A Review of Diagnostic Tools for Evaluating Porous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolysis

Aroune Ghadbane , Xiao-Zi Yuan , Alison Platt , Ali Malek , Nima Shaigan , Marius Dinu , Samaneh Shahgaldi , Khalid Fatih

Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 23

PDF
Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) :23 DOI: 10.1007/s41918-025-00256-x
Review Article
review-article

A Review of Diagnostic Tools for Evaluating Porous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolysis

Author information +
History +
PDF

Abstract

As a key component of the proton exchange membrane water electrolyzer (PEMWE), the porous transport layer (PTL) not only provides mechanical support but also facilitates the supply of reactants to the electrode and the removal of produced gases and ensures efficient electrical and thermal management. Commercially available PTLs are often repurposed for other applications, such as filtration, and are not specifically tailored for PEMWE applications. Given this context, research output on PTL development has increased notably in recent years. Optimized, structured PTLs with preferred properties require applicable, relevant, and convenient diagnostic tools for PTL material development. As such, this work aims to identify and review a wide range of techniques for evaluating developed PTLs, including electrochemical techniques, custom-engineered cells, operando diagnosis, ex situ characterization, and postmortem analysis. By providing detailed information on these characterization techniques, this review aims to catalyze further research and development in the academic and industrial sectors, enhancing the understanding, development, and quality control of PTL components.

Graphical Abstract

Keywords

Porous transport layer / Diagnosis / Diagnostic tool / PEM water electrolysis / Electrolyzer / Evaluation

Cite this article

Download citation ▾
Aroune Ghadbane, Xiao-Zi Yuan, Alison Platt, Ali Malek, Nima Shaigan, Marius Dinu, Samaneh Shahgaldi, Khalid Fatih. A Review of Diagnostic Tools for Evaluating Porous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolysis. Electrochemical Energy Reviews, 2025, 8(1): 23 DOI:10.1007/s41918-025-00256-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Flexibility Resources Task Force: Increasing Electric Power System Flexibility: the Role of Industrial Electrification and Green Hydrogen Production, Energy Systems Integration Group, Reston, VA. https://www.esig.energy/reports-briefs (2022). Accessed 1 Sep 2025, Accessed 10 Jan 2024

[2]

Gulli, C., Heid, B., Noffsinger, J., et al.: Global Energy Perspective 2023: Hydrogen Outlook. McKinsey & Company. https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogen-outlook (2024). Accessed 10 Jan 2024

[3]

Carmo M, Fritz DL, Mergel J, et al.. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy, 2013, 38: 4901-4934

[4]

Shirvanian P, van Berkel F. Novel components in proton exchange membrane (PEM) water electrolyzers (PEMWE): status, challenges and future needs. A mini review. Electrochem. Commun., 2020, 114 106704

[5]

Maier M, Smith K, Dodwell J, et al.. Mass transport in PEM water electrolysers: a review. Int. J. Hydrog. Energy, 2022, 47: 30-56

[6]

Bernt M, Hartig-Weiß A, Tovini M, et al.. Current challenges in catalyst development for PEM water electrolyzers. Chem. Ing. Tech., 2020, 92: 31-39

[7]

Tomić AZ, Pivac I, Barbir F. A review of testing procedures for proton exchange membrane electrolyzer degradation. J. Power. Sources, 2023, 557 232569

[8]

Feng Q, Yuan XZ, Liu GY, et al.. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power. Sources, 2017, 366: 33-55

[9]

Prestat M. Corrosion of structural components of proton exchange membrane water electrolyzer anodes: a review. J. Power. Sources, 2023, 556 232469

[10]

Yuan XZ, Shaigan NM, Song CJ, et al.. The porous transport layer in proton exchange membrane water electrolysis: perspectives on a complex component. Sustain. Energy Fuels, 2022, 6: 1824-1853

[11]

Ouimet RJ, Young JL, Schuler T, et al.. Measurement of resistance, porosity, and water contact angle of porous transport layers for low-temperature electrolysis technologies. Front. Energy Res., 2022, 10 911077

[12]

Borgardt E, Panchenko O, Hackemüller FJ, et al.. Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis. J. Power. Sources, 2018, 374: 84-91

[13]

Bock R, Karoliussen H, Seland F, et al.. Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling. Int. J. Hydrog. Energy, 2020, 45: 1236-1254

[14]

Kang ZY, Alia SM, Young JL, et al.. Effects of various parameters of different porous transport layers in proton exchange membrane water electrolysis. Electrochim. Acta, 2020, 354 136641

[15]

Pushkarev AS, Pushkareva IV, Solovyev MA, et al.. On the influence of porous transport layers parameters on the performances of polymer electrolyte membrane water electrolysis cells. Electrochim. Acta, 2021, 399 139436

[16]

Hoseini Larimi SZ, Ramiar A, Shafaghat R, et al.. The effect of geometric parameters of PTL on oxygen transport in PEM electrolysis cell. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2021, 235: 7484-7495

[17]

Cruz JC, Barbosa R, Escobar B, et al.. Electrochemical and microstructural analysis of a modified gas diffusion layer for a PEM water electrolyzer. Int. J. Electrochem. Sci., 2020, 15: 5571-5584

[18]

Kulkarni D, Huynh A, Satjaritanun P, et al.. Elucidating effects of catalyst loadings and porous transport layer morphologies on operation of proton exchange membrane water electrolyzers. Appl. Catal. B Environ., 2022, 308 121213

[19]

Weber CC, Wrubel JA, Gubler L, et al.. How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Appl. Mater. Interfaces, 2023, 15: 34750-34763

[20]

Peng X, Satjaritanun P, Taie Z, et al.. Insights into interfacial and bulk transport phenomena affecting proton exchange membrane water electrolyzer performance at ultra-low iridium loadings. Adv. Sci., 2021, 8 2102950

[21]

Liu C, Shviro M, S. Gago A, et al.. Exploring the interface of skin-layered titanium fibers for electrochemical water splitting. Adv. Energy Mater., 2021, 11 2002926

[22]

Jia ZJ, Ning ZF, Yang GH, et al.. Experimental investigation on the effect of solid-liquid interface charge transport on natural porous media flow. Transp. Porous Media, 2022, 143: 579-598

[23]

Kim PJ, Lee JK, Lee C, et al.. Tailoring catalyst layer interface with titanium mesh porous transport layers. Electrochim. Acta, 2021, 373 137879

[24]

Lee JK, Lau GY, Sabharwal M, et al.. Titanium porous-transport layers for PEM water electrolysis prepared by tape casting. J. Power. Sources, 2023, 559 232606

[25]

Daudt NF, Schneider AD, Arnemann ER, et al.. Fabrication of NbN-coated porous titanium sheets for PEM electrolyzers. J. Mater. Eng. Perform., 2020, 29: 5174-5183

[26]

Schröder J, Mints VA, Bornet A, et al.. The gas diffusion electrode setup as straightforward testing device for proton exchange membrane water electrolyzer catalysts. JACS Au, 2021, 1: 247-251

[27]

Bystron T, Vesely M, Paidar M, et al.. Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation. J. Appl. Electrochem., 2018, 48: 713-723

[28]

Jung GB, Yu JW, Dlamini MM, et al.. Proton exchange membrane water electrolysis-effect of pretreatment before electrocoating Ti anode support. Int. J. Hydrogen Energy, 2024, 52: 22-31

[29]

Moradizadeh L, Madhavan PV, Ozden A, et al.. Advances in protective coatings for porous transport layers in proton exchange membrane water electrolyzers: performance and durability insights. Energy Convers. Manag., 2025, 332 119713

[30]

Moradizadeh L, Madhavan PV, Chellehbari YM, et al.. Porous transport layers with low Pt loading having Nb-Ta alloy as interlayer for proton exchange membrane water electrolyzers. Int. J. Hydrogen Energy, 2024, 94: 1114-1129

[31]

Singh A, De BS, Singh S, et al.. Exploring the engineered electroplating process for coating of gold on the inner structure of porous transport layer (PTL): performance evaluation of coating in simulated PEM electrolyzer. Int. J. Hydrog. Energy, 2025, 106: 1029-1040

[32]

Moradizadeh L, Johar M, Mehdizadeh Chellehbari Y, et al.. Optimized tantalum interlayer thickness for PTLs: enhancing PEMWE performance, stability, and reducing precious metal loading. J. Power. Sources, 2025, 647 237360

[33]

Zhao BZ, Lee C, Lee JK, et al.. Superhydrophilic porous transport layer enhances efficiency of polymer electrolyte membrane electrolyzers. Cell Rep. Phys. Sci., 2021, 2 100580

[34]

Kang ZY, Yu SL, Yang GQ, et al.. Performance improvement of proton exchange membrane electrolyzer cells by introducing in-plane transport enhancement layers. Electrochim. Acta, 2019, 316: 43-51

[35]

Altaf H, Vorhauer N, Tsotsas E, et al.. Steady-state water drainage by oxygen in anodic porous transport layer of electrolyzers: a 2D pore network study. Processes, 2020, 8 362

[36]

Lee JK, Bazylak A. Optimizing porous transport layer design parameters via stochastic pore network modelling: reactant transport and interfacial contact considerations. J. Electrochem. Soc., 2020, 167 013541

[37]

Bhaskaran S, Pandey D, Surasani VK, et al.. LBM studies at pore scale for graded anodic porous transport layer (PTL) of PEM water electrolyzer. Int. J. Hydrog. Energy, 2022, 47: 31551-31565

[38]

Salihi H, Ju H. Two-phase modeling and simulations of a polymer electrolyte membrane water electrolyzer considering key morphological and geometrical features in porous transport layers. Energies, 2023, 16: 766

[39]

Miličić T, Altaf H, Vorhauer-Huget N, et al.. Modeling and analysis of mass transport losses of proton exchange membrane water electrolyzer. Processes, 2022, 10: 2417

[40]

Zlobinski M, Schuler T, Büchi FN, et al.. Transient and steady state two-phase flow in anodic porous transport layer of proton exchange membrane water electrolyzer. J. Electrochem. Soc., 2020, 167 084509

[41]

Park S, Lee W, Na Y. Performance comparison of proton exchange membrane water electrolysis cell using channel and PTL flow fields through three-dimensional two-phase flow simulation. Membranes, 2022, 12 1260(2022)

[42]

Schmidt G, Suermann M, Bensmann B, et al.. Modeling overpotentials related to mass transport through porous transport layers of PEM water electrolysis cells. J. Electrochem. Soc., 2020, 167 114511

[43]

García-Salaberri PA. 1D two-phase, non-isothermal modeling of a proton exchange membrane water electrolyzer: an optimization perspective. J. Power. Sources, 2022, 521 230915

[44]

Lopata JS, Weidner JW, Cho HS, et al.. Adjusting porous media properties to enhance the gas-phase OER for PEM water electrolysis in 3D simulations. Electrochim. Acta, 2022, 424 140625

[45]

Doan TL, Lee HE, Shah SSH, et al.. A review of the porous transport layer in polymer electrolyte membrane water electrolysis. Int. J. Energy Res., 2021, 45: 14207-14220

[46]

Yasin MC, Johar M, Gupta A, et al.. A comprehensive review of the material innovations and corrosion mitigation strategies for PEMWE bipolar plates. Int. J. Hydrogen Energy, 2024, 88: 726-747

[47]

Bessarabov, D., G. Pollet, B., Millet, P.: 2.6 PEM water electrolysis: review of current trends. In: PEM Water Electrolysis, Hydrogen and Fuel Cells Primer Series, vol. 1, pp. 30–35. Essay, Elsevier (2018)

[48]

Lettenmeier P, Kolb S, Burggraf F, et al.. Towards developing a backing layer for proton exchange membrane electrolyzers. J. Power. Sources, 2016, 311: 153-158

[49]

Chen Q, Wang Y, Yang F, et al.. Two-dimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting. Int. J. Hydrog. Energy, 2020, 45: 32984-32994

[50]

Ivasishin, O., Moxson, V.: Low-cost titanium hydride powder metallurgy. In: Titanium Powder Metallurgy: Science, Technology and Applications, pp.117–148. Essay, Elsevier (2015)

[51]

Bessarabov, D., Wang, H., Li, H., et al.: Current collectors (GDLs) and materials. In: Bessarabov, D., Wang, H., Li, H., Zhao, N. (eds.) PEM Electrolysis for Hydrogen Production: Principles and Applications, 1st edn. Essay (2015). ISBN 9781138775497

[52]

Hackemüller FJ, Borgardt E, Panchenko O, et al.. Manufacturing of large-scale titanium-based porous transport layers for polymer electrolyte membrane electrolysis by tape casting. Adv. Eng. Mater., 2019, 21: 1801201

[53]

Arbabi F, Kalantarian A, Abouatallah R, et al.. Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers. J. Power. Sources, 2014, 258: 142-149

[54]

Liu C, Carmo M, Bender G, et al.. Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers. Electrochem. Commun., 2018, 97: 96-99

[55]

Liu C, Wrubel JA, Padgett E, et al.. Impacts of PTL coating gaps on cell performance for PEM water electrolyzer. Appl. Energy, 2024, 356 122274

[56]

Vincent I, Kruger A, Bessarabov D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy, 2017, 42: 10752-10761

[57]

Pushkareva I, Pushkarev A, Solovyev M, et al.. (2020) Application of nickel foam as a porous transport layer in a anion exchange membrane water electrolyzer. Nanotechnol. Russia, 2023, 18(Suppl 2): S389-S397

[58]

Park JE, Choi HJ, Kang SY, et al.. Effect of pore structures in nickel-based porous transport layers for high-performance and durable anion-exchange membrane water electrolysis. Int. J. Energy Res., 2022, 46: 16670-16678

[59]

Baumann N, Cremers C, Pinkwart K, et al.. Membrane electrode assemblies for water electrolysis using WO3-supported IrxRu1-xO2 catalysts. Energy Technol., 2016, 4: 212-220

[60]

Ozden A, Shahgaldi S, Li XG, et al.. A review of gas diffusion layers for proton exchange membrane fuel cells: with a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci., 2019, 74: 50-102

[61]

Ozden A, Shahgaldi S, Zhao J, et al.. Degradations in porous components of a proton exchange membrane fuel cell under freeze-thaw cycles: morphology and microstructure effects. Int. J. Hydrog. Energy, 2020, 45: 3618-3631

[62]

Kuhnert E, Hacker V, Bodner M. A review of accelerated stress tests for enhancing MEA durability in PEM water electrolysis cells. Int. J. Energy Res., 2023, 2023 3183108

[63]

Young JL, Kang ZY, Ganci F, et al.. PEM electrolyzer characterization with carbon-based hardware and material sets. Electrochem. Commun., 2021, 124 106941

[64]

Becker H, Dickinson EJF, Lu XK, et al.. Assessing potential profiles in water electrolysers to minimise titanium use. Energy Environ. Sci., 2022, 15: 2508-2518

[65]

Wang Q, Zhou Z, Ye KQ, et al.. The effect of pretreatment and surface modification of porous transport layer (PTL) on the performance of proton exchange membrane water electrolyzer. Int. J. Hydrog. Energy, 2024, 53: 163-172

[66]

Yuan S, Zhao CF, Li HY, et al.. Rational electrode design for low-cost proton exchange membrane water electrolyzers. Cell Rep. Phys. Sci., 2024, 5 101880

[67]

Mo JK, Steen S, Kang ZY, et al.. Study on corrosion migrations within catalyst-coated membranes of proton exchange membrane electrolyzer cells. Int. J. Hydrogen Energy, 2017, 42: 27343-27349

[68]

Stiber S, Sata N, Morawietz T, et al.. A high-performance, durable and low-cost proton exchange membrane electrolyser with stainless steel components. Energy Environ. Sci., 2022, 15: 109-122

[69]

Lee JK. Designing microporous layers for electrolyzers using stochastic approach. JACS Au, 2024, 4: 2252-2261

[70]

Tsotridis, G., Pilenga, A.: EU harmonised protocols for testing of low temperature water electrolysers. EUR 30752 EN, Publications Office of the European Union, Luxembourg (2021). ISBN 978-92-76-39266-8. https://doi.org/10.2760/58880, JRC122565

[71]

Schuler T, Ciccone JM, Krentscher B, et al.. Water electrolysis: Hierarchically structured porous transport layers for polymer electrolyte water electrolysis. Adv. Energy Mater., 2020, 10: 2070009

[72]

Rakousky C, Reimer U, Wippermann K, et al.. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. J. Power. Sources, 2016, 326: 120-128

[73]

Zhang, D., Yuan, X., Ma, Z.F.: Chatper 2 Polarization curve. In: Wang, H., Yuan, X.Z. Li, H. (eds.) PEM Fuel Cell Diagnostic Tools, pp.15–35. CRC Press (2010) ISBN: 9780429106255

[74]

Lickert T, Fischer S, Young JL, et al.. Advances in benchmarking and round robin testing for PEM water electrolysis: reference protocol and hardware. Appl. Energy, 2023, 352 121898

[75]

Moreno Soriano R, Rojas N, Nieto E, et al.. Influence of the gasket materials on the clamping pressure distribution in a PEM water electrolyzer: bolt torques and operation mode in pre-conditioning. Int. J. Hydrog. Energy, 2021, 46: 25944-25953

[76]

Lickert T, Kiermaier ML, Bromberger K, et al.. On the influence of the anodic porous transport layer on PEM electrolysis performance at high current densities. Int. J. Hydrog. Energy, 2020, 45: 6047-6058

[77]

Pham CV, Escalera-López D, Mayrhofer K, et al.. Essentials of high performance water electrolyzers: from catalyst layer materials to electrode engineering. Adv. Energy Mater., 2021, 11 2101998

[78]

Choi Y, Platzek P, Coole J, et al.. The influence of membrane thickness and catalyst loading on performance of proton exchange membrane fuel cells. J. Electrochem. Soc., 2024, 171 104507

[79]

Giesbrecht PK, Freund MS. Investigation of water oxidation at IrO2 electrodes in Nafion-based membrane electrode assemblies using impedance spectroscopy and distribution of relaxation times analysis. J. Phys. Chem. C, 2022, 126: 17844-17861

[80]

Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep., 2015, 5: 13801

[81]

MACIAS SENSORS: The Tafel Equation: a guide to electrochemical kinetics, https://maciassensors.com/the-tafel-equation/ (2023).Accessed 17 Feb 2023

[82]

Doan TL, Lee HE, Kim M, et al.. Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis. J. Power. Sources, 2022, 533 231370

[83]

Yuan, X.Z., Song, C., Wang, H., et al.: Electrochemical Impedance Spectroscopy. In: PEM Fuel Cells Fundamentals and Applications. Springer, London (2009). ISBN 978-1-84882-845-2. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=570350

[84]

Millet, P.: PEM water electrolysis. In: Jopek, A. G. (ed.) Hydrogen Production by Electrolysis. Essay, Wiley-VCH (2015)

[85]

Lazanas AC, Prodromidis MI. Electrochemical impedance spectroscopy-a tutorial. ACS Meas. Sci. Au, 2023, 3: 162-193

[86]

Weber CC, Schuler T, De Bruycker R, et al.. On the role of porous transport layer thickness in polymer electrolyte water electrolysis. J. Power Sources Adv., 2022, 15 100095

[87]

Wu, J., Yuan, X. Z., Wang, H.: Chapter 4 Cyclic voltammetry. In: Wang, H., Yuan, X. Z., Li, H. (eds.) PEM Fuel Cell Diagnostic Tools, pp. 71–86. CRC Press (2010). ISBN:978-1-4398-5

[88]

Tan AD, Zhang YP, Shi XY, et al.. The poisoning effects of Ti-ion from porous transport layers on the membrane electrode assembly of proton exchange membrane water electrolyzers. Chem. Eng. J., 2023, 471 144624

[89]

Bernt M, Schramm C, Schröter J, et al.. Effect of the IrOx conductivity on the anode electrode/porous transport layer interfacial resistance in PEM water electrolyzers. J. Electrochem. Soc., 2021, 168 084513

[90]

Jiang G, Yu HM, Li YH, et al.. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis. ACS Appl. Mater. Interfaces, 2021, 13: 15073-15082

[91]

Babic U, Tarik M, Schmidt TJ, et al.. Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers. J. Power. Sources, 2020, 451 227778

[92]

Wagner, N.: Chapter 3 Electrochemical impedance spectroscopy. In: Wang, H., Yuan X.Z., Li, H. (eds.) PEM Fuel Cell Diagnostic Tools, pp. 37–85. CRC Press (2010). ISBN:978-1-4398-5

[93]

Rozain C, Millet P. Electrochemical characterization of polymer electrolyte membrane water electrolysis cells. Electrochim. Acta, 2014, 131: 160-167

[94]

Bautkinova T, Utsch N, Bystron T, et al.. Introducing titanium hydride on porous transport layer for more energy efficient water electrolysis with proton exchange membrane. J. Power. Sources, 2023, 565 232913

[95]

Brunetto C, Moschetto A, Tina G. PEM fuel cell testing by electrochemical impedance spectroscopy. Electr. Power Syst. Res., 2009, 79: 17-26

[96]

Fortin P, Gerhardt MR, Ulleberg Ø, et al.. Multi-sine EIS for early detection of PEMFC failure modes. Front. Energy Res., 2022, 10 855985

[97]

Warkentin H, O’Brien CP, Holowka S, et al.. Early warning for the electrolyzer: Monitoring CO₂ reduction via in-line electrochemical impedance spectroscopy. Chemsuschem, 2023, 16 e202300657

[98]

Fan ZX, Yu HM, Jiang G, et al.. Low precious metal loading porous transport layer coating and anode catalyst layer for proton exchange membrane water electrolysis. Int. J. Hydrogen Energy, 2022, 47: 18963-18971

[99]

Padgett E, Bender G, Haug A, et al.. Catalyst layer resistance and utilization in PEM electrolysis. J. Electrochem. Soc., 2023, 170 084512

[100]

Malevich D, Jayasankar BR, Halliop E, et al.. On the determination of PEM fuel cell catalyst layer resistance from impedance measurement in H2/N2 cells. J. Electrochem. Soc., 2012, 159: F888-F895

[101]

Malkow, T., Pilenga, A., Tsotridis, G.: EU harmonised test procedure: electrochemical impedance spectroscopy for water electrolysis cells. EUR 29267 EN, Publications Office of the European Union, Luxembourg (2018). ISBN 978-92-79-88739-0. https://doi.org/10.2760/8984 , JRC107053

[102]

Garcia-Navarro JC, Schulze M, Friedrich KA. Measuring and modeling mass transport losses in proton exchange membrane water electrolyzers using electrochemical impedance spectroscopy. J. Power. Sources, 2019, 431: 189-204

[103]

Kerner Z, Pajkossy T. On the origin of capacitance dispersion of rough electrodes. Electrochim. Acta, 2000, 46: 207-211

[104]

Kerner Z, Pajkossy T. Impedance of rough capacitive electrodes: the role of surface disorder. J. Electroanal. Chem., 1998, 448: 139-142

[105]

Siracusano S, Trocino S, Briguglio N, et al.. Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis. Materials, 2018, 11: 1368

[106]

Polonský J, Mazúr P, Paidar M, et al.. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst. Int. J. Hydrogen Energy, 2014, 39: 3072-3078

[107]

Millet P, Mbemba N, Grigoriev SA, et al.. Electrochemical performances of PEM water electrolysis cells and perspectives. Int. J. Hydrogen Energy, 2011, 36: 4134-4142

[108]

EC-Lab: Application note #60: distribution of relaxation times (DRT): an introduction. Accessed Jan 2017

[109]

Boulevard S, Kadjo JJA, Thomas A, et al.. Characterization of aging effects during PEM electrolyzer operation using voltage instabilities evolution. Russ. J. Electrochem., 2022, 58: 258-270

[110]

Zeng Z, Ouimet R, Bonville L, et al.. Degradation mechanisms in advanced meas for pem water electrolyzers fabricated by reactive spray deposition technology. J. Electrochem. Soc., 2022, 169: 054536

[111]

Lee JK, Lee CH, Fahy KF, et al.. Accelerating bubble detachment patterned through-pores. ACS Appl. Energy Mater., 2020, 3: 9676-9684

[112]

Wang WT, Yu SL, Li K, et al.. Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power. Sources, 2021, 516 230641

[113]

Hartig-Weiß A, Bernt M, Siebel A, et al.. A platinum micro-reference electrode for impedance measurements in a PEM water electrolysis cell. J. Electrochem. Soc., 2021, 168 114511

[114]

Kang ZY, Alia SM, Carmo M, et al.. In-situ and in-operando analysis of voltage losses using sense wires for proton exchange membrane water electrolyzers. J. Power. Sources, 2021, 481 229012

[115]

Tricker AW, Lee JK, Shin JR, et al.. Design and operating principles for high-performing anion exchange membrane water electrolyzers. J. Power. Sources, 2023, 567 232967

[116]

Nagasawa K, Ishida T, Kashiwagi H, et al.. Design and characterization of compact proton exchange membrane water electrolyzer for component evaluation test. Int. J. Hydrog. Energy, 2021, 46: 36619-36628

[117]

Brightman E, Dodwell J, van Dijk N, et al.. In situ characterisation of PEM water electrolysers using a novel reference electrode. Electrochem. Commun., 2015, 52: 1-4

[118]

Becker H, Castanheira L, Hinds G. Local measurement of current collector potential in a polymer electrolyte membrane water electrolyser. J. Power. Sources, 2020, 448 227563

[119]

Verdin B, Fouda-Onana F, Germe S, et al.. Operando current mapping on PEM water electrolysis cells. Influence of mechanical stress. Int. J. Hydrog. Energy, 2017, 42: 25848-25859

[120]

Parra-Restrepo J, Bligny R, Dillet J, et al.. Influence of the porous transport layer properties on the mass and charge transfer in a segmented PEM electrolyzer. Int. J. Hydrog. Energy, 2020, 45: 8094-8106

[121]

Sun SC, Xiao Y, Liang D, et al.. Behaviors of a proton exchange membrane electrolyzer under water starvation. RSC Adv., 2015, 5: 14506-14513

[122]

Majasan JO, Cho JIS, Dedigama I, et al.. Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: electrochemical and optical characterization. Int. J. Hydrogen Energy, 2018, 43: 15659-15672

[123]

Mo JK, Kang ZY, Yang GQ, et al.. Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Appl. Energy, 2016, 177: 817-822

[124]

Mo JK, Kang ZY, Yang GQ, et al.. In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells. J. Mater. Chem. A, 2017, 5: 18469-18475

[125]

Kang ZY, Yang GQ, Mo JK, et al.. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy, 2018, 47: 434-441

[126]

Kang ZY, Mo JK, Yang GQ, et al.. Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy Environ. Sci., 2017, 10: 166-175

[127]

Selamet OF, Pasaogullari U, Spernjak D, et al.. In situ two-phase flow investigation of proton exchange membrane (PEM) electrolyzer by simultaneous optical and neutron imaging. ECS Trans., 2011, 41: 349-362

[128]

Selamet OF, Pasaogullari U, Spernjak D, et al.. Two-phase flow in a proton exchange membrane electrolyzer visualized in situ by simultaneous neutron radiography and optical imaging. Int. J. Hydrog. Energy, 2013, 38: 5823-5835

[129]

Hoeh MA, Arlt T, Kardjilov N, et al.. In-operando neutron radiography studies of polymer electrolyte membrane water electrolyzers. ECS Trans., 2015, 69: 1135-1140

[130]

Seweryn J, Biesdorf J, Schmidt TJ, et al.. Communication: neutron radiography of the water/gas distribution in the porous layers of an operating electrolyser. J. Electrochem. Soc., 2016, 163: F3009-F3011

[131]

Panchenko O, Borgardt E, Zwaygardt W, et al.. In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy. J. Power. Sources, 2018, 390: 108-115

[132]

Maier M, Dodwell J, Ziesche R, et al.. Mass transport in polymer electrolyte membrane water electrolyser liquid-gas diffusion layers: a combined neutron imaging and X-ray computed tomography study. J. Power. Sources, 2020, 455 227968

[133]

Lee C, Lee JK, George MG, et al.. Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers. Energy Convers. Manag., 2020, 213 112797

[134]

Leonard E, Shum AD, Danilovic N, et al.. Interfacial analysis of a PEM electrolyzer using X-ray computed tomography. Sustainable Energy Fuels, 2020, 4: 921-931

[135]

Mo J, Kang Z, Retterer ST, et al.. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv., 2016, 2 e1600690

[136]

Kang ZY, Yang GQ, Mo JK, et al.. Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production. Int. J. Hydrog. Energy, 2018, 43: 14618-14628

[137]

Lafmejani SS, Olesen AC, Kær SK. VOF modelling of gas-liquid flow in PEM water electrolysis cell micro-channels. Int. J. Hydrog. Energy, 2017, 42: 16333-16344

[138]

Sadeghi Lafmejani S, Olesen AC, Kær SK. Analysing gas-liquid flow in PEM electrolyser micro-channels. ECS Trans., 2016, 75: 1121-1127

[139]

Dedigama I, Angeli P, van Dijk N, et al.. Current density mapping and optical flow visualisation of a polymer electrolyte membrane water electrolyser. J. Power. Sources, 2014, 265: 97-103

[140]

Dedigama I, Angeli P, Ayers K, et al.. In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers: flow visualisation and electrochemical impedance spectroscopy. Int. J. Hydrog. Energy, 2014, 39: 4468-4482

[141]

Hoeh MA, Arlt T, Manke I, et al.. In operando synchrotron X-ray radiography studies of polymer electrolyte membrane water electrolyzers. Electrochem. Commun., 2015, 55: 55-59

[142]

Leonard E, Shum AD, Normile S, et al.. Operando X-ray tomography and sub-second radiography for characterizing transport in polymer electrolyte membrane electrolyzer. Electrochim. Acta, 2018, 276: 424-433

[143]

Panchenko O, Carmo M, Rasinski M, et al.. Non-destructive in-operando investigation of catalyst layer degradation for water electrolyzers using synchrotron radiography. Mater. Today Energy, 2020, 16 100394

[144]

Panchenko U, Arlt T, Manke I, et al.. Synchrotron radiography for a proton exchange membrane (PEM) electrolyzer. Fuel Cells, 2020, 20: 300-306

[145]

Kim PJ, Lee C, Lee JK, et al.. In-plane transport in water electrolyzer porous transport layers with through pores. J. Electrochem. Soc., 2020, 167 124522

[146]

Bromberger K, Ghinaiya J, Lickert T, et al.. Hydraulic ex situ through-plane characterization of porous transport layers in PEM water electrolysis cells. Int. J. Hydrog. Energy, 2018, 43: 2556-2569

[147]

Jeon DH, Kim S, Kim M, et al.. Oxygen bubble transport in a porous transport layer of polymer electrolyte water electrolyzer. J. Power. Sources, 2023, 553 232322

[148]

Hoppe E, Holtwerth S, Müller M, et al.. An ex-situ investigation of the effect of clamping pressure on the membrane swelling of a polymer electrolyte water electrolyzer using X-ray tomography. J. Power Sources, 2023, 578 233242

[149]

Stähler M, Stähler A, Scheepers F, et al.. Impact of porous transport layer compression on hydrogen permeation in PEM water electrolysis. Int. J. Hydrog. Energy, 2020, 45: 4008-4014

[150]

Lædre S, Kongstein OE, Oedegaard A, et al.. Materials for Proton Exchange Membrane water electrolyzer bipolar plates. Int. J. Hydrog. Energy, 2017, 42: 2713-2723

[151]

Yuan XZ, Gu E, Bredin R, et al.. Development of a 3-in-1 device to simultaneously measure properties of gas diffusion layer for the quality control of proton exchange membrane fuel cell components. J. Power. Sources, 2020, 477 229009

[152]

Zhang HB, Hou M, Lin GQ, et al.. Performance of Ti-Ag-deposited titanium bipolar plates in simulated unitized regenerative fuel cell (URFC) environment. Int. J. Hydrog. Energy, 2011, 36: 5695-5701

[153]

Kellenberger A, Vaszilcsin N, Duca D, et al.. Towards replacing titanium with copper in the bipolar plates for proton exchange membrane water electrolysis. Materials, 2022, 15: 1628

[154]

Glenn JR, Lindquist GA, Roberts GM, et al.. Standard operating procedure for post-operation component disassembly and observation of benchtop water electrolyzer testing. Front. Energy Res., 2022, 10 908672

[155]

Rojas N, Sánchez-Molina M, Sevilla G, et al.. Coated stainless steels evaluation for bipolar plates in exchange PEM water electrolysis conditions. Int. J. Hydrogen Energy, 2021, 46(25929–2594325929-25943

[156]

Rakousky C, Keeley GP, Wippermann K, et al.. The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers. Electrochim. Acta, 2018, 278: 324-331

[157]

Shigemasa K, Wani K, Nakayama T, et al.. Effects of porous transport layer wettability on performance of proton exchange membrane water electrolyzer: mass transport overvoltage and visualization of oxygen bubble dynamics with high-speed camera. Int. J. Hydrog. Energy, 2024, 62: 601-609

[158]

Li H, Fujigaya T, Nakajima H, et al.. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water. J. Power. Sources, 2016, 332: 16-23

[159]

Lim, A., Jeong, H.Y., Lim, Y., et al.: Amphiphilic Ti porous transport layer for highly effective PEM unitized regenerative fuel cells. Sci. Adv. 7, eabf7866(2021). https://doi.org/10.1126/sciadv.abf7866

[160]

Kang ZY, Schuler T, Chen YY, et al.. Effects of interfacial contact under different operating conditions in proton exchange membrane water electrolysis. Electrochim. Acta, 2022, 429 140942

[161]

Mo JK, Steen SM, Zhang FY, et al.. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell. Int. J. Hydrog. Energy, 2015, 40: 12506-12511

[162]

Li N, Araya SS, Kær SK. Long-term contamination effect of iron ions on cell performance degradation of proton exchange membrane water electrolyser. J. Power. Sources, 2019, 434 226755

[163]

Li N, Araya SS, Cui XT, et al.. The effects of cationic impurities on the performance of proton exchange membrane water electrolyzer. J. Power. Sources, 2020, 473 228617

[164]

Kang SY, Park JE, Jang GY, et al.. Directly coated iridium nickel oxide on porous-transport layer as anode for high-performance proton-exchange membrane water electrolyzers. Adv. Mater. Interfaces, 2023, 10: 2202406

[165]

Hayatzadeh A, Fattahi M, Rezaveisi A. Machine learning algorithms for operating parameters predictions in proton exchange membrane water electrolyzers: anode side catalyst. Int. J. Hydrog. Energy, 2024, 56: 302-314

[166]

Madhavan PV, Moradizadeh L, Shahgaldi S, et al.. Data-driven modelling of corrosion behaviour in coated porous transport layers for PEM water electrolyzers. Artif. Intell. Chem., 2025, 3 100086

[167]

Chen X, Rex A, Woelke J, et al.. Machine learning in proton exchange membrane water electrolysis: a knowledge-integrated framework. Appl. Energy, 2024, 371 123550

Funding

Office of Energy Research and Development (OERD) and the Advanced Clean Energy (ACE) Program of the National Research Council Canada(project #NRC-23-140)

National Research Council Canada

RIGHTS & PERMISSIONS

Crown

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/