Recent Progress on Constructing Artificial Interfacial Layers for Zinc-Anodes-Stabilizing

Xing Wei , Tian-Nian Zhang , Yu-Hao Yao , Si-Yuan Xuan , Yi-Nan Wu , Han Xu , Ye-Xing Wang , Song-Lin Zhou , Zhenlei Zou , Shi-Chao Xing , Wenqiang Zhao , Yang-Yi Liu

Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 31

PDF
Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) :31 DOI: 10.1007/s41918-025-00271-y
Review Article
review-article

Recent Progress on Constructing Artificial Interfacial Layers for Zinc-Anodes-Stabilizing

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries (AZIBs) are promising to be widely used in large-scale energy storage devices due to their low cost, safety, and environmental friendliness. However, side reactions, including dendrite growth, anode corrosion, and electrode passivation, caused by uneven zinc deposition hinder further practical applications of AZIBs. Constructing artificial interfacial layers (AILs) is an effective strategy to stabilize zinc anodes, which has received significant attention. Herein, this review summarizes the basic principles, design strategies, and electrochemical performances of the AILs for Zn2+ ions. First, the side reactions on Zn anodes and their electrochemical mechanisms are briefly discussed. The classification, components, structural features, synthetic methods, and electrochemical mechanisms of the AILs are then combed in detail with a focus on the interaction between Zn anodes and AILs based on underlying electrochemical processes. Finally, the prospects of the AILs for the future development of AZIBs are proposed.

Graphical Abstract

In this review, the basic principles, design strategies, and electrochemical performances of the artificial interfacial layers (AILs) for aqueous zinc-ion batteries (AZIBs) are summarized. Briefly, the issues that hinder the development of AZIBs are summarized initially. Then, different types of AILs are combed according to their structural features. Finally, the potential challenges and prospects of AILs are proposed.

Keywords

Aqueous zinc-ion batteries / Zinc metal anodes / Artificial interface layer / Zn dendrites / Electrochemical mechanisms

Cite this article

Download citation ▾
Xing Wei, Tian-Nian Zhang, Yu-Hao Yao, Si-Yuan Xuan, Yi-Nan Wu, Han Xu, Ye-Xing Wang, Song-Lin Zhou, Zhenlei Zou, Shi-Chao Xing, Wenqiang Zhao, Yang-Yi Liu. Recent Progress on Constructing Artificial Interfacial Layers for Zinc-Anodes-Stabilizing. Electrochemical Energy Reviews, 2025, 8(1): 31 DOI:10.1007/s41918-025-00271-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang ZG, Zhang JL, Kintner-Meyer MCW, et al. . Electrochemical energy storage for green grid. Chem. Rev., 2011, 111: 3577-3613.

[2]

Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci., 2018, 11: 2696-2767.

[3]

Ren GZ, Ma GQ, Cong N. Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev., 2015, 41: 225-236.

[4]

Li P, Kim H, Ming J, et al. . Quasi-compensatory effect in emerging anode-free lithium batteries. eScience, 2021, 1: 3-12.

[5]

Bruce P, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47: 2930-2946.

[6]

Tian YS, Zeng GB, Rutt A, et al. . Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev., 2021, 121: 1623-1669.

[7]

Guo XT, Li WT, Zhang QY, et al. . Ultrasmall metal (Fe, Co, Ni) nanoparticles strengthen silicon oxide embedded nitrogen-doped carbon superstructures for long-cycle-life Li-ion-battery anodes. Chem. Eng. J., 2022, 432134413

[8]

Wang YR, Zhuang QF, Li Y, et al. . Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries. Nano Res., 2022, 15: 5064-5071.

[9]

Guo XT, Xu HY, Li WT, et al. . Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage. Adv. Sci., 2023, 102206084

[10]

Verma V, Kumar S, Manalastas WJr, et al. . Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett., 2021, 6: 1773-1785.

[11]

Yan ZC, Xin WL, Zhu ZQ. Artificial interphase engineering to stabilize aqueous zinc metal anodes. Nanoscale, 2021, 13: 19828-19839.

[12]

Yi ZH, Chen GY, Hou F, et al. . Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater., 2021, 112003065

[13]

Lv TT, Liu YY, Wang H, et al. . Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O nanobelts for high-performance aqueous zinc-ion battery. Chem. Eng. J., 2021, 411128533

[14]

Lu WJ, Zhang CK, Zhang HM, et al. . Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett., 2021, 6: 2765-2785.

[15]

Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule, 2020, 4: 771-799.

[16]

Yang ZF, Lv CN, Li WB, et al. . Revealing the two-dimensional surface diffusion mechanism for zinc dendrite formation on zinc anode. Small, 2022, 182104148

[17]

Yang Q, Liang GJ, Guo Y, et al. . Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater., 2019, 311903778

[18]

Yuan GQ, Liu YY, Xia J, et al. . Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Res., 2023, 16: 6881-6889.

[19]

Jia XX, Liu CF, Neale ZG, et al. . Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev., 2020, 120: 7795-7866.

[20]

Tang BY, Shan LT, Liang SQ, et al. . Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci., 2019, 12: 3288-3304.

[21]

Strmcnik D, Lopes PP, Genorio B, et al. . Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29: 29-36.

[22]

Li CP, Xie XS, Liang SQ, et al. . Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater., 2020, 3: 146-159.

[23]

Wang HP, Tan R, Yang ZX, et al. . Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater., 2021, 112000962

[24]

Xu CJ, Li BH, Du HD, et al. . Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed., 2012, 51: 933-935.

[25]

Guo XX, Zhang ZY, Li JW, et al. . Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett., 2021, 6: 395-403.

[26]

Hao JN, Li XL, Zeng XH, et al. . Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci., 2020, 13: 3917-3949.

[27]

Muster TH, Cole IS. The protective nature of passivation films on zinc: surface charge. Corros. Sci., 2004, 46: 2319-2335.

[28]

Hao JN, Li B, Li XL, et al. . An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater., 2020, 322003021

[29]

Han DL, Wu SC, Zhang SW, et al. . A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small, 2020, 16: 2001736.

[30]

Zhang QY, Luan J, Tang YG, et al. . Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed., 2020, 59: 13180-13191.

[31]

Zhang SJ, Hao JN, Luo D, et al. . Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater., 2021, 112102010

[32]

Li Q, Zhao YW, Mo FN, et al. . Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat, 2020, 2e12035

[33]

Wang X, Wu ZS. Zinc based micro-electrochemical energy storage devices: present status and future perspective. EcoMat, 2020, 2e12042

[34]

Miao ZY, Du M, Li HZ, et al. . Constructing nano‐channeledtin layer on metal zinc for high‐performance zinc‐ion batteries anode. EcoMat, 2021, 3e12125

[35]

Wang PJ, Liang SQ, Chen C, et al. . Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv. Mater., 2022, 342202733

[36]

Li XL, Li Q, Hou Y, et al. . Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano, 2021, 15: 14631-14642.

[37]

Liu MY, Yuan WT, Ma GQ, et al. . In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes. Angew. Chem. Int. Ed., 2023, 62e202304444

[38]

Yang JL, Yang PH, Yan WQ, et al. . 3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Mater., 2022, 51: 259-265.

[39]

Jian QP, Guo ZX, Zhang LC, et al. . A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem. Eng. J., 2021, 425130643

[40]

Su YW, Liu BZ, Zhang QH, et al. . Printing-scalable Ti3C2Tx MXene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater., 2022, 322204306

[41]

Li Y, Peng XY, Li X, et al. . Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater., 2023, 352300019

[42]

Ding YC, Huang D, Wang Y, et al. . Water-in-oil” electrolyte enabled by microphase separation regulation for highly reversible zinc metal anode. Adv. Mater., 2025, 372419221

[43]

Wang HF, Ye WQ, Yin BW, et al. . Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed., 2023, 62e202218872

[44]

Zhang MH, Hua HM, Dai PP, et al. . Dynamically interfacial pH-buffering effect enabled by N-methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc-metal anodes. Adv. Mater., 2023

[45]

Zhu YH, Liang GJ, Cui X, et al. . Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci., 2024, 17: 369-385.

[46]

Liu FY, Zhang YQ, Liu H, et al. . Advances of nanomaterials for high-efficiency Zn metal anodes in aqueous zinc-ion batteries. ACS Nano, 2024, 18: 16063-16090.

[47]

Yang JJ, Zhao R, Wang YS, et al. . Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective. Adv. Funct. Mater., 2023, 332213510

[48]

Xu J, Li HL, Jin Y, et al. . Understanding the electrical mechanisms in aqueous zinc metal batteries: from electrostatic interactions to electric field regulation. Adv. Mater., 2024, 362309726

[49]

Wu BK, Luo W, Li M, et al. . Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res., 2021, 14: 3174-3187.

[50]

Xu SQ, Huang JW, Wang GY, et al. . Electrolyte and additive engineering for Zn anode interfacial regulation in aqueous zinc batteries. Small Methods, 2024, 82300268

[51]

Cheng YW, Luo LL, Zhong L, et al. . Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces, 2016, 8: 13673-13677.

[52]

Wang LP, Li NW, Wang TS, et al. . Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta, 2017, 244: 172-177.

[53]

Kang LT, Cui MW, Jiang FY, et al. . Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater., 2018, 81801090

[54]

Cui YH, Zhao QH, Wu XJ, et al. . An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed., 2020, 59: 16594-16601.

[55]

Li Q, Wang YB, Mo FN, et al. . Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater., 2021, 112003931

[56]

An YL, Tian Y, Man QY, et al. . Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic MXene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS Nano, 2022, 16: 6755-6770.

[57]

Zhang WY, Yao QS, Wang C, et al. . Taming Zn electrochemistry with carbon nitride: atomically gradient interphase for highly reversible aqueous Zn batteries. Adv. Funct. Mater., 2024, 342303590

[58]

Guo C, Huang X, Huang JL, et al. . Zigzag hopping site embedded covalent organic frameworks coating for Zn anode. Angew. Chem. Int. Ed., 2024, 63e202403918

[59]

Zhang XT, Li JX, Liu DY, et al. . Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci., 2021, 14: 3120-3129.

[60]

Hao JN, Li XL, Zhang SL, et al. . Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater., 2020, 302001263

[61]

Zhao ZM, Zhao JW, Hu ZL, et al. . Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci., 2019, 12: 1938-1949.

[62]

Yang JJ, Zhang AQ, Zhao R, et al. . Cation and anion modulation strategies toward ideal zinc artificial interface. Batteries Supercaps, 2023, 6e202300299

[63]

Lu QQ, Liu CC, Du YH, et al. . Uniform Zn deposition achieved by ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces, 2021, 13: 16869-16875.

[64]

Chu YZ, Zhang S, Wu S, et al. . In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci., 2021, 14: 3609-3620.

[65]

Zhou WJ, Chen MF, Tian QH, et al. . Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater., 2022, 44: 57-65.

[66]

Yang Y, Liu CY, Lv ZH, et al. . Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Storage Mater., 2021, 41: 230-239.

[67]

Zheng XH, Liu ZC, Sun JF, et al. . Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun., 2023, 14: 76.

[68]

Zhang Q, Luan JY, Fu L, et al. . The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed., 2019, 58: 15841-15847.

[69]

Zou PC, Zhang R, Yao LB, et al. . Ultrahigh-rate and long-life zinc–metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater., 2021, 112100982

[70]

Xu XL, Chen Y, Zheng D, et al. . Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries. Small, 2021, 17: 2101901.

[71]

Cao ZY, Zhuang PY, Zhang X, et al. . Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater., 2020, 102001599

[72]

Li HY, Guo SH, Zhou HS. Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Mater., 2023, 56: 227-257.

[73]

Zhou M, Guo S, Li JL, et al. . Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater., 2021, 332100187

[74]

Huo XM, Xu LH, Xie KY, et al. . Cation-selective interface for kinetically enhanced dendrite-free Zn anodes. Adv. Energy Mater., 2023, 132203066

[75]

Liang YL, Dong H, Aurbach D, et al. . Current status and future directions of multivalent metal-ion batteries. Nat. Energy, 2020, 5: 646-656.

[76]

Qiu HY, Du XF, Zhao JW, et al. . Zinc anode-compatible in situ solid electrolyte interphase via cation solvation modulation. Nat. Commun., 2019, 10: 5374.

[77]

Yufit V, Tariq F, Eastwood DS, et al. . Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule, 2019, 3: 485-502.

[78]

Bai P, Li J, Brushett FR, et al. . Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci., 2016, 9: 3221-3229.

[79]

Zheng JX, Yin JF, Zhang DH, et al. . Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci. Adv., 2020, 6eabb1122

[80]

Wu ZX, Wang Y, Zhi CY. Zinc-anode reversibility and capacity inflection as an evaluation criterion. Joule, 2024, 8: 2442-2448.

[81]

Wang SB, Ran Q, Yao RQ, et al. . Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun., 2020, 11: 1634.

[82]

Li W, Wang KL, Cheng SJ, et al. . An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater., 2019, 9: 1900993.

[83]

Tian Y, An YL, Wei CL, et al. . Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano, 2019, 13: 11676-11685.

[84]

Wang F, Borodin O, Gao T, et al. . Highly reversible zinc metal anode for aqueous batteries. Nat. Mater., 2018, 17: 543-549.

[85]

Schmid M, Willert-Porada M. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity. J. Power. Sources, 2017, 351: 115-122.

[86]

Zhao KN, Wang CX, Yu YH, et al. . Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces, 2018, 5: 1800848.

[87]

Parker JF, Nelson ES, Wattendorf MD, et al. . Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn-air cells. ACS Appl. Mater. Interfaces, 2014, 6: 19471-19476.

[88]

Sun P, Ma L, Zhou WH, et al. . Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed., 2021, 60: 18247-18255.

[89]

Yang HJ, Chang Z, Qiao Y, et al. . Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed., 2020, 59: 9377-9381.

[90]

Liu CX, Xie XS, Lu BG, et al. . Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett., 2021, 6: 1015-1033.

[91]

Wang SN, Wang ZY, Yin YB, et al. . A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy Environ. Sci., 2021, 14: 4077-4084.

[92]

Liu Z, Cui T, Pulletikurthi G, et al. . Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew. Chem. Int. Ed., 2016, 55: 2889-2893.

[93]

Trudgeon DP, Loh A, Ullah H, et al. . The influence of zinc electrode substrate, electrolyte flow rate and current density on zinc-nickel flow cell performance. Electrochim. Acta, 2021, 373137890

[94]

Chang NN, Li TY, Li R, et al. . An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci., 2020, 13: 3527-3535.

[95]

Chamoun M, Hertzberg BJ, Gupta T, et al. . Hyper-dendritic nanoporous zinc foam anodes. NPG Asia Mater., 2015, 7e178

[96]

Yu JY, Chen FY, Tang Q, et al. . Ag-modified Cu foams as three-dimensional anodes for rechargeable zinc-air batteries. ACS Appl. Nano Mater., 2019, 2: 2679-2688.

[97]

Wang TT, Li CP, Xie XS, et al. . Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano, 2020, 14: 16321-16347.

[98]

Lee SM, Kim YJ, Eom SW, et al. . Improvement in self-discharge of Zn anode by applying surface modification for Zn-air batteries with high energy density. J. Power. Sources, 2013, 227: 177-184.

[99]

Lu WJ, Xie CX, Zhang HM, et al. . Inhibition of zinc dendrite growth in zinc-based batteries. Chemsuschem, 2018, 11: 3996-4006.

[100]

Xu M, Ivey DG, Qu W, et al. . Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J. Power. Sources, 2015, 274: 1249-1253.

[101]

Cheng YH, Xi XL, Li D, et al. . Performance and potential problems of high power density zinc–nickel single flow batteries. RSC Adv., 2015, 5: 1772-1776.

[102]

Mitha A, Yazdi AZ, Ahmed M, et al. . Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. ChemElectroChem, 2018, 5: 2409-2418.

[103]

Zhao LL, Zhao S, Zhang N, et al. . Construction of stable Zn metal anode by inorganic functional protective layer toward long-life aqueous Zn-ion battery. Energy Storage Mater., 2024, 71103628

[104]

Yin JY, Feng X, Gan ZH, et al. . From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Mater., 2023, 54: 623-640.

[105]

Zheng JX, Archer LA. Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci. Adv., 2021, 7eabe0219

[106]

Otani T, Nagata M, Fukunaka Y, et al. . Morphological evolution of mossy structures during the electrodeposition of zinc from an alkaline zincate solution. Electrochim. Acta, 2016, 206: 366-373.

[107]

Glatz H, Tervoort E, Kundu DP. Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl. Mater. Interfaces, 2020, 12: 3522-3530.

[108]

Zhang Y, Yang G, Lehmann ML, et al. . Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett., 2021, 21: 10446-10452.

[109]

Khor A, Leung P, Mohamed MR, et al. . Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater. Today Energy, 2018, 8: 80-108.

[110]

Wang KL, Pei PC, Ma Z, et al. . Dendrite growth in the recharging process of zinc-air batteries. J. Mater. Chem. A, 2015, 3: 22648-22655.

[111]

Banik SJ, Akolkar R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J. Electrochem. Soc., 2013, 160: D519-D523.

[112]

Banik SJ, Akolkar R. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim. Acta, 2015, 179: 475-481.

[113]

Despic AR, Diggle J, Bockris JO. Mechanism of the formation of zinc dendrites. J. Electrochem. Soc., 1968, 115: 507.

[114]

Geng M, Northwood DO. Development of advanced rechargeable Ni/MH and Ni/Zn batteries. Int. J. Hydrog. Energy, 2003, 28: 633-636.

[115]

Zhu QC, Sun GB, Qiao SZ, et al. . Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode. Adv. Mater., 2024, 362308577

[116]

Zhang HN, Shui T, Zhang W, et al. . Parallel zinc deposition enabled by diethylene triaminepentaacetic acid induced interfacial complex for dendrite-free zinc metal anode. Energy Storage Mater., 2024, 71103595

[117]

Wang SX, Huang ZD, Zhu JX, et al. . Quantifying asymmetric zinc deposition: a guide factor for designing durable zinc anodes. Adv. Mater., 2024, 362406451

[118]

Zhao JW, Zhang J, Yang WH, et al. . “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57: 625-634.

[119]

Zhang TS, Tang Y, Guo S, et al. . Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci., 2020, 13: 4625-4665.

[120]

Chao DL, Zhou WH, Xie FX, et al. . Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv., 2020, 6eaba4098

[121]

Zhou M, Guo S, Fang GZ, et al. . Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem., 2021, 55: 549-556.

[122]

Wu MJ, Zhang GX, Yang HM, et al. . Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat, 2022, 4e12265

[123]

Wu WL, Yang XP, Wang K, et al. . Inducing the solid-liquid conversion of zinc metal anode in alkaline electrolytes by a complexing agent. Adv. Funct. Mater., 2022, 322207397

[124]

Poosapati A, Ambade RB, Madan D. Flexible and safe additives-based zinc-binder-free-hierarchical MnO2-solid alkaline polymer battery for potential wearable applications. Small, 2022, 182103495

[125]

Ma YL, Huang JJ, Gao SY, et al. . Super-concentrated alkali hydroxide electrolytes for rechargeable Zn batteries. Angew. Chem. Int. Ed., 2025, 64e202425261

[126]

Wang CC, Zhu GY, Liu P, et al. . Monolithic nanoporous Zn anode for rechargeable alkaline batteries. ACS Nano, 2020, 14: 2404-2411.

[127]

Li LY, Tsang YCA, Xiao DW, et al. . Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries. Nat. Commun., 2022, 132870

[128]

Zhang YM, Wu YT, You WQ, et al. . Deeply rechargeable and hydrogen-evolution-suppressing zinc anode in alkaline aqueous electrolyte. Nano Lett., 2020, 20: 4700-4707.

[129]

Huang JC, Yadav G, Turney DE, et al. . Ion-selective graphene oxide/polyvinyl alcohol composite membranes for rechargeable alkaline zinc manganese dioxide batteries. ACS Appl. Energy Mater., 2022, 5: 9952-9961.

[130]

Zhang Q, Luan JY, Tang YG, et al. . Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. -Int Edit., 2020, 59: 13180-13191.

[131]

Pei A, Zheng GY, Shi FF, et al. . Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett., 2017, 17: 1132-1139.

[132]

Chen X, Chen XR, Hou TZ, et al. . Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv., 2019, 5eaau7728

[133]

Yang MUniversity, N.Bi SS, et al. . Intrinsic ion concentration difference induced antipolyelectrolyte effect for promoting stability of Zn anodes. J. Am. Chem. Soc., 2025, 147: 9294-9303.

[134]

Zou PC, Sui YM, Zhan HC, et al. . Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev., 2021, 121: 5986-6056.

[135]

Zheng JX, Zhao Q, Tang T, et al. . Reversible epitaxial electrodeposition of metals in battery anodes. Science, 2019, 366: 645-648.

[136]

Foroozan T, Yurkiv V, Sharifi-Asl S, et al. . Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces, 2019, 11: 44077-44089.

[137]

Yi ZH, Liu JX, Tan SD, et al. . An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater., 2022, 342203835

[138]

Yang XZ, Li C, Sun ZT, et al. . Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater., 2021, 332105951

[139]

Zhou M, Fu CY, Qin LP, et al. . Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries. Energy Storage Mater., 2022, 52: 161-168.

[140]

Yang CP, Yin YX, Zhang SF, et al. . Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun., 2015, 68058

[141]

Tian C, Wang HF, Xie LY, et al. . Arrays of hierarchical zincophilic nanorods with trapping-and-leveling deposition for ultrastable Zn metal anodes. Adv. Energy Mater., 2024, 142400276

[142]

Xin WL, Miao LC, Zhang L, et al. . Turning the byproduct Zn4(OH)6SO4·xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode. ACS Mater. Lett., 2021, 3: 1819-1825.

[143]

Zhang L, Miao LC, Xin WL, et al. . Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Mater., 2022, 44: 408-415.

[144]

Szkopek T. Ultra-fast non-volatile memory. Nat. Nanotechnol., 2021, 16: 853-854.

[145]

Ma L, Schroeder MA, Borodin O, et al. . Realizing high zinc reversibility in rechargeable batteries. Nat. Energy, 2020, 5: 743-749.

[146]

Suo LM, Oh D, Lin YX, et al. . How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc., 2017, 139: 18670-18680.

[147]

Yang Q, Guo Y, Yan BX, et al. . Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater., 2020, 322001755

[148]

Ding JY, Liu Y, Huang SZ, et al. . In situ construction of a multifunctional quasi-gel layer for long-life aqueous zinc metal anodes. ACS Appl. Mater. Interfaces, 2021, 13: 29746-29754.

[149]

Liu MQ, Yang LY, Liu H, et al. . Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces, 2019, 11: 32046-32051.

[150]

Ni Q, Kim B, Wu C, et al. . Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater., 2022, 342108206

[151]

Li ZH, Tan J, Wang Y, et al. . Building better aqueous Zn-organic batteries. Energy Environ. Sci., 2023, 16: 2398-2431.

[152]

Zhu MS, Hu JP, Lu QQ, et al. . A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin‐mountable microbattery. Adv. Mater., 2021, 33e2007497

[153]

Wang B, Shen L, He Y, et al. . Covalent organic framework/graphene hybrids: synthesis, properties, and applications. Small, 2024, 20e2310174

[154]

Wang Z, Han JJ, Zhang N, et al. . Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. J. Solid State Electrochem., 2019, 23: 3373-3382.

[155]

Xing ZH, Huang CD, Hu ZL. Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev., 2022, 452214299

[156]

Bai SC, Huang ZD, Liang GJ, et al. . Electrolyte additives for stable Zn anodes. Adv. Sci., 2024, 112304549

[157]

Youssef KM, Koch CC, Fedkiw PS. Influence of pulse plating parameters on the synthesis and preferred orientation of nanocrystalline zinc from zinc sulfate electrolytes. Electrochim. Acta, 2008, 54: 677-683.

[158]

Li C, Sun ZT, Yang T, et al. . Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater., 2020, 322003425

[159]

Qin Y, Liu P, Zhang Q, et al. . Advanced filter membrane separator for aqueous zinc-ion batteries. Small, 2020, 162003106

[160]

Chen JZ, Fang KL, Chen QY, et al. . Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy, 2018, 53: 337-344.

[161]

Zhou T, Gao G. Pre-intercalation strategy in vanadium oxides cathodes for aqueous zinc ion batteries: review and prospects. J. Energy Storage, 2024, 84110808

[162]

Fang GZ, Zhou J, Pan AQ, et al. . Recent advances in aqueous zinc-ion batteries. ACS Energy Lett., 2018, 3: 2480-2501.

[163]

Nie CH, Wang GL, Wang DD, et al. . Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater., 2023, 132300606

[164]

Zeng YX, Zhang XY, Qin RF, et al. . Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater., 2019, 311903675

[165]

Li CP, Shi XD, Liang SQ, et al. . Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J., 2020, 379122248

[166]

Kang Z, Wu CL, Dong LB, et al. . 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain.Chem. Eng., 2019, 7: 3364-3371.

[167]

Cao QH, Gao H, Gao Y, et al. . Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater., 2021, 312103922

[168]

Liu PG, Zhang ZY, Hao R, et al. . Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J., 2021, 403126425

[169]

Zhou JH, Xie M, Wu F, et al. . Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater., 2021, 332101649

[170]

Fan CC, Meng WJ, Li DS, et al. . Stratified adsorption strategy facilitates highly stable dendrite free zinc metal anode. Energy Storage Mater., 2023, 56: 468-477.

[171]

Yin YB, Wang SN, Zhang Q, et al. . Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater., 2020, 321906803

[172]

Zhao J, Ren H, Liang QH, et al. . High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy, 2019, 62: 94-102.

[173]

Zhang Q, Luan JY, Huang XB, et al. . Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun., 2020, 113961

[174]

Liang PC, Yi J, Liu XY, et al. . Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater., 2020, 301908528

[175]

Zhao KN, Wang CX, Yu YH, et al. . Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces, 2018, 51800848

[176]

He HB, Tong H, Song XY, et al. . Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A, 2020, 8: 7836-7846.

[177]

Wang TT, Wang YA, Wang XM, et al. . Utilizing gradient oxidized alloys to establish a highly stable interfacial chemical environment for aqueous zinc-ion batteries. Adv. Funct. Mater., 2024, 342314157

[178]

Li B, Xue J, Han C, et al. . A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J. Colloid Interface Sci., 2021, 599: 467-475.

[179]

Liu HY, Wang JG, Hua W, et al. . Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv. Sci., 2021, 82102612

[180]

Guo RT, Liu X, Xia FJ, et al. . Large-scale integration of a zinc metasilicate interface layer guiding well-regulated Zn deposition. Adv. Mater., 2022, 342202188

[181]

Liu Y, Guo T, Liu Q, et al. . Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries. Mater. Today Energy, 2022, 28101056

[182]

So S, Ahn YN, Ko J, et al. . Uniform and oriented zinc deposition induced by artificial Nb2O5 layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater., 2022, 52: 40-51.

[183]

Meng YH, Wang MM, Xu JW, et al. . Balancing interfacial reactions through regulating p-band centers by an indium tin oxide protective layer for stable Zn metal anodes. Angew. Chem. -Int. Edit., 2023, 62e202308454

[184]

Xiao P, Wu Y, Liu K, et al. . An ultrathin inorganic molecular crystal interfacial layer for stable Zn anode. Angew. Chem. Int. Edit., 2023, 62e202309765

[185]

Zhang YJ, Chen PH, Li MM, et al. . Highly reversible, dendrite-free and low-polarization Zn metal anodes enabled by a thin SnO2 layer for aqueous Zn-ion batteries. J. Mater. Chem. A, 2023, 11: 14333-14344.

[186]

Tian XM, Zhao Q, Zhou MM, et al. . Synergy of dendrites-impeded atomic clusters dissociation and side reactions suppressed inert interface protection for ultrastable Zn anode. Adv. Mater., 2024, 362400237

[187]

Chen AS, Zhao CY, Gao JZ, et al. . Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci., 2023, 16: 275-284.

[188]

Ma CH, Yang KH, Zhao SB, et al. . Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett., 2023, 8: 1201-1208.

[189]

Xie XS, Liang SQ, Gao JW, et al. . Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci., 2020, 13: 503-510.

[190]

Hu XQ, Borowiec J, Zhu YJ, et al. . Dendrite-free zinc anodes enabled by exploring polar-face-rich 2D ZnO interfacial layers for rechargeable Zn-ion batteries. Small, 2024, 20e2306827

[191]

Zhao W, Perera IP, Khanna HS, et al. . Modification of zinc anodes by in situ ZnO coating for high-performance aqueous zinc-ion batteries. ACS Appl. Energy Mater., 2024, 7: 1172-1181.

[192]

Choi C, Park JB, Park JH, et al. . Simultaneous manipulation of electron/Zn2+ ion flux and desolvation effect enabled by in situ built ultra-thin oxide-based artificial interphase for controlled deposition of zinc metal anodes. Chem. Eng. J., 2023, 456141015

[193]

Yang D, Wu XY, He L, et al. . Ionic layer epitaxy growth of organic/inorganic composite protective layers for large-area Li and Zn metal anodes. Nano Lett., 2023, 23: 11152-11160.

[194]

Sun PX, Cao ZJ, Zeng YX, et al. . Formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew. Chem. Int. Ed., 2022, 61e202115649

[195]

Wu B, Liu JX, Rao SP, et al. . Transforming undesired corrosion products into a nanoflake-array functional layer: a gelatin-assistant modification strategy for high performance Zn battery anodes. Small, 2024, 20: 2400926.

[196]

Hu XQ, Borowiec J, Zhu YJ, et al. . Dendrite-free zinc anodes neabled by exploring polar-face-rich 2D ZnO interfacial layers for rechargeable Zn-ion batteries. Small, 2024, 20e2306827

[197]

Zhu CY, Li PZ, Xu GY, et al. . Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord. Chem. Rev., 2023, 485215142

[198]

Cui MW, Xiao Y, Kang LT, et al. . Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater., 2019, 2: 6490-6496.

[199]

Guo W, Zhang Y, Tong X, et al. . Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy, 2021, 20100675

[200]

Hong L, Wang LY, Wang YL, et al. . Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv. Sci., 2022, 92104866

[201]

Dai L, Wang TT, Jin BX, et al. . γ-Al2O3 coating layer confining zinc dendrite growth for high stability aqueous rechargeable zinc-ion batteries. Surf. Coat. Technol., 2021, 427127813

[202]

Song Y, Liu YD, Luo SJ, et al. . Blocking the dendrite-growth of Zn anode by constructing Ti4O7 interfacial layer in aqueous zinc-ion batteries. Adv. Funct. Mater., 2024, 342316070

[203]

Cao LS, Li D, Pollard T, et al. . Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol., 2021, 16: 902-910.

[204]

Li YT, Yang SN, Du HX, et al. . A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J. Mater. Chem. A, 2022, 10: 14399-14410.

[205]

Feng YG, Wang YD, Sun L, et al. . Fluorinated interface engineering toward controllable zinc deposition and rapid cation migration of aqueous Zn-ion batteries. Small, 2023, 192302650

[206]

Cao LS, Li D, Soto FA, et al. . Highly reversible aqueous zinc batteries enabled by zincophilic–zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. Ed., 2021, 60: 18845-18851.

[207]

Li CW, Wang LT, Zhang JC, et al. . Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Mater., 2022, 44: 104-135.

[208]

Yang D, Tan HT, Rui XH, et al. . Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem. Energy Rev., 2019, 2: 395-427.

[209]

Yao WT, Zou PC, Wang M, et al. . Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy Rev., 2021, 4: 601-631.

[210]

Zhang YJ, Wang GY, Yu FF, et al. . Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem. Eng. J., 2021, 416128062

[211]

Yang SJ, Zhao LL, Li ZX, et al. . Achieving stable Zn anode via artificial interfacial layers protection strategies toward aqueous Zn-ion batteries. Coord. Chem. Rev., 2024, 517216044

[212]

Wang ZQ, Hu JT, Han L, et al. . A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy, 2019, 56: 92-99.

[213]

Wang Z, Huang JH, Guo ZW, et al. . A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule, 2019, 3: 1289-1300.

[214]

Xin WL, Xiao J, Li JW, et al. . Metal-organic frameworks with carboxyl functionalized channels as multifunctional ion-conductive interphase for highly reversible Zn anode. Energy Storage Mater., 2023, 56: 76-86.

[215]

Wei CL, Tan LW, Zhang YC, et al. . Covalent organic frameworks and their derivatives for better metal anodes in rechargeable batteries. ACS Nano, 2021, 15: 12741-12767.

[216]

Lei LL, Dong JH, Ke SW, et al. . Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorg. Chem. Front., 2023, 10: 5555-5572.

[217]

Liu PG, Guo J, Gao SS, et al. . Interface engineering strategy construction of covalent organic framework for promoting highly reversible zinc metal. J. Colloid Interface Sci., 2023, 648: 520-526.

[218]

Liang LP, Su L, Zhang X, et al. . Synergistically regulating Zn-ion flux and accelerating ion transport kinetics via zincophilic covalent organic framework interlayer for stable Zn metal anode. Chem. Eng. J., 2024, 485149813

[219]

Park JH, Kwak MJ, Hwang C, et al. . Self-assembling films of covalent organic frameworks enable long-term, efficient cycling of zinc-ion batteries. Adv. Mater., 2021, 332101726

[220]

Wang DH, Li Q, Zhao YW, et al. . Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater., 2022, 122102707

[221]

Zhao Q, Huang WW, Luo ZQ, et al. . High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv., 2018, 4eaao1761

[222]

Li SX, Zhu H, Li LF, et al. . A nuclearity-dependent enantiodivergent epoxide opening via enthalpy-controlled mononuclear and entropy-controlled dinuclear (salen)titanium catalysis. Angew. Chem. Int. Ed., 2023, 62e202309525

[223]

Zhao J, Ying YP, Wang GL, et al. . Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater., 2022, 48: 82-89.

[224]

Mei ZW, Li HH, Wang GB, et al. . Solvent-free and in situ synthesis of three-dimensional covalent organic frameworks thin films on Zn anodes for Zn–air batteries. Appl. Surf. Sci., 2023, 615156324

[225]

Wu K, Shi XS, Yu FF, et al. . Molecularly engineered three-dimensional covalent organic framework protection films for highly stable zinc anodes in aqueous electrolyte. Energy Storage Mater., 2022, 51: 391-399.

[226]

Ni SY, Zhang MT, Li C, et al. . A 3D framework with Li3N-Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater., 2023, 352209028

[227]

Guo C, Zhou J, Chen YT, et al. . Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem. Int. Ed., 2022, 61e202210871

[228]

Guo C, Zhou J, Chen YT, et al. . Integrated micro space electrostatic field in aqueous Zn-ion battery: scalable electrospray fabrication of porous crystalline anode coating. Angew. Chem. Int. Ed., 2023, 62e202300125

[229]

Xiang Y, Zhong Y, tan PP, et al. . Thickness-controlled synthesis of compact and uniform MOF protective layer for zinc anode to achieve 85% zinc utilization. Small, 2023, 192302161

[230]

Wang Y, Liu YN, Wang HQ, et al. . MOF-based ionic sieve interphase for regulated Zn2+ flux toward dendrite-free aqueous zinc-ion batteries. J. Mater. Chem. A, 2022, 10: 4366-4375.

[231]

Cao ZW, Zhang H, Song B, et al. . Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater., 2023, 332300339

[232]

Wang FF, Lu HT, Li H, et al. . Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Storage Mater., 2022, 50: 641-647.

[233]

Lee YH, Jeoun Y, Lee SH, et al. . Byproduct reverse engineering to construct unusually enhanced protection layers for dendrite-free Zn anode. Chem. Eng. J., 2023, 464142580

[234]

Wang C, Xie QH, Guo TL, et al. . Understanding the role of titanium metal-organic framework nanosheets in modulating anode chemistry for aqueous zinc-ion batteries. Nano Lett., 2023, 23: 10930-10938.

[235]

Liu Y, Chen SL, Yuan H, et al. . Achieving highly reversible zinc metal anode via surface termination chemistry. Sci. Bull., 2023, 68: 2993-3002.

[236]

Wang YJ, Li N, Liu HY, et al. . Interface regulation using a fluorinated vinylene-linked covalent organic framework for a highly stable Zn anode. J. Mater. Chem. A, 2024, 12: 7799-7806.

[237]

Li B, Ruan PC, Xu XY, et al. . Covalent organic framework with 3D ordered channel and multi-functional groups endows Zn anode with superior stability. Nano Micro Lett., 2024, 16: 76.

[238]

Soomro RA, Zhang P, Fan BM, et al. . Progression in the oxidation stability of MXenes. Nano Micro Lett., 2023, 15: 108.

[239]

Zhao R, Liu C, Zhu YR, et al. . Pathways for MXenes in solving the issues of zinc-ion batteries: achievements and perspectives. Adv. Funct. Mater., 2024, 342316643

[240]

Wang XY, Yang QH, Meng XY, et al. . Research status and perspectives of MXene-based materials for aqueous zinc-ion batteries. Rare Met., 2024, 43: 1867-1885.

[241]

Zhang YZ, Cao ZJ, Liu SJ, et al. . Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv. Energy Mater., 2022, 122103979

[242]

Wang T, Yao K, Li K, et al. . Influence of MXene-assisted multifunctional interface on zinc deposition toward highly reversible dendrite-free zinc anodes. Energy Storage Mater., 2023, 62102921

[243]

Gao JW, Zhang XY, Wang ML, et al. . Uniform zinc deposition regulated by a nitrogen-doped MXene artificial solid electrolyte interlayer. Small, 2023, 19: 2300633.

[244]

Tian Y, An YL, Liu CK, et al. . Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater., 2021, 41: 343-353.

[245]

An YL, Tian Y, Liu CK, et al. . Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano, 2021, 15: 15259-15273.

[246]

Kim HJ, Kim S, Heo K, et al. . Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery. Adv. Energy Mater., 2023, 132203189

[247]

Cao PH, Zhou XY, Wei AR, et al. . Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater., 2021, 312100398

[248]

Li J, Zheng Z, Yu ZX, et al. . Stable Zn electrodes enabled by an ultra-thin Zn phosphate protective layer. J. Mater. Chem. A, 2023, 11: 3051-3059.

[249]

Wang T, Xi Q, Li YF, et al. . Regulating dendrite-free zinc deposition by red phosphorous-derived artificial protective layer for zinc metal batteries. Adv. Sci., 2022, 92200155

[250]

Xia S, Luo QY, Liu JN, et al. . In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes. Small, 2024, 20: 2310497.

[251]

Hu YZ, Fu CY, Chai SM, et al. . Construction of zinc metal-Tin sulfide polarized interface for stable Zn metal batteries. Adv. Powder Mater., 2023, 2100093

[252]

Zhu DL, Zheng YF, Xiong Y, et al. . In situ growth of S-doped ZnO thin film enabling dendrite-free zinc anode for high-performance aqueous zinc-ion batteries. J. Alloys Compd., 2022, 918165486

[253]

Zhao RR, Yang Y, Liu GX, et al. . Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater., 2021, 312001867

[254]

Deng CB, Xie XS, Han JW, et al. . A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode. Adv. Funct. Mater., 2020, 302000599

[255]

Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: the solid electrolyte interphase model. J. Electrochem. Soc., 1979, 126: 2047-2051.

[256]

Zeng XH, Xie KX, Liu SL, et al. . Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm–2 and 30 mA h cm–2. Energy Environ. Sci., 2021, 14: 5947-5957.

[257]

Li YT, Yu ZH, Huang JH, et al. . Constructing solid electrolyte interphase for aqueous zinc batteries. Angew. Chem. Int. Ed., 2023, 62e202309957

[258]

Zeng XH, Mao JF, Hao JN, et al. . Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater., 2021, 332007416

[259]

Li D, Cao LS, Deng T, et al. . Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed., 2021, 60: 13035-13041.

[260]

Yang Y, Liu CY, Lv ZH, et al. . Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater., 2021, 332007388

[261]

Shi JQ, Xia KX, Liu LJ, et al. . Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile. Electrochim. Acta, 2020, 358136937

[262]

Xu WN, Zhao KN, Huo WC, et al. . Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy, 2019, 62: 275-281.

[263]

Wang N, Yang Y, Qiu X, et al. . Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker. Chemsuschem, 2020, 13: 5556-5564.

[264]

Kang LZ, Zheng JL, Yue K, et al. . Amino-functionalized interfacial layer enables an ultra-uniform amorphous solid electrolyte interphase for high-performance aqueous zinc-based batteries. Small, 2023, 192304094

[265]

Zhang WY, Dong MY, Jiang KR, et al. . Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun., 2022, 135348

[266]

Hong L, Wu XM, Liu YS, et al. . Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater., 2023, 332300952

[267]

Peng HL, Wang DD, Zhang FL, et al. . Improvements and challenges of hydrogel polymer electrolytes for advanced zinc anodes in aqueous zinc-ion batteries. ACS Nano, 2024, 18: 21779-21803.

[268]

Guo ZK, Fan LS, Zhao CY, et al. . A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater., 2022, 342105133

[269]

Liu Q, Wang Y, Hong XD, et al. . Elastomer-alginate interface for high-power and high-energy Zn metal anodes. Adv. Energy Mater., 2022, 122200318

[270]

Chen LY, Xiao T, Yang JL, et al. . In situ spontaneous electropolymerization enables robust hydrogel electrolyte interfaces in aqueous batteries. Angew. Chem. Int. Ed., 2024, 63e202400230

[271]

Zhang Y, Zhang YX, Deng J, et al. . In situ electrochemically-bonded self-adapting polymeric interface for durable aqueous zinc ion batteries. Adv. Funct. Mater., 2024, 342310995

[272]

Jia RJ, Wei CL, Ma BX, et al. . Biopolymer-based gel electrolytes for advanced zinc ion batteries: progress and perspectives. Adv. Funct. Mater., 2025, 352417498

[273]

Zhao YF, Chen ZY, Gao X, et al. . In situ self-respiratory solid-to-hydrogel electrolyte interface evoked well-distributed deposition on zinc anode for highly reversible zinc-ion batteries. Angew. Chem. Int. Ed., 2025, 64e202415251

[274]

Xu XY, Li SM, An JW, et al. . A dynamically assembled bionic ion pump interface towards high-rate and stable-cycling zinc metal batteries. Energy Environ. Sci., 2025, 18: 689-701.

Funding

Anhui Educational Committee(2022AH030152)

University Synergy Innovation Program of Anhui Province(GXXT-2022-022)

Natural Science Foundation of Anhui Universities(2023AH040231)

Higher Education Quality Project of Anhui Province(2023zybj038)

RIGHTS & PERMISSIONS

The Author(s)

PDF

49

Accesses

0

Citation

Detail

Sections
Recommended

/