, 3035102

[174]

Li FL, Zhou CC, Zhang J, et al. . Mullite mineral-derived robust solid electrolyte enables polyiodide shuttle-free zinc-iodine batteries. Adv. Mater., 2024, 362408213

[175]

Hu XT, Zhao ZQ, Yang YQ, et al. . Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries. InfoMat, 2024, 6e12620

[176]

Shang W, Zhu J, Liu Y, et al. . Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces, 2021, 13: 24756-24764.

[177]

Zhao DY, Zhu QC, Zhou QC, et al. . Enhancing I0/I conversion efficiency by starch confinement in zinc-iodine battery. Energy Environ. Mater., 2024, 7e12522

[178]

Tan Y, Liao RX, Mu YB, et al. . Hierarchically-structured and mechanically-robust hydrogel electrolytes for flexible zinc-iodine batteries. Adv. Funct. Mater., 2024, 342407050

[179]

Zhang Y, Wang YQ, Yang XZ, et al. . Charge-driven flocculation strategy for lean-water quasi-solid electrolyte enabling stable aqueous Zn metal batteries. Energy Storage Mater., 2025, 78104246

[180]

Liu L, Zhang LH, Liu YY, et al. . Enhanced redox kinetics of aqueous I/I2/I+ conversion chemistry in hydrated eutectic electrolyte over a wide temperature range. Adv. Energy Mater., 2025, 152501460

[181]

Zhao J, Chen Y, Zhang M, et al. . Iodine/chlorine multi-electron conversion realizes high energy density zinc-iodine batteries. Adv. Sci. (Weinh.)., 2025, 12e2410988

[182]

Cong JL, Hu ZY, Hu L, et al. . Electrolyte engineering with asymmetric spatial shielding effect for aqueous zinc batteries. Adv. Funct. Mater., 2025, 352424423

[183]

Zhang K, Yu Q, Sun J, et al. . Precipitated iodine cathode enabled by trifluoromethanesulfonate oxidation for cathode/electrolyte mutualistic aqueous Zn-I batteries. Adv. Mater., 2024, 36e2309838

Funding

National Natural Science Foundation of China(52477213)

Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province(No.2022RC1088)

Scientific Research Foundation of Hunan Provincial Education Department(23A0442)

Shenzhen Municipal Key Laboratory of Neuropsychiatric Modulation, Chinese Academy of Sciences(No. ZDSYS20220401141000001)

High level of special funds(No. G03034K001)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

/