Nano-Engineered High-Entropy Intermetallic Compounds for Catalysis: From Designs to Catalytic Applications

Tao Chen , Yang Wang , Weifang Liu , Kaiyu Liu , Dingguo Xia

Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 30

PDF
Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) :30 DOI: 10.1007/s41918-025-00263-y
Review Article
review-article

Nano-Engineered High-Entropy Intermetallic Compounds for Catalysis: From Designs to Catalytic Applications

Author information +
History +
PDF

Abstract

The exploration of nanoscale high-entropy intermetallic compounds (HEICs) represents a transformative frontier in materials science, particularly in catalysis. The unique combination of multi-element composition, long-range atomic ordering, and nanoscale dimensions endows HEICs with superior electronic, structural, and catalytic properties that surpass those of traditional metal catalysts. However, achieving both uniform multi-element mixing and long-range ordered structures at the nanoscale is challenging. Building on this, this review highlights the key role of configurational entropy, mixing enthalpy, elemental composition, and size effects in the stable formation of nanoscale HEICs through thermodynamic and kinetic analysis. The latest advancements and existing challenges in the design, synthesis, structure, and applications of HEIC catalysts are discussed, with a focus on exploring their synthesis–structure–performance relationships from multiple perspectives. We hope that this review will offer valuable insights for further exploration and development of HEICs in catalytic applications.

Graphical Abstract

Keywords

High-entropy intermetallic compounds / Nanoscale synthesis / Thermodynamic‒kinetic control / Catalytic applications / Structure‒property relationships

Cite this article

Download citation ▾
Tao Chen, Yang Wang, Weifang Liu, Kaiyu Liu, Dingguo Xia. Nano-Engineered High-Entropy Intermetallic Compounds for Catalysis: From Designs to Catalytic Applications. Electrochemical Energy Reviews, 2025, 8(1): 30 DOI:10.1007/s41918-025-00263-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shenvi N, Roy S, Tully JC. Dynamical steering and electronic excitation in NO scattering from a gold surface. Science, 2009, 326: 829-832.

[2]

Crawford SE, Andolina CM, Smith AM, et al. . Ligand-Mediated “Turn On”, high quantum yield near-infrared emission in small gold nanoparticles. J. Am. Chem. Soc., 2015, 137: 14423-14429.

[3]

Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483: 421-427.

[4]

Dreaden EC, Alkilany AM, Huang X, et al. . The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41: 2740-2779.

[5]

Wu L, Mendoza-Garcia A, Li Q, et al. . Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev., 2016, 116: 10473-10512.

[6]

Yan Y, Du JS, Gilroy KD, et al. . Intermetallic nanocrystals: syntheses and catalytic applications. Adv. Mater., 2017, 29: 1605997-1606026.

[7]

Hunt ST, Milina M, Alba-Rubio AC, et al. . Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science, 2016, 352: 974-978.

[8]

Yang X, Yang M, Pang B, et al. . Gold nanomaterials at work in biomedicine. Chem. Rev., 2015, 115: 10410-10488.

[9]

Jones MR, Osberg KD, Macfarlane RJ, et al. . Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev., 2011, 111: 3736-3827.

[10]

Ahmadi TS, Wang ZL, Green TC, et al. . Shape-Con trolled Synthesis of Colloidal Platinum Nanoparticles. Science, 1996, 272: 1924-1926.

[11]

Tokarev A, Yatvin J, Trotsenko O, et al. . Nanostructured soft matter with magnetic nanoparticles. Adv. Funct. Mater., 2016, 26: 3761-3782.

[12]

Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. -Int. Edit., 2007, 46: 1222-1244.

[13]

Choi SI, Xie S, Shao M, et al. . Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett., 2013, 13: 3420-3425.

[14]

Bratlie KM, Lee H, Komvopoulos K, et al. . Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett., 2007, 7: 3097-3101.

[15]

Chen M, Wu B, Yang J, et al. . Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater., 2012, 24: 862-879.

[16]

You H, Yang S, Ding B, et al. . Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev., 2013, 42: 2880-2904.

[17]

Cademartiri L, Ozin GA. Ultrathin nanowires—a materials chemistry perspective. Adv. Mater., 2009, 21: 1013-1020.

[18]

van der Vliet DF, Wang C, Tripkovic D, et al. . Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat. Mater., 2012, 11: 1051-1058.

[19]

Strmcnik D, Uchimura M, Wang C, et al. . Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem., 2013, 5: 300-306.

[20]

Stamenkovic VR, Fowler B, Mun BS, et al. . Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315: 493-497.

[21]

Wang D, Li Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv. Mater., 2011, 23: 1044-1060.

[22]

Cuenya BR. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res., 2013, 46: 1682-1691.

[23]

Yang H. Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem. -Int. Edit., 2011, 50: 2674-2676.

[24]

Chen Q, Jia Y, Xie S, et al. . Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes. Chem. Soc. Rev., 2016, 45: 3207-3220.

[25]

Yao Y, Huang Z, Xie P, et al. . Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359: 1489-1494.

[26]

Luo M, Guo S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater., 2017, 2: 17059-17072.

[27]

Rost CM, Sachet E, Borman T, et al. . Entropy-stabilized oxides. Nat. Commun., 2015, 6: 8485-8493.

[28]

Yao Y, Dong Q, Brozena A, et al. . High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science, 2022, 376: 151-163.

[29]

Yeh JW. Recent progress in high-entropy alloys. Ann. Chim.-Sci. Mat., 2006, 31: 633-648.

[30]

Yeh JW. Physical metallurgy of high-entropy alloys. JOM, 2015, 67: 2254-2261.

[31]

He QF, Tang PH, Chen HA, et al. . Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys. Acta Mater., 2021, 216: 117140-117152.

[32]

Zhou N, Jiang S, Huang T, et al. . Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics. Sci. Bull., 2019, 64: 856-864.

[33]

Wang JJ, Kou ZD, Fu S, et al. . Microstructure and magnetic properties evolution of Al/CoCrFeNi nanocrystalline high-entropy alloy composite. Rare Met., 2022, 41: 2038-2046.

[34]

Yao K, Liu L, Ren J, et al. . High-entropy intermetallic compound with ultra-high strength and thermal stability. Scr. Mater., 2021, 194113674–113680

[35]

Wang H, He QF, Yang Y. High-entropy intermetallics: from alloy design to structural and functional properties. Rare Met., 2022, 41: 1989-2001.

[36]

Liu J, Lee C, Hu Y, et al. . Recent progress in intermetallic nanocrystals for electrocatalysis: from binary to ternary to high-entropy intermetallics. SmartMat, 2023, 4: 1210-1243.

[37]

Li C, Li JC, Zhao M, et al. . Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J. Alloys Compd., 2010, 504: S515-S518.

[38]

Tsai MH. Three strategies for the design of advanced high-entropy alloys. Entropy, 2016, 18: 252-266.

[39]

Fan AC, Li JH, Tsai MH. On the phase constituents of three CoCrFeNiX (X =V, Nb, Ta) high-entropy alloys after prolonged annealin. J. Alloys Compd., 2020, 823: 153524-153534.

[40]

Soto AO, Salgado AS, Niño EB. Thermodynamic analysis of high entropy alloys and their mechanical behavior in high and low-temperature conditions with a microstructural approach - a review. Intermetallics, 2020, 124: 106850-106872.

[41]

Yadav TP, Mukhopadhyay S, Mishra SS, et al. . Synthesis of a single phase of high-entropy Laves intermetallics in the Ti–Zr–V–Cr–Ni equiatomic alloy. Philos. Mag. Lett., 2018, 97: 494-503.

[42]

Yang CL, Wang LN, Yin P, et al. . Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science, 2021, 374: 459-464.

[43]

Wang D, Chen Z, Wu Y, et al. . Structurally ordered high-entropy intermetallic nanoparticles with enhanced C-C bond cleavage for ethanol oxidation. SmartMat, 2022, 4: e1117-e1127.

[44]

Zhang Q, Song M, Luo G, et al. . Recent advances of high-entropy intermetallics for electrocatalysis. Chem. Mater., 2024, 36: 10967-10985.

[45]

Chen T, Zhang X, Wang H, et al. . Antisite defect unleashes catalytic potential in high-entropy intermetallics for oxygen reduction reaction. Nat. Commun., 2025, 16: 3308-3319.

[46]

Rößner L, Armbrüster M. Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal., 2019, 9: 2018-2062.

[47]

Yang Y, Wei M. Intermetallic compound catalysts: synthetic scheme, structure characterization and catalytic application. J. Mater. Chem. A, 2020, 8: 2207-2221.

[48]

Song TW, Xu C, Sheng ZT, et al. . Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat. Comm., 2022, 13: 6521-6531.

[49]

Chen T, Ning F, Qi J, et al. . PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction. iScience, 2023, 26: 105890-105903.

[50]

Chen T, Ouyang B, Fan X, et al. . Oxide cathodes for sodium-ion batteries: designs, challenges, and perspectives. Carbon Energy, 2022, 4: 170-199.

[51]

Chen T, Cai J, Wang H, et al. . Symbiotic reactions over a high-entropy alloy catalyst enable ultrahigh-voltage Li–CO2 batteries. Energy Environ. Sci., 2025, 18: 853-861.

[52]

Tripathy B, Ojha PK, Bhattacharjee PP. Effect of warm-rolling on microstructure and superior mechanical properties of a cost-effective AlCrFe2Ni2 high entropy alloy. J. Alloys Compd., 2023, 948: 169783-169794.

[53]

Ji X, Lee KT, Holden R, et al. . Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem., 2010, 2: 286-293.

[54]

Zhang J, Zhang L, Cui Z. Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Chem. Commun., 2021, 57: 11-26.

[55]

Avrami M. Kinetics of phase change. I general theory. J. Chem. Phys., 1939, 7: 1103-1112.

[56]

Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys., 1940, 8: 212-224.

[57]

Avrami M. Granulation, phase change, and microstructure kinetics of phase change. Part III. J. Chem. Phys., 1941, 9: 177-184.

[58]

Ngai KL, Magill JH, Plazek DJ. Flow, diffusion and crystallization of supercooled liquids: revisited. J. Chem. Phys., 2000, 112: 1887-1892.

[59]

Laves F. Crystal structure and atomic size. Theory of Alloy Phases, 1956American Society for Metals

[60]

Qi W, Li Y, Xiong S, et al. . Modeling size and shape effects on the order-disorder phase-transition temperature of CoPt nanoparticles. Small, 2010, 6: 1996-1999.

[61]

Jacobs K, Zaziski D, Scher EC, et al. . Activation volumes for solid-solid transformations in nanocrystals. Science, 2001, 293: 1803-1806.

[62]

Qi W. Nanoscopic thermodynamics. Acc. Chem. Res., 2016, 49: 1587-1595.

[63]

Zhang Y, Wang Y, Xi L, et al. . Electronic structure of antifluorite Cu2X (X = S, Se, Te) within the modified Becke-Johnson potential plus an on-site Coulomb U. J. Chem. Phys., 2014, 140: 074702-074711.

[64]

Yang B, Asta M, Mryasov ON, et al. . The nature of A1–L10 ordering transitions in alloy nanoparticles: a Monte Carlo study. Acta Mater., 2006, 54: 4201-4211.

[65]

Li X, Zhao J, Su D. Structural changes of intermetallic catalysts under reaction conditions. Small Struct., 2021, 2: 2100011.

[66]

Zhao X, Cheng H, Chen X, et al. . Multiple metal-nitrogen bonds synergistically boosting the activity and durability of high-entropy alloy electrocatalysts. J. Am. Chem. Soc., 2024, 146: 3010-3022.

[67]

Zhao Z, Liu Z, Zhang A, et al. . Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol., 2022, 17: 968-975.

[68]

Feng Q, Wang X, Klingenhof M, et al. . Low-Pt NiNC-supported PtNi nanoalloy oxygen reduction reaction electrocatalysts—in situ tracking of the atomic alloying process. Angew. Chem. -Int. Edit., 2022, 61e202203728–e202203738

[69]

Xiao F, Wang Q, Xu GL, et al. . Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal., 2022, 5: 503-512.

[70]

Gao R, Wang J, Huang ZF, et al. . Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy, 2021, 6: 614-623.

[71]

Arif ZU, Khalid MY, ur Rehman E, et al. . A review on laser cladding of high-entropy alloys, their recent trends and potential applications. J. Manuf. Process., 2021, 68: 225-273.

[72]

Guan J, Yang S, Liu T, et al. . Intermetallic FePt@PtBi core-shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem. -Int. Edit., 2021, 60: 21899-21904.

[73]

Zeng Q, Liu D, Liu H, et al. . Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. iScience, 2021, 24: 103332-103348.

[74]

Shen T, Xiao D, Deng Z, et al. . Stabilizing diluted active sites of ultrasmall high-entropy intermetallics for efficient formic acid electrooxidation. Angew. Chem. -Int. Edit., 2024, 63e202403260

[75]

Wang Y, Gong N, Liu H, et al. . Ordering-dependent hydrogen evolution and oxygen reduction electrocatalysis of high-entropy intermetallic Pt4FeCoCuNi. Adv. Mater., 2023, 35: 2302067-2302083.

[76]

Cui M, Yang C, Hwang S, et al. . Multi-principal elemental intermetallic nanoparticlessynthesized via a disorder-to-order transition. Sic. Adv., 2022, 8: eabm4322.

[77]

Mingjin C, Yang YC, Hwang HS, et al. . Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci. Adv., 2022, 8: eabm4322.

[78]

Feng G, Ning F, Pan Y, et al. . Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity facets for oxygen reduction in practical fuel cells. J. Am. Chem. Soc., 2023, 145: 11140-11150.

[79]

Chen T, Qiu C, Zhang X, et al. . An ultrasmall ordered high-entropy intermetallic with multiple active sites for the oxygen reduction reaction. J. Am. Chem. Soc., 2023, 146: 1174-1184.

[80]

Zhu G, Bao W, Xie M, et al. . Accelerating tandem electroreduction of nitrate to ammonia via multi-site synergy in mesoporous carbon-supported high-entropy intermetallics. Adv. Mater., 2024, 37: 2413560-2413572.

[81]

Chen T, Qiu C, Zhang X, et al. . An ultrasmall ordered high-entropy intermetallic with multiple active sites for the oxygen reduction reaction. J. Am. Chem. Soc., 2024, 146: 1174-1184.

[82]

Zhu G, Bao W, Xie M, et al. . Accelerating tandem electroreduction of nitrate to ammonia via multi-site synergy in mesoporous carbon-supported high-entropy intermetallics. Adv. Mater., 2024

[83]

Zhang L, Zhang X, Chen C, et al. . Machine learning-aided discovery of low-Pt high entropy intermetallic compounds for electrochemical oxygen reduction reaction. Angew. Chem. -Int. Ed., 2024, 63e202411123

[84]

Wang Y, Zhang XY, He H, et al. . Ordered mesoporous high-entropy intermetallics for efficient oxygen reduction electrocatalysis. Adv. Energy Mater., 2023, 14: 2303923-2303933.

[85]

Zhang Q, Shen T, Song M, et al. . High-entropy L12-Pt(FeCoNiCuZn)3 intermetallics for ultrastable oxygen reduction reaction. J. Energy Chem., 2023, 86: 158-166.

[86]

Hu Y, Xu Z, Guo X, et al. . Hollow-carbon confinement annealing: a new synthetic approach to make high-entropy solid-solution and intermetallic nanoparticles. Nano Lett., 2023, 23: 10765-10771.

[87]

Jia Z, Yang T, Sun L, et al. . A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater., 2020, 32: 2000385-2000394.

[88]

Hao J, Wang T, Cai J, et al. . Suppression of structural heterogeneity in high-entropy intermetallics for electrocatalytic upgrading of waste plastics. Angew. Chem. -Int. Edit., 2024, 64: e202419369-e202419381.

[89]

Chen W, Luo S, Sun M, et al. . High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater., 2022, 34: 2206276-2206285.

[90]

Xing F, Ma J, Shimizu KI, et al. . High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Comm., 2022, 13: 5065-5075.

[91]

Nakaya Y, Hayashida E, Asakura H, et al. . High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc., 2022, 144: 15944-15953.

[92]

Ma J, Xing F, Nakaya Y, et al. . Nickel-based high-entropy intermetallic as a highly active and selective catalyst for acetylene semihydrogenation. Angew. Chem. -Int. Edit., 2022, 61e202200889

[93]

Xing F, Ma J, Shimizu Ki, et al. . High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun., 2022, 135065

Funding

National Natural Science Foundation of China(22272204)

Natural Science Foundation of Hunan Province(2025JJ60355)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

/