Interlayer Nanoarchitecture Modification of Layered Materials in Rechargeable Metal-Ion Batteries

Yuchen Wang , Huiyan Feng , Chengzhi Zhang , Quanbin Liu , Jun Tan , Chong Ye

Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 19

PDF
Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 19 DOI: 10.1007/s41918-025-00253-0
Review Article
review-article

Interlayer Nanoarchitecture Modification of Layered Materials in Rechargeable Metal-Ion Batteries

Author information +
History +
PDF

Abstract

In this new era of energy, a tendency to increase the power density and capacity of advanced rechargeable batteries is urgently needed. With research on metal-ion (Li+, Na+, K+, Zn2+, Mg2+, and Al3+) batteries based on and beyond rocking-chair mechanism development, more attention has been given to modification of electrode materials. Layered materials, along with their two-dimensional (2D) analogs, show remarkable superiority in ion-intercalation chemistry and modification feasibility. In this context, extensive experimental and theoretical studies have been conducted in the design of interlayer nanoarchitectures to optimize their electrochemical performance. This review provides a comprehensive summary of the modification strategies for the interlayer nanostructure of layered materials, reveals the relationships between the inserted species and electrochemical performance, and offers guidance on the modification parameters for various metal-ion batteries. Finally, an outlook of the application potential, future research directions, and remaining challenges is provided. Overall, this review underscores the importance of material modification in achieving high-power density and high-capacity electrodes for batteries, paving the way for significant advancements in energy storage technology.

Keywords

Layered materials / Interlayer modulation / Rechargeable batteries / Energy storage technology

Cite this article

Download citation ▾
Yuchen Wang, Huiyan Feng, Chengzhi Zhang, Quanbin Liu, Jun Tan, Chong Ye. Interlayer Nanoarchitecture Modification of Layered Materials in Rechargeable Metal-Ion Batteries. Electrochemical Energy Reviews, 2025, 8(1): 19 DOI:10.1007/s41918-025-00253-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294-303.

[2]

Goodenough JB. Cathode materials: a personal perspective. J Power Sour, 2007, 174: 996-1000.

[3]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367.

[4]

Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928-935.

[5]

Rashid F, Joardder MUH. Future options of electricity generation for sustainable development: trends and prospects. Eng Rep, 2022, 4. e12508

[6]

Liu YY, Shi HD, Wu ZS. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy Environ. Sci., 2023, 16: 4834-4871.

[7]

Degen F, Winter M, Bendig D. et al.. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy, 2023, 8: 1284-1295.

[8]

Park SH, King PJ, Tian RY. et al.. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy, 2019, 4: 560-567.

[9]

Min X, Xiao J, Fang MH. et al.. Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci., 2021, 14: 2186-2243.

[10]

Liu YY, Lu X, Lai FL. et al.. Rechargeable aqueous Zn-based energy storage devices. Joule, 2021, 5: 2845-2903.

[11]

Wang G, Yu MH, Feng XL. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev., 2021, 50: 2388-2443.

[12]

Xu ZL, Park J, Yoon G. et al.. Graphitic carbon materials for advanced sodium-ion batteries. Small Meth., 2019, 3: 1800227.

[13]

Ng KL, Amrithraj B, Azimi GNonaqueous Recharg. Alum. Batter. Joule, 2022, 6: 134-170.

[14]

Gao Y, Zhang H, Peng J. et al.. A 30-year overview of sodium-ion batteries. Carbon Energy, 2024, 6. e464

[15]

Wang CX, Zhang LY, Zhang ZW. et al.. Layered materials for supercapacitors and batteries: applications and challenges. Prog. Mater. Sci., 2021, 118. 100763

[16]

Li YQ, Lu YX, Adelhelm P. et al.. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev., 2019, 48: 4655-4687.

[17]

Whittingham MS. Electrical energy storage and intercalation chemistry. Science, 1976, 192: 1126-1127.

[18]

Xu B, Gogotsi Y. MXenes: from discovery to applications. Adv. Funct. Mater., 2020, 30: 2007011.

[19]

Wang D, Zhou CK, Filatov AS. et al.. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science, 2023, 379: 1242-1247.

[20]

Zhang AQ, Zhao R, Wang YH. et al.. Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance zinc-ion battery. Angew. Chem. Int. Ed., 2023, 62. e202313163

[21]

Yang J, Li MZ, Fang SL. et al.. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science, 2024, 383: 771-777.

[22]

Pandey M, Deshmukh K, Raman A. et al.. Prospects of MXene and graphene for energy storage and conversion. Renew. Sustain. Energy Rev., 2024, 189. 114030

[23]

Zhao MH, Casiraghi C, Parvez K. Electrochemical exfoliation of 2D materials beyond graphene. Chem. Soc. Rev., 2024, 53: 3036-3064.

[24]

Lu C, Sun ZT, Yu LH. et al.. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater., 2020, 10: 2001161.

[25]

Jiang Y, Song DY, Wu J. et al.. Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano, 2019, 13: 9100-9111.

[26]

Li S, Liu Y, Zhao X. et al.. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater., 2021, 33. e2007480

[27]

Tantis I, Talande S, Tzitzios V. et al.. Non-van der waals 2D materials for electrochemical energy storage. Adv. Funct. Mater., 2023, 33: 2209360.

[28]

Chen B, Chao DL, Liu EZ. et al.. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy Environ. Sci., 2020, 13: 1096-1131.

[29]

Xue YH, Zhang Q, Wang WJ. et al.. Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater., 2017, 7: 1602684.

[30]

Lu B, Xia YZ, Ren YQ. et al.. When machine learning meets 2D materials: a review. Adv. Sci., 2024, 11: 2305277.

[31]

Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples in graphene. Nat. Mater., 2007, 6: 858-861.

[32]

Hou HS, Qiu XQ, Wei WF. et al.. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater., 2017, 7: 1602898.

[33]

Bi JX, Du ZZ, Sun JM. et al.. On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv. Mater., 2023, 35. e2210734

[34]

Iyo A, Ogino H, Ishida S. et al.. Dramatically accelerated formation of graphite intercalation compounds catalyzed by sodium. Adv. Mater., 2023, 35: 2209964.

[35]

Åvall G, Ferrero GA, Janßen KA. et al.. In situ pore formation in graphite through solvent co-intercalation: a new model for the formation of ternary graphite intercalation compounds bridging batteries and supercapacitors. Adv. Energy Mater., 2023, 13: 2301944.

[36]

Ito Y, Lee C, Miyahara Y. et al.. Operando Raman spectroscopy insights into the electrochemical formation of F-graphite intercalation compounds. ACS Energy Lett., 2024, 9: 1473-1479.

[37]

Wu WY, Luo W, Huang YH. Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chem. Soc. Rev., 2023, 52: 2553-2572.

[38]

Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat. Commun., 2020, 11: 2499.

[39]

Weng ST, Yang GJ, Zhang SM. et al.. Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nanomicro Lett., 2023, 15: 215.

[40]

Zhong C, Weng ST, Wang ZX. et al.. Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries. Nano Energy, 2023, 117. 108894

[41]

Wei XJ, Yi YY, Yuan XZ. et al.. Intrinsic carbon structure modification overcomes the challenge of potassium bond chemistry. Energy Environ. Sci., 2024, 17: 2968-3003.

[42]

Zhu ZX, Jiang TL, Ali M. et al.. Rechargeable batteries for grid scale energy storage. Chem. Rev., 2022, 122: 16610-16751.

[43]

Li Q, Zhang J, Zhong LX. et al.. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes. Adv. Energy Mater., 2022, 12: 2201734.

[44]

Au H, Alptekin H, Jensen ACS. et al.. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci., 2020, 13: 3469-3479.

[45]

Yoon G, Kim H, Park I. et al.. Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host. Adv. Energy Mater., 2017, 7: 1601519.

[46]

Li Q, Zhang YB, Chen ZY. et al.. Discrete graphitic crystallites promise high-rate ion intercalation for KC8 formation in potassium ion batteries. Adv. Energy Mater., 2022, 12: 2201574.

[47]

Fan L, Ma RF, Zhang QF. et al.. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed., 2019, 58: 10500-10505.

[48]

Yu JX, Jiang MC, Zhang W. et al.. Advancements and prospects of graphite anode for potassium-ion batteries. Small Methods, 2023, 7. e2300708

[49]

Jian ZL, Luo W, Ji XL. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc., 2015, 137: 11566-11569.

[50]

Moriwake H, Kuwabara A, Fisher CAJ. et al.. Why is sodium-intercalated graphite unstable?. RSC Adv., 2017, 7: 36550-36554.

[51]

Liu YY, Merinov BV, Goddard WA3rd. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci., 2016, 113: 3735-3739.

[52]

Park J, Xu ZL, Yoon G. et al.. Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater., 2020, 32. e1904411

[53]

Wang F, Fan XL, Gao T. et al.. High-voltage aqueous magnesium ion batteries. ACS Cent. Sci., 2017, 3: 1121-1128.

[54]

Chen CH, Shi FY, Xu ZL. Advanced electrode materials for nonaqueous calcium rechargeable batteries. J. Mater. Chem. A, 2021, 9: 11908-11930.

[55]

Xue XL, Huang TL, Zhang Y. et al.. Cationic–anionic redox chemistry in multivalent metal-ion batteries: recent advances, reaction mechanism, advanced characterization techniques, and prospects. Adv. Funct. Mater., 2023, 33: 2306377.

[56]

Yi YY, Xing YD, Wang H. et al.. Deciphering anion-modulated solvation structure for calcium intercalation into graphite for Ca-ion batteries. Angew. Chem. Int. Ed., 2024, 63. e202317177

[57]

Das A, Balakrishnan NTM, Sreeram P. et al.. Prospects for magnesium ion batteries: a compreshensive materials review. Coord. Chem. Rev., 2024, 502. 215593

[58]

Zheng Y, Deng T, Shi XY. et al.. Decoupled design for highly efficient perchlorate anion intercalation and high-energy rechargeable aqueous Zn-graphite batteries. Adv. Sci., 2024, 11: 2306504.

[59]

Novoselov KS, Geim AK, Morozov SV. et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666-669.

[60]

Chen H, Zhuo FL, Zhou J. et al.. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J., 2023, 464. 142576

[61]

Kashani H, Choi WJ, Kim C. et al.. Integration of an axially continuous graphene with functional metals for high-temperature electrical conductors. Adv. Funct. Mater., 2023, 33: 2214220.

[62]

Wu Y, An C, Guo YR. et al.. Highly aligned graphene aerogels for multifunctional composites. Nanomicro Lett., 2024, 16: 118.

[63]

Li XM, Zheng QW, Li CM. et al.. Bubble up induced graphene microspheres for engineering capacitive energy storage. Adv. Energy Mater., 2023, 13: 2203761.

[64]

Zhao MZ, Zhang ZB, Shi WJ. et al.. Enhanced copper anticorrosion from Janus-doped bilayer graphene. Nat. Commun., 2023, 14: 7447.

[65]

Otsuka H, Urita K, Honma N. et al.. Transient chemical and structural changes in graphene oxide during ripening. Nat. Commun., 2024, 15: 1708.

[66]

Lerf A, He HY, Forster M. et al.. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102: 4477-4482.

[67]

Chen H, Yang YF, Boyle DT. et al.. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy, 2021, 6: 790-798.

[68]

El-Kady MF, Shao YL, Kaner RB. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater., 2016, 1: 16033.

[69]

Yu HT, Zhang BW, Bulin CK. et al.. High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep., 2016, 6: 36143.

[70]

Fang Y, Lv YY, Che RC. et al.. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc., 2013, 135: 1524-1530.

[71]

Zeng TT, Yang H, Wang HB. et al.. Acepentalene membrane sheet: a metallic two-dimensional carbon allotrope with high carrier mobility for lithium ion battery anodes. J. Phys. Chem. C, 2020, 124: 5999-6011.

[72]

Schweidler S, de Biasi L, Schiele A. et al.. Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C, 2018, 122: 8829-8835.

[73]

Ji KM, Han JH, Hirata A. et al.. Lithium intercalation into bilayer graphene. Nat. Commun., 2019, 10: 275.

[74]

Pan DY, Wang S, Zhao B. et al.. Li storage properties of disordered graphene nanosheets. Chem. Mater., 2009, 21: 3136-3142.

[75]

Chou SL, Wang JZ, Choucair M. et al.. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun., 2010, 12: 303-306.

[76]

Fu K, Wang YB, Yan CY. et al.. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater., 2016, 28: 2587-2594.

[77]

Yao B, Chandrasekaran S, Zhang HZ. et al.. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater., 2020, 32. e1906652

[78]

Jeon IY, Ju MJ, Xu JT. et al.. Edge-fluorinated graphene nanoplatelets as high performance electrodes for dye-sensitized solar cells and lithium ion batteries. Adv. Funct. Mater., 2015, 25: 1170-1179.

[79]

Li YZ, Yan K, Lee HW. et al.. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy, 2016, 1: 15029.

[80]

Swinkels PJM, Gong Z, Sacanna S. et al.. Visualizing defect dynamics by assembling the colloidal graphene lattice. Nat. Commun., 2023, 14: 1524.

[81]

Kim DW, Jung SM, Senthil C. et al.. Understanding excess Li storage beyond LiC6 in reduced dimensional scale graphene. ACS Nano, 2021, 15: 797-808.

[82]

Su FY, He YB, Li BH. et al.. Could graphene construct an effective conducting network in a high-power lithium ion battery?. Nano Energy, 2012, 1: 429-439.

[83]

Zhang SY, Wang K, Zhang X. et al.. α-AgVO3 nanowire/graphene oxide composite paper electrodes for lithium-ion batteries. ACS Appl. Nano Mater., 2021, 4: 2452-2461.

[84]

Liu T, Yang Y, Cao SW. et al.. Pore perforation of graphene coupled with in situ growth of Co3Se4 for high-performance Na-ion battery. Adv. Mater., 2023, 35. e2207752

[85]

Sheng JZ, Wang TS, Tan JY. et al.. Intercalation-induced conversion reactions give high-capacity potassium storage. ACS Nano, 2020, 14: 14026-14035.

[86]

Manzeli S, Ovchinnikov D, Pasquier D. et al.. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2017, 2: 17033.

[87]

Ma LK, Wang YL, Liu Y. Van der waals contact for two-dimensional transition metal dichalcogenides. Chem. Rev., 2024, 124: 2583-2616.

[88]

Zhai W, Li ZJ, Wang YJ. et al.. Phase engineering of nanomaterials: transition metal dichalcogenides. Chem. Rev., 2024, 124: 4479-4539.

[89]

Han GH, Duong DL, Keum DH. et al.. Van der waals metallic transition metal dichalcogenides. Chem. Rev., 2018, 118: 6297-6336.

[90]

Xu J, Zhang JJ, Zhang WJ. et al.. Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications. Adv. Energy Mater., 2017, 7: 1700571.

[91]

Xiao Y, Xiong CY, Chen MM. et al.. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem. Soc. Rev., 2023, 52: 1215-1272.

[92]

Park S, Kim C, Park SO. et al.. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater., 2020, 32. e2001889

[93]

Chen B, Wang TS, Zhao SY. et al.. Efficient reversible conversion between MoS2 and Mo/Na2S enabled by graphene-supported single atom catalysts. Adv. Mater., 2021, 33: 2007090.

[94]

Zak A, Feldman Y, Lyakhovitskaya V. et al.. Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc., 2002, 124: 4747-4758.

[95]

Joensen P, Frindt RF, Morrison SR. Single-layer MoS2. Mater. Res. Bull., 1986, 21: 457-461.

[96]

Wang SX, Cui XH, Jian CE. et al.. Stacking-engineered heterostructures in transition metal dichalcogenides. Adv. Mater., 2021, 33: 2005735.

[97]

Splendiani A, Sun L, Zhang YB. et al.. Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10: 1271-1275.

[98]

Hill HM, Rigosi AF, Rim KT. et al.. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16: 4831-4837.

[99]

Whittingham MS. Lithium batteries and cathode materials. Chem. Rev., 2004, 104: 4271-4302.

[100]

Xie M, Lv ZR, Wang Y. et al.. Homogeneous intercalation chemistry and ultralow strain of 1T’’’ MoS2 for stable potassium storage. Adv. Funct. Mater., 2023, 33: 2306550.

[101]

Chen ML, He X, Zhou M. et al.. Boosting the proton intercalation via crystal plane optimization of TiS2 for cycling-stable aqueous Zn-ion batteries. Adv. Energy Mater., 2024, 14: 2400724.

[102]

Chia X, Pumera M. Layered transition metal dichalcogenide electrochemistry: journey across the periodic table. Chem. Soc. Rev., 2018, 47: 5602-5613.

[103]

Jin MJ, Sun GW, Wang YT. et al.. Boosting charge transport and catalytic performance in MoS2 by Zn2+ intercalation engineering for lithium-sulfur batteries. ACS Nano, 2024, 18: 2017-2029.

[104]

Wan JY, Bao WZ, Liu Y. et al.. In situ investigations of Li-MoS2 with planar batteries. Adv. Energy Mater., 2015, 5: 1401742.

[105]

Zhang QY, Mei L, Cao XH. et al.. Intercalation and exfoliation chemistries of transition metal dichalcogenides. J. Mater. Chem. A, 2020, 8: 15417-15444.

[106]

Zhu ZQ, Tang YX, Leow WR. et al.. Approaching the lithiation limit of MoS2 while maintaining its layered crystalline structure to improve lithium storage. Angew. Chem. Int. Ed., 2019, 58: 3521-3526.

[107]

Kang WP, Wang YY, Xu J. Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J. Mater. Chem. A, 2017, 5: 7667-7690.

[108]

Li ZW, Han MS, Zhang YB. et al.. Single-layered MoS2 fabricated by charge-driven interlayer expansion for superior lithium/sodium/potassium-ion-battery anodes. Adv. Sci., 2023, 10. e2207234

[109]

Zhou JH, Wang L, Yang MY. et al.. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater., 2017, 29: 1702061.

[110]

Feng Y, Zhou LM, Ma H. et al.. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci., 2022, 15: 1711-1759.

[111]

Duan LP, Zhang YN, Tang HW. et al.. Recent advances in high-entropy layered oxide cathode materials for alkali metal-ion batteries. Adv. Mater., 2025, 37: 2411426.

[112]

Liu LH, Li MC, Chu LH. et al.. Layered ternary metal oxides: performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog. Mater. Sci., 2020, 111. 100655

[113]

Zhang HL, Liu H, Piper LFJ. et al.. Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. Chem. Rev., 2022, 122: 5641-5681.

[114]

Lv Y, Huang SF, Zhang JH. et al.. Antimony doping enabled radially aligned microstructure in LiNi0.91Co0.06Al0.03O2 cathode for high-voltage and low-temperature lithium battery. Adv. Funct. Mater., 2024, 34: 2312284.

[115]

Hu P, Hu P, Vu TD. et al.. Vanadium oxide: phase diagrams, structures, synthesis, and applications. Chem. Rev., 2023, 123: 4353-4415.

[116]

Wang TH, Li SW, Weng XE. et al.. Ultrafast 3D hybrid-ion transport in porous V2O5 cathodes for superior-rate rechargeable aqueous zinc batteries. Adv. Energy Mater., 2023, 13: 2204358.

[117]

Zhang N, Dong Y, Jia M. et al.. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett., 2018, 3: 1366-1372.

[118]

Wang CF, Wang JC, Zhang SW. et al.. Insights into the energy storage differences of zinc and calcium ions with layered vanadium oxide as a model material. Adv. Energy Mater., 2023, 13: 2302683.

[119]

Kundu D, Adams BD, Duffort V. et al.. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy, 2016, 1: 16119.

[120]

Fang CQ, Xu BG, Han J. et al.. Pre-intercalation of Zn ions to enlarge and stabilize hierarchical structure of ZnxMn1−xSe cathode for flexible Zn-ion capacitor. Adv. Funct. Mater., 2024, 34: 2310909.

[121]

Yan MY, He P, Chen Y. et al.. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater., 2018, 30: 1703725.

[122]

Ye J-J, Li P-H, Zhang H-R. et al.. Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater., 2023, 33: 2305659.

[123]

Wei ZH, Wang XH, Zhu T. et al.. Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage. Chin. Chem. Lett., 2024, 35. 108421

[124]

Kumbhakar P, Chowde Gowda C, Mahapatra PL. et al.. Emerging 2D metal oxides and their applications. Mater. Today, 2021, 45: 142-168.

[125]

Naguib M, Kurtoglu M, Presser V. et al.. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23: 4248-4253.

[126]

Li JY, Lu M, Zheng WJ. et al.. Ion-intercalation architecture for robust functionalization of two-dimensional MXenes. Energy Storage Mater., 2024, 64. 103068

[127]

Li XL. Customizing MXenes. Matter, 2023, 6: 2519-2522.

[128]

Soomro RA, Zhang P, Fan BM. et al.. Progression in the oxidation stability of MXenes. Nanomicro Lett., 2023, 15: 108.

[129]

Jia L, Zhou SQ, Ahmed A. et al.. Tuning MXene electrical conductivity towards multifunctionality. Chem. Eng. J., 2023, 475. 146361

[130]

Li XL, Huang ZD, Shuck CE. et al.. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem., 2022, 6: 389-404.

[131]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2017, 2: 16098.

[132]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372. eabf1581

[133]

Faraji M, Bafekry A, Fadlallah MM. et al.. Surface modification of titanium carbide MXene monolayers (Ti2C and Ti3C2) via chalcogenide and halogenide atoms. Phys. Chem. Chem. Phys., 2021, 23: 15319-15328.

[134]

Zou J, Wu J, Wang YZ. et al.. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev., 2022, 51: 2972-2990.

[135]

Tang Q, Zhou Z, Shen PW. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc., 2012, 134: 16909-16916.

[136]

Li YB, Shao H, Lin ZF. et al.. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater., 2020, 19: 894-899.

[137]

Kshetri T, Tran DT, Le HT. et al.. Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Prog. Mater. Sci., 2021, 117. 100733

[138]

Bi WC, Gao GH, Li C. et al.. Synthesis, properties, and applications of MXenes and their composites for electrical energy storage. Prog. Mater. Sci., 2024, 142. 101227

[139]

Lukatskaya MR, Mashtalir O, Ren CE. et al.. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341: 1502-1505.

[140]

Xie Y, Dall’Agnese Y, Naguib M. et al.. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8: 9606-9615.

[141]

Shukla V, Jena NK, Naqvi SR. et al.. Modelling high-performing batteries with mxenes: the case of S-functionalized two-dimensional nitride Mxene electrode. Nano Energy, 2019, 58: 877-885.

[142]

Xie Y, Naguib M, Mochalin VN. et al.. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc., 2014, 136: 6385-6394.

[143]

Zhang P, Wang XD, Zhang YF. et al.. Burgeoning silicon/MXene nanocomposites for lithium ion batteries: a review. Adv. Funct. Mater., 2024, 34: 2402307.

[144]

Ahmad Shah SS, Zafar HK, Javed MS. et al.. Mxenes for Zn-based energy storage devices: nano-engineering and machine learning. Coord. Chem. Rev., 2024, 501. 215565

[145]

Wang G, Wang GX, Fei LF. et al.. Structural engineering of anode materials for low-temperature lithium-ion batteries: mechanisms, strategies, and prospects. Nanomicro Lett., 2024, 16: 150.

[146]

Li Z, Zhang CZ, Han F. et al.. Towards high-volumetric performance of Na/Li-ion batteries: a better anode material with molybdenum pentachloride-graphite intercalation compounds (MoCl5-GICs). J. Mater. Chem. A, 2020, 8: 2430-2438.

[147]

Quan ZH, Lu AB, Wang F. et al.. Soft carbon filled in expanded graphite layer pores for superior fast-charging lithium-ion batteries. Carbon, 2024, 229. 119500

[148]

Yin Y, Dong XL. Electrolyte engineering and material modification for graphite-based lithium-ion batteries operated at low temperature. Interdiscip. Mater., 2023, 2: 569-588.

[149]

Cao YL, Xiao LF, Sushko ML. et al.. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett., 2012, 12: 3783-3787.

[150]

Wen Y, He K, Zhu YJ. et al.. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun., 2014, 5: 4033.

[151]

Wang YX, Chou SL, Liu HK. et al.. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon, 2013, 57: 202-208.

[152]

Chi CL, Liu Z, Wang GW. et al.. Graphene oxide block derived edge-nitrogen doped quasi-graphite for high K+ intercalation capacity and excellent rate performance. Adv. Energy Mater., 2023, 13: 2302055.

[153]

Quan ZH, Wang F, Wang YC. et al.. Robust micro-sized and defect-rich carbon-carbon composites as advanced anodes for potassium-ion batteries. Small, 2024, 20. e2305841

[154]

Li Y, Chen MH, Liu B. et al.. Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater., 2020, 10: 2000927.

[155]

Zhang HH, Chen ZL, Sun ZF. et al.. Unraveling the origin of enhanced K+ storage of carbonaceous anodes enabled by nitrogen/sulfur co-doping. Adv. Funct. Mater., 2023, 33: 2300769.

[156]

Wen ECH, Jacobse PH, Jiang JW. et al.. Fermi-level engineering of nitrogen core-doped armchair graphene nanoribbons. J. Am. Chem. Soc., 2023, 145: 19338-19346.

[157]

Yu SN, Chen JJ, Chen C. et al.. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage. Coord. Chem. Rev., 2023, 482. 215082

[158]

Chen JT, Yang BJ, Hou HJ. et al.. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater., 2019, 9: 1803894.

[159]

Vijaya Kumar Saroja AP, Muruganathan M, Muthusamy K. et al.. Enhanced sodium ion storage in interlayer expanded multiwall carbon nanotubes. Nano Lett., 2018, 18: 5688-5696.

[160]

Kim MH, Kim J, Choi SH. et al.. Mitigating electrode-level heterogeneity using phosphorus nanolayers on graphite for fast-charging batteries. ACS Energy Lett., 2023, 8: 3962-3970.

[161]

Tu SB, Zhang B, Zhang Y. et al.. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid-electrolyte interphase. Nat. Energy, 2023, 8: 1365-1374.

[162]

Quilty CD, Wu DR, Li WZ. et al.. Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem. Rev., 2023.

[163]

Yan J, Li HM, Wang KL. et al.. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy Mater., 2021, 11: 2003911.

[164]

Xie F, Niu YS, Zhang QQ. et al.. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries. Angew. Chem. Int. Ed., 2022, 61. e202116394

[165]

Ding J, Wang HL, Li Z. et al.. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano, 2013, 7: 11004-11015.

[166]

Jin QZ, Wang KL, Li W. et al.. Designing a slope-dominated hybrid nanostructure hard carbon anode for high-safety and high-capacity Na-ion batteries. J. Mater. Chem. A, 2020, 8: 22613-22619.

[167]

Xu ZH, Du SL, Yi ZY. et al.. Water chestnut-derived slope-dominated carbon as a high-performance anode for high-safety potassium-ion batteries. ACS Appl. Energy Mater., 2020, 3: 11410-11417.

[168]

Shin DY, Sung KW, Ahn HJ. Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics. Appl. Surf. Sci., 2019, 478: 499-504.

[169]

Ma L, Li ZB, Li JL. et al.. Phytic acid-induced nitrogen configuration adjustment of active nitrogen-rich carbon nanosheets for high-performance potassium-ion storage. J. Mater. Chem. A, 2021, 9: 25445-25452.

[170]

Xu Y, Wang CL, Niu P. et al.. Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. J. Mater. Chem. A, 2021, 9: 16150-16159.

[171]

Liu F, Zhu GQ, Yang DZ. et al.. Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Adv., 2019, 9: 22656-22667.

[172]

Feng X, Bai Y, Zheng LM. et al.. Effect of different nitrogen configurations on sodium storage properties of carbon anodes for sodium ion batteries. ACS Appl. Mater. Interfaces, 2021, 13: 56285-56295.

[173]

Liu MM, Zhu XH, Song YJ. et al.. Bifunctional edge-rich nitrogen doped porous carbon for activating oxygen and sulfur. Adv. Funct. Mater., 2023, 33: 2213395.

[174]

Zhang WL, Yin J, Sun ML. et al.. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater., 2020, 32. e2000732

[175]

Tai SH, Chang BK. Effect of nitrogen-doping configuration in graphene on the oxygen reduction reaction. RSC Adv., 2019, 9: 6035-6041.

[176]

Liu JL, Zhang YQ, Zhang L. et al.. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater., 2019, 31: 1901261.

[177]

Huang YJ, Hu XY, Li YJ. et al.. Demystifying the influence of precursor structure on S-doped hard carbon anode: taking glucose, carbon dots, and carbon fibers as examples. Adv. Funct. Mater., 2024, 34: 2403648.

[178]

Choi JH, Kim DW, Jung DH. et al.. Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages. Energy Storage Mater., 2024, 68. 103368

[179]

Sun B, Zhang Q, Xu WL. et al.. Edge-enriched and S-doped carbon nanorods to accelerate electrochemical kinetics of sodium/potassium storage. Carbon, 2023, 201: 776-784.

[180]

Wang F, Li D, Zhang GH. et al.. Sulfur doped hollow carbon nanofiber anodes for fast-charging potassium-ion storage. Appl. Surf. Sci., 2023, 614. 156149

[181]

Liu ZD, Feng HY, Wang YC. et al.. Nanopore design of sulfur doped hollow carbon nanospheres for superior potassium-ion battery anodes. Rare Met., 2024, 43: 2103-2114.

[182]

Yang JQ, Zhou XL, Wu DH. et al.. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater., 2017, 29: 1604108.

[183]

Wang F, Liu ZD, Xiang ZJ. et al.. Delocalized C=S decorates a 3D sp2-hybridized carbon skeleton for superior charge transfer kinetics of anodes. Energy Environ. Sci., 2023, 16: 5154-5169.

[184]

Feng HY, Liu ZD, Wang F. et al.. The C–S/C=S bonds synergistically modify porous hollow-carbon-nanocages anode for durable and fast sodium-ion storage. Adv. Funct. Mater., 2024, 34: 2400020.

[185]

Jia Y, Zhang LZ, Zhuang LZ. et al.. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal., 2019, 2: 688-695.

[186]

Sun JH, Sadd M, Edenborg P. et al.. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci. Adv., 2021, 7: 0812.

[187]

Denis PA. When noncovalent interactions are stronger than covalent bonds: bilayer graphene doped with second row atoms, aluminum, silicon, phosphorus and sulfur. Chem. Phys. Lett., 2011, 508: 95-101.

[188]

Zhang H, Li X, Zhang D. et al.. Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages. Carbon, 2016, 103: 480-487.

[189]

Qin DC, Wang L, Zeng XX. et al.. Tailored edge-heteroatom tri-doping strategy of turbostratic carbon anodes for high-rate performance lithium and sodium-ion batteries. Energy Storage Mater., 2023, 54: 498-507.

[190]

Denis PA, Iribarne F. The effect of the dopant nature on the reactivity, interlayer bonding and electronic properties of dual doped bilayer graphene. Phys. Chem. Chem. Phys., 2016, 18: 24693-24703.

[191]

Bi K, Wang Y, Zhou GY. Hierarchical porous N/S-doped carbon with machine learning to predict advanced potassium-ion batteries. J. Mater. Chem. A, 2023, 11: 11696-11703.

[192]

Lu XY, Zhou JJ, Huang L. et al.. Low-temperature carbonized N/O/S-tri-doped hard carbon for fast and stable K-ions storage. Adv. Energy Mater., 2024, 14: 2303081.

[193]

Tian Y, Li M, Zhang JX. et al.. Synergetic effects of S, N co-doping and surface concave-pores rich in lotus-leaf-like carbon nanosheets enabled threefold lithium storage mechanisms. Chem. Eng. J., 2024, 497. 154559

[194]

Liu WC, Deng NP, Wang G. et al.. Fluoridation routes, function mechanism and application of fluorinated/fluorine-doped nanocarbon-based materials for various batteries: a review. J. Energy Chem., 2023, 85: 363-393.

[195]

Huang SZ, Li Y, Feng YY. et al.. Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A, 2015, 3: 23095-23105.

[196]

Csányi G, Littlewood PB, Nevidomskyy AH. et al.. The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nat. Phys., 2005, 1: 42-45.

[197]

Chen L, Shi GS, Shen J. et al.. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550: 380-383.

[198]

Tao L, Xia DW, Sittisomwong P. et al.. Solvent-mediated, reversible ternary graphite intercalation compounds for extreme-condition Li-ion batteries. J. Am. Chem. Soc., 2024, 146: 16764-16774.

[199]

Wang F, Yi J, Wang YG. et al.. Graphite intercalation compounds (GICs): a new type of promising anode material for lithium-ion batteries. Adv. Energy Mater., 2014, 4: 1300600.

[200]

Zhang CZ, Ma JM, Han F. et al.. Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage. J. Mater. Chem. A, 2018, 6: 17982-17993.

[201]

Li Z, Zhang CZ, Han F. et al.. Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries. Nano Res., 2019, 12: 1836-1844.

[202]

Sun YL, Han F, Zhang CZ. et al.. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries. Energy Technol., 2019, 7: 1801091.

[203]

Zhao L, Ding BC, Qin XY. et al.. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater., 2022, 34. e2106704

[204]

Li Z, Tian ZL, Zhang CZ. et al.. An AlCl3 coordinating interlayer spacing in microcrystalline graphite facilitates ultra-stable and high-performance sodium storage. Nanoscale, 2021, 13: 10468-10477.

[205]

Kim S, Kim YJ, Ryu WH. Controllable insertion mechanism of expanded graphite anodes employing conversion reaction pillars for sodium-ion batteries. ACS Appl. Mater. Interfaces, 2021, 13: 24070-24080.

[206]

Hu ZH, Wu ZT, Han C. et al.. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev., 2018, 47: 3100-3128.

[207]

Sovizi S, Angizi S, Ahmad Alem SA. et al.. Plasma processing and treatment of 2D transition metal dichalcogenides: tuning properties and defect engineering. Chem. Rev., 2023, 123: 13869-13951.

[208]

Liu ZS, Tee SY, Guan GJ. et al.. Atomically substitutional engineering of transition metal dichalcogenide layers for enhancing tailored properties and superior applications. Nanomicro Lett., 2024, 16: 95.

[209]

Hu X, Yan L, Ding LY. et al.. Structural regulation and application of transition metal dichalcogenide monolayers: progress and challenges. Coord. Chem. Rev., 2024, 499. 215504

[210]

Chen Y, Liu HW, Yu GL. et al.. Defect engineering of 2D semiconductors for dual control of emission and carrier polarity. Adv. Mater., 2024, 36. e2312425

[211]

Ravichandran H, Knobloch T, Pannone A. et al.. Observation of rich defect dynamics in monolayer MoS2. ACS Nano, 2023, 17: 14449-14460.

[212]

Han B, Gali SM, Dai ST. et al.. Isomer discrimination via defect engineering in monolayer MoS2. ACS Nano, 2023, 17: 17956-17965.

[213]

Han MS, Mu YB, Guo JC. et al.. Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nanomicro Lett., 2023, 15: 80.

[214]

Zhang CZ, Han F, Wang F. et al.. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater., 2020, 24: 208-219.

[215]

Zhang CZ, Wang F, Han F. et al.. Improved electrochemical performance of sodium/potassium-ion batteries in ether-based electrolyte: cases study of MoS2@C and Fe7S8@C anodes. Adv. Mater. Interfaces, 2020, 7: 2000486.

[216]

Liu ZD, Cai H, Wang F. et al.. Carbon atom modulation of 2H-MoS2 promotes sodium storage kinetics by a unique “intercalation-conversion” mechanism. Adv. Energy Mater., 2024, 14: 2400470.

[217]

Huang YX, Wang ZH, Guan MR. et al.. Toward rapid-charging sodium-ion batteries using hybrid-phase molybdenum sulfide selenide-based anodes. Adv. Mater., 2020, 32: 2003534.

[218]

He HN, Zhang HH, Huang D. et al.. Harnessing plasma-assisted doping engineering to stabilize metallic phase MoSe2 for fast and durable sodium-ion storage. Adv. Mater., 2022, 34: 2200397.

[219]

Satheesh PP, Jang HS, Pandit B. et al.. 2D rhenium dichalcogenides: from fundamental properties to recent advances in photodetector technology. Adv. Funct. Mater., 2023, 33: 2212167.

[220]

Zong W, Yang C, Mo LL. et al.. Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. Nano Energy, 2020, 77. 105189

[221]

Yang M, Wang YY, Ma DT. et al.. Unlocking the interfacial adsorption-intercalation pseudocapacitive storage limit to enabling all-climate, high energy/power density and durable Zn-ion batteries. Angew. Chem. Int. Ed., 2023, 62. e202304400

[222]

Li SW, Liu YC, Zhao XD. et al.. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. Int. Ed., 2021, 60: 20286-20293.

[223]

Jin Q, Liu N, Dai CN. et al.. H2-directing strategy on in situ synthesis of Co-MoS2 with highly expanded interlayer for elegant HER activity and its mechanism. Adv. Energy Mater., 2020, 10: 2000291.

[224]

Wang CY, Yang WX, Ding YR. et al.. Interlayer biatomic pair bridging the van der waals gap for 100% activation of 2D layered material. Adv. Mater., 2024, 36. e2308984

[225]

Zhang SP, Chowdari BR, Wen ZY. et al.. Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano, 2015, 9: 12464-12472.

[226]

Su DW, Dou SX, Wang GX. Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater., 2015, 5: 1401205.

[227]

Tian HJ, Yu XC, Shao HZ. et al.. Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater., 2019, 9: 1901560.

[228]

Fan HN, Wang XY, Yu HB. et al.. Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater., 2020, 10: 1904162.

[229]

Wu YC, Wang JY, Li YB. et al.. Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun., 2022, 13: 3008.

[230]

Li YF, Liang YL, Robles Hernandez FC. et al.. Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites. Nano Energy, 2015, 15: 453-461.

[231]

Eggeler YM, Chan KC, Sun Q. et al.. A review on 3D architected pyrolytic carbon produced by additive micro/nanomanufacturing. Adv. Funct. Mater., 2024, 34: 2302068.

[232]

Hu X, Liu YJ, Li JW. et al.. Self-assembling of conductive interlayer-expanded WS2 nanosheets into 3D hollow hierarchical microflower bud hybrids for fast and stable sodium storage. Adv. Funct. Mater., 2020, 30: 1907677.

[233]

Xiao YH, Su DC, Wang XZ. et al.. CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries. Adv. Energy Mater., 2018, 8: 1800930.

[234]

Xiao YH, Zhao XB, Wang XZ. et al.. A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater., 2020, 10: 2000666.

[235]

Xue XL, Chen RP, Yan CZ. et al.. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater., 2019, 9: 1900145.

[236]

Ge JM, Fan L, Wang J. et al.. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater., 2018, 8: 1801477.

[237]

Tan Y, Li SW, Zhao XD. et al.. Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage. Adv. Energy Mater., 2022, 12: 2104001.

[238]

Li HF, Yang Q, Mo FN. et al.. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Stor. Mater., 2019, 19: 94-101.

[239]

Jauregui LA, Joe AY, Pistunova K. et al.. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366: 870-875.

[240]

Sredenschek AJ, Sanchez DE, Wang JY. et al.. Heterostructures coupling ultrathin metal carbides and chalcogenides. Nat. Mater., 2024, 23: 460-469.

[241]

Sun D, Ye DL, Liu P. et al.. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater., 2018, 8: 1702383.

[242]

Wei QL, Gao MR, Li Y. et al.. Directionally assembled MoS2 with significantly expanded interlayer spacing: a superior anode material for high-rate lithium-ion batteries. Mater. Chem. Front., 2018, 2: 1441-1448.

[243]

Liang SC, Zhang S, Liu Z. et al.. Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene. Adv. Energy Mater., 2021, 11: 2002600.

[244]

Wei XX, Chen C, Fu XZ. et al.. Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle. Adv. Energy Mater., 2024, 14: 2303027.

[245]

Luo D, Ma CY, Hou JF. et al.. Integrating nanoreactor with O-Nb–C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater., 2022, 12: 2103716.

[246]

Kim HS, Cook JB, Lin H. et al.. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater., 2016, 16: 454-460.

[247]

Zhang YH, Zhang S, Hu NF. et al.. Oxygen vacancy chemistry in oxide cathodes. Chem. Soc. Rev., 2024, 53: 3302-3326.

[248]

Huang WJ, Zhang K, Yuan B. et al.. Predominant intercalation of H+ enables ultrahigh rate capability of oxygen deficient MoO3 for aqueous Al-ion batteries. Energy Storage Mater., 2022, 50: 152-160.

[249]

Jiang J, Feng WY, Wen Y. et al.. Tuning 2D magnetism in cobalt monoxide nanosheets via in situ nickel-doping. Adv. Mater., 2023, 35: 2301668.

[250]

Wang Y, Pan QF, Qiao YX. et al.. Layered metal oxide nanosheets with enhanced interlayer space for electrochemical deionization. Adv. Mater., 2023, 35. e2210871

[251]

Wang B, Ang EH, Yang Y. et al.. Interlayer engineering of molybdenum trioxide toward high-capacity and stable sodium ion half/full batteries. Adv. Funct. Mater., 2020, 30: 2001708.

[252]

Zhang GQ, Wu T, Zhou H. et al.. Rich alkali ions preintercalated vanadium oxides for durable and fast zinc-ion storage. ACS Energy Lett., 2021, 6: 2111-2120.

[253]

Bi SS, Zhang Y, Deng SZ. et al.. Proton-assisted aqueous manganese-ion battery chemistry. Angew. Chem. Int. Ed., 2022, 61. e202200809

[254]

Liu CF, Neale Z, Zheng JQ. et al.. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci., 2019, 12: 2273-2285.

[255]

Huang HJ, Tian T, Pan L. et al.. Layered metal vanadates with different interlayer cations for high-rate Na-ion storage. J. Mater. Chem. A, 2019, 7: 16109-16116.

[256]

Jing FY, Liu YN, Shang YR. et al.. Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode. Energy Storage Mater., 2022, 49: 164-171.

[257]

Wang Y, Fan YM, Liao D. et al.. Highly Zn2+-conductive and robust modified montmorillonite protective layer of electrodes toward high-performance rechargeable zinc-ion batteries. Energy Storage Mater., 2022, 51: 212-222.

[258]

Wang JJ, Wang JX, Jiang YL. et al.. CaV6O16·2.8H2O with Ca2+ pillar and water lubrication as a high-rate and long-life cathode material for Ca-ion batteries. Adv. Funct. Mater., 2022, 32: 2113030.

[259]

Wang XK, Zhang XX, Zhao G. et al.. Ether-water hybrid electrolyte contributing to excellent Mg ion storage in layered sodium vanadate. ACS Nano, 2022, 16: 6093-6102.

[260]

Nam KW, Kim S, Yang E. et al.. Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem. Mater., 2015, 27: 3721-3725.

[261]

Sun JJ, Zhao YF, Liu YY. et al.. “Three-in-one” strategy that ensures V2O5·nH2O with superior Zn2+ storage by simultaneous protonated polyaniline intercalation and encapsulation. Small Struct., 2022, 3: 2100212.

[262]

Saxena S, Johnson M, Dixit F. et al.. Thinking green with 2-D and 3-D MXenes: environment friendly synthesis and industrial scale applications and global impact. Renew. Sustain. Energy Rev., 2023, 178. 113238

[263]

Li XL. Chemical tailoring and stitching. Nat. Rev. Chem., 2023, 7: 381-382.

[264]

Sun N, Guan Z, Zhu Q. et al.. Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nanomicro Lett, 2020, 12: 89.

[265]

Thakur A, Chandran BSN, Davidson K. et al.. Step-by-step guide for synthesis and delamination of MXene. Small Meth., 2023, 7: 2300030.

[266]

Zhang MW, Liang RL, Yang N. et al.. Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode. Adv. Energy Mater., 2022, 12: 2102493.

[267]

Mashtalir O, Lukatskaya MR, Zhao MQ. et al.. Amine-assisted delamination of MXene for Li-ion energy storage devices. Adv. Mater., 2015, 27: 3501-3506.

[268]

VahidMohammadi A, Mojtabavi M, Caffrey NM. et al.. Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Adv. Mater., 2019, 31. e1806931

[269]

Simon P. Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano, 2017, 11: 2393-2396.

[270]

Qu DY, Jian YY, Guo LH. et al.. An organic solvent-assisted intercalation and collection (OAIC) for Ti3C2Tx MXene with controllable sizes and improved yield. Nanomicro Lett., 2021, 13: 188.

[271]

Li XL, Li M, Yang Q. et al.. Phase transition induced unusual electrochemical performance of V2CTX MXene for aqueous zinc hybrid-ion battery. ACS Nano, 2020, 14: 541-551.

[272]

Li XL, Li M, Yang Q. et al.. In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv. Energy Mater., 2020, 10: 2001791.

[273]

Hui XB, Zhao RZ, Zhang P. et al.. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv. Energy Mater., 2019, 9: 1901065.

[274]

Ahmed B, Anjum DH, Gogotsi Y. et al.. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249-256.

[275]

Dey A, Varagnolo S, Power NP. et al.. Doped MXenes: a new paradigm in 2D systems: synthesis, properties and applications. Prog. Mater. Sci., 2023, 139. 101166

[276]

Li JB, Yan D, Hou SJ. et al.. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A, 2018, 6: 1234-1243.

[277]

Lian PC, Dong YF, Wu ZS. et al.. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40: 1-8.

[278]

Zhao DY, Zhao RZ, Dong SH. et al.. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci., 2019, 12: 2422-2432.

[279]

Hart JL, Hantanasirisakul K, Lang AC. et al.. Control of Mxenes’ electronic properties through termination and intercalation. Nat. Commun., 2019, 10: 522.

[280]

Yu YX. Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries. J. Phys. Chem. C, 2016, 120: 5288-5296.

[281]

Zhao D, Clites M, Ying GB. et al.. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem. Commun., 2018, 54: 4533-4536.

[282]

Wang PY, Lu XX, Boyjoo Y. et al.. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J. Power. Sources, 2020, 451. 227756

[283]

VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S. et al.. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano, 2017, 11: 11135-11144.

[284]

Luo J, Zhang W, Yuan H. et al.. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 2017, 11: 2459-2469.

[285]

Zheng YH, Gao XL, Miao CY. et al.. Co2V2O7@Ti3C2Tx MXene hollow structures synergizing the merits of conversion and intercalation for efficient lithium ion storage. Adv. Sustain. Syst., 2022, 6: 2200153.

[286]

Wang CD, Chen SM, Xie H. et al.. Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage. Adv. Energy Mater., 2019, 9: 1802977.

[287]

Cao JM, Wang LL, Li DD. et al.. Ti3C2Tx MXene conductive layers supported bio-derived Fex–1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv. Mater., 2021, 33: 2101535.

[288]

Zhou HY, Sui ZY, Amin K. et al.. Investigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 2020, 12: 13904-13913.

[289]

Li GY, Li N, Peng ST. et al.. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries. Adv. Energy Mater., 2021, 11: 2002721.

[290]

Hu Z, Xie YY, Yu DS. et al.. Hierarchical Ti3C2Tx MXene/carbon nanotubes for low overpotential and long-life Li-CO2 batteries. ACS Nano, 2021, 15: 8407-8417.

[291]

Zhao RZ, Di HX, Hui XB. et al.. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci., 2020, 13: 246-257.

[292]

Kamysbayev V, Filatov AS, Hu H. et al.. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369: 979-983.

[293]

Li M, Lu J, Luo K. et al.. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc., 2019, 141: 4730-4737.

[294]

Liu LY, Orbay M, Luo S. et al.. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano, 2022, 16: 111-118.

[295]

Xia Y, Que LF, Yu FD. et al.. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nanomicro Lett., 2022, 14: 143.

[296]

Sun BY, Lu QQ, Chen KX. et al.. Redox-active metaphosphate-like terminals enable high-capacity MXene anodes for ultrafast Na-ion storage. Adv. Mater., 2022, 34. e2108682

[297]

Li M, Li XL, Qin GF. et al.. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano, 2021, 15: 1077-1085.

[298]

Jin HC, Wang HY, Qi ZK. et al.. A black phosphorus-graphite composite anode for Li-/Na-/K-ion batteries. Angew. Chem. Int. Ed., 2020, 59: 2318-2322.

[299]

Ma YB, Wang K, Xu YN. et al.. Black phosphorus covalent bonded by metallic antimony toward high-energy lithium-ion capacitors. Adv. Energy Mater., 2024, 14: 2304408.

[300]

Zhao YJ, Zhang PJ, Liang JR. et al.. Unlocking layered double hydroxide as a high-performance cathode material for aqueous zinc-ion batteries. Adv. Mater., 2022, 34: 2204320.

[301]

Hu J, Tang XM, Dai Q. et al.. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nat. Commun., 2021, 12: 3409.

[302]

Chen ZK, Wang XK, Han ZK. et al.. Revealing the formation mechanism and optimizing the synthesis conditions of layered double hydroxides for the oxygen evolution reaction. Angew. Chem. Int. Ed., 2023, 62. e202215728

[303]

Sun LJ, Sun JK, Zhai SL. et al.. Homologous MXene-derived electrodes for potassium-ion full batteries. Adv. Energy Mater., 2022, 12: 2200113.

[304]

Khalil IE, Fonseca J, Reithofer MR. et al.. Tackling orientation of metal-organic frameworks (MOFs): the quest to enhance MOF performance. Coord. Chem. Rev., 2023, 481. 215043

[305]

Zhao XJ, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev., 2021, 50: 6871-6913.

[306]

Li J, Jing XC, Li QQ. et al.. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev., 2020, 49: 3565-3604.

[307]

Li T, Pan Y, Shao BB. et al.. Covalent-organic framework (COF)-core–shell composites: classification, synthesis, properties, and applications. Adv. Funct. Mater., 2023, 33: 2304990.

[308]

Cheng ZW, Zhao B, Guo YJ. et al.. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv. Energy Mater., 2022, 12: 2103461.

[309]

Burke DW, Jiang ZW, Livingston AG. et al.. 2D covalent organic framework membranes for liquid-phase molecular separations: State of the field, common pitfalls, and future opportunities. Adv. Mater., 2024, 36. e2300525

[310]

Deysher G, Shuck CE, Hantanasirisakul K. et al.. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano, 2020, 14: 204-217.

[311]

Hong YL, Liu ZB, Wang L. et al.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369: 670-674.

[312]

Cao J, Li TS, Gao HZ. et al.. Realization of 2D crystalline metal nitrides via selective atomic substitution. Sci. Adv., 2020, 6. eaax8784

[313]

Guo ZL, Zhou J, Sun ZM. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A, 2017, 5: 23530-23535.

[314]

Zhang BK, Zhou J, Sun ZM. MBenes: progress, challenges and future. J. Mater. Chem. A, 2022, 10: 15865-15880.

[315]

Hou LX, Cui XP, Guan B. et al.. Synthesis of a monolayer fullerene network. Nature, 2022, 606: 507-510.

[316]

Yuan FL, Su W, Gao F. Monolayer 2D polymeric fullerene: a new member of the carbon material family. Chem, 2022, 8: 2079-2081.

[317]

Peng B. Monolayer fullerene networks as photocatalysts for overall water splitting. J. Am. Chem. Soc., 2022, 144: 19921-19931.

[318]

Yu LF, Xu JY, Peng B. et al.. Anisotropic optical, mechanical, and thermoelectric properties of two-dimensional fullerene networks. J. Phys. Chem. Lett., 2022, 13: 11622-11629.

[319]

Peng B. Stability and strength of monolayer polymeric C60. Nano Lett., 2023, 23: 652-658.

[320]

Meirzadeh E, Evans AM, Rezaee M. et al.. A few-layer covalent network of fullerenes. Nature, 2023, 613: 71-76.

[321]

Wang LJ, Saji SE, Wu LJ. et al.. Emerging synthesis strategies of 2D MOFs for electrical devices and integrated circuits. Small, 2022, 18. e2201642

Funding

National Natural Science Foundation of China(No. 22309062)

Basic and Applied Basic Research Foundation of Guangdong Province(No. 2022A1515110052)

Jihua Laboratory(No. X200191TL200)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/