Progress and Perspectives of Garnet-Based Solid-State Lithium Metal Batteries: Toward Low Resistance, High Energy Density and Improved Cycling Capability

Zhihao Guo , Jiexi Wang , Xinhai Li , Zhixing Wang , Huajun Guo , Wenjie Peng , Guochun Yan , Guangchao Li , Xiaobao Zhang , Ning Wang , Juanyu Yang , Xiaowei Huang

Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 8

PDF
Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 8 DOI: 10.1007/s41918-025-00244-1
Review Article

Progress and Perspectives of Garnet-Based Solid-State Lithium Metal Batteries: Toward Low Resistance, High Energy Density and Improved Cycling Capability

Author information +
History +
PDF

Abstract

To improve the energy density and address the safety concerns of current lithium-ion batteries, garnet-based solid-state lithium metal batteries (GSSLBs) have drawn attention as candidates for next-generation electrochemical energy storage devices. Battery resistance, energy density and cycling capability are three fundamental indicators of GSSLBs and greatly influence their real applications. The progress toward developing low resistance, high energy density and improved cycling capability is reviewed in this paper based on an aim-oriented thinking. The fundamental effects of improving the ionic conductivity of garnet solid-state electrolytes (GSSEs) and engineering cathode/anode interfaces are first discussed. The significance of thinning GSSEs, decreasing the lithium metal anode level and exploiting high-energy cathodes for energy density is highlighted with the help of energy density estimation models. The benefits of and inspiration from constructing a three-dimensional (3D) configuration anode interface, applying external stack pressure and extending the operating temperature range to further improve the cycling capability of GSSLBs are also summarized. Moreover, the remaining challenges and future perspectives are presented with the expectation that our insights into the fundamentals and regular patterns can provide good guidance for developing better GSSLBs.

Graphical Abstract

Keywords

Garnet-based solid-state lithium metal batteries / Low resistance / High energy density / Improved cyclability / Chemical Sciences / Physical Chemistry (incl. Structural) / Engineering / Materials Engineering

Cite this article

Download citation ▾
Zhihao Guo, Jiexi Wang, Xinhai Li, Zhixing Wang, Huajun Guo, Wenjie Peng, Guochun Yan, Guangchao Li, Xiaobao Zhang, Ning Wang, Juanyu Yang, Xiaowei Huang. Progress and Perspectives of Garnet-Based Solid-State Lithium Metal Batteries: Toward Low Resistance, High Energy Density and Improved Cycling Capability. Electrochemical Energy Reviews, 2025, 8(1): 8 DOI:10.1007/s41918-025-00244-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangS, MaJ, DongSM, et al. . Designing all-solid-state batteries by theoretical computation: a review. Electrochem. Energy Rev., 2023, 6: 4.

[2]

MaiLQ, TianXC, XuX, et al. . Nanowire electrodes for electrochemical energy storage devices. Chem. Rev., 2014, 114: 11828-11862.

[3]

WuWY, LuoW, HuangYH. Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chem. Soc. Rev., 2023, 52: 2553-2572.

[4]

KimS, ParkG, LeeSJ, et al. . Lithium-metal batteries: from fundamental research to industrialization. Adv. Mater., 2023, 35: 2206625.

[5]

LiBR, ChaoY, LiMC, et al. . A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy Rev., 2023, 6: 7.

[6]

LiuJ, BaoZN, CuiY, et al. . Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy, 2019, 4: 180-186.

[7]

ChaeOB, LuchtBL. Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes. Adv. Energy Mater., 2023, 13: 2203791.

[8]

SuX, XuXP, JiZQ, et al. . Polyethylene oxide-based composite solid electrolytes for lithium batteries: current progress, low-temperature and high-voltage limitations, and prospects. Electrochem. Energy Rev., 2024, 7: 2.

[9]

LiYH, XuH, NingQR, et al. . Visualizing structure, growth, and dynamics of Li dendrite in batteries: from atomic to device scales. Adv. Funct. Mater., 2024, 34: 2401361.

[10]

PangYP, PanJY, YangJH, et al. . Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review. Electrochem. Energy Rev., 2021, 4: 169-193.

[11]

FengXN, RenDS, HeXM, et al. . Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4: 743-770.

[12]

BachmanJC, MuyS, GrimaudA, et al. . Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev., 2016, 116: 140-162.

[13]

ManthiramA, YuXW, WangSF. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater., 2017, 2: 16103.

[14]

BonnickP, MuldoonJ. The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci., 2022, 15: 1840-1860.

[15]

JiaLN, ZhuJH, ZhangX, et al. . Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries. Electrochem. Energy Rev., 2024, 7: 12.

[16]

ZhengZY, ZhouJ, ZhuYS. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning. Chem. Soc. Rev., 2024, 53: 3134-3166.

[17]

ZhaoWJ, YiJ, HeP, et al. . Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev., 2019, 2: 574-605.

[18]

BalaishM, Gonzalez-RosilloJC, KimKJ, et al. . Processing thin but robust electrolytes for solid-state batteries. Nat. Energy, 2021, 6: 227-239.

[19]

HuangXZ, LiT, FanWW, et al. . Challenges and solutions of solid-state electrolyte film for large-scale applications. Adv. Energy Mater., 2024, 14: 2303850.

[20]

ZhaoH, ZhangXB, WangN, et al. . The interface modification with polyethyleneimine enhances both ionic conductivity and interfacial compatibility of composite solid electrolyte. J. Alloys Compd., 2024, 990: 174460.

[21]

ZhangXB, ZhaoH, WangN, et al. . Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance. J. Colloid Interface Sci., 2024, 658: 836-845.

[22]

ChenR, LiQ, YuX, et al. . Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev., 2020, 120: 6820-6877.

[23]

ZhangZZ, ShaoYJ, LotschB, et al. . New horizons for inorganic solid state ion conductors. Energy Environ. Sci., 2018, 11: 1945-1976.

[24]

ZhaoFP, ZhangSM, WangS, et al. . Revealing unprecedented cathode interface behavior in all-solid-state batteries with oxychloride solid electrolytes. Energy Environ. Sci., 2024, 17: 4055-4063.

[25]

TaoBR, ZhongDL, LiHD, et al. . Halide solid-state electrolytes for all-solid-state batteries: structural design, synthesis, environmental stability, interface optimization and challenges. Chem. Sci., 2023, 14: 8693-8722.

[26]

DuanT, ChengHW, LiuYB, et al. . A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries. Energy Storage Mater., 2024, 65: 103091.

[27]

ZhangJX, ZhaoN, ZhangM, et al. . Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28: 447-454.

[28]

ZhangSX, LiuH, LiuZB, et al. . Non-resonant structure induces N-rich solid electrolyte interface toward ultra-stable solid-state lithium-metal batteries. Adv. Funct. Mater., 2024, 34: 2401377.

[29]

ChenWP, DuanH, ShiJL, et al. . Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc., 2021, 143: 5717-5726.

[30]

KamayaN, HommaK, YamakawaY, et al. . A lithium superionic conductor. Nat. Mater., 2011, 10: 682-686.

[31]

SeinoY, OtaT, TakadaK, et al. . A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci., 2014, 7: 627-631.

[32]

ZhouLD, AssoudA, ZhangQ, et al. . New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc., 2019, 141: 19002-19013.

[33]

LiuZT, MaS, LiuJ, et al. . High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett., 2021, 6: 298-304.

[34]

WangS, BaiQ, NolanAM, et al. . Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed., 2019, 58: 8039-8043.

[35]

BiaoJ, BaiC, MaJB, et al. . Perspectives on Li dendrite penetration in Li7La3Zr2O12-based solid-state electrolytes and batteries: materials, interfaces, and charge transfer. Adv. Energy Mater., 2024, 14: 2303128.

[36]

FengWL, ZhaoYF, XiaYY. Solid interfaces for the garnet electrolytes. Adv. Mater., 2024, 36: 2306111.

[37]

XiaoYY, YangJY, WangN, et al. . Challenges to Li7La3Zr2O12 system electrolyte and the modification: from powder to ceramic. J. Alloys Compd., 2024, 986: 174123.

[38]

GuoZH, LiQH, LiXH, et al. . Uniform densification of garnet electrolyte for solid-state lithium batteries. Small Methods, 2023, 7: 2300232.

[39]

HoodZD, ZhuYT, MiaraLJ, et al. . A sinter-free future for solid-state battery designs. Energy Environ. Sci., 2022, 15: 2927-2936.

[40]

OkurF, ZhangHY, KarabayDT, et al. . Intermediate-stage sintered LLZO scaffolds for Li-garnet solid-state batteries. Adv. Energy Mater., 2023, 13: 2203509.

[41]

ThangaduraiV, KaackH, WeppnerWJF. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc., 2003, 86: 437-440.

[42]

ThangaduraiV, NarayananS, PinzaruD. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev., 2014, 43: 4714.

[43]

SamsonAJ, HofstetterK, BagS, et al. . A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci., 2019, 12: 2957-2975.

[44]

InduMS, AlexanderGV, SreejithOV, et al. . Lithium garnet-cathode interfacial chemistry: inclusive insights and outlook toward practical solid-state lithium metal batteries. Mater. Today Energy, 2021, 21: 100804.

[45]

ZhengY, YaoYZ, OuJH, et al. . A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev., 2020, 49: 8790-8839.

[46]

FanLZ, HeHC, NanCW. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater., 2021, 6: 1003-1019.

[47]

TanSJ, ZengXX, MaQ, et al. . Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev., 2018, 1: 113-138.

[48]

FamprikisT, CanepaP, DawsonJA, et al. . Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater., 2019, 18: 1278-1291.

[49]

GoodenoughJB, HongHY, KafalasJA. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull., 1976, 11: 203-220.

[50]

ThangaduraiV, WeppnerW. Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater., 2005, 15: 107-112.

[51]

MuruganR, ThangaduraiV, WeppnerW. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 2007, 46: 7778-7781.

[52]

Bernuy-LopezC, ManalastasWJr, Lopez del AmoJM, et al. . Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem. Mater., 2014, 26: 3610-3617.

[53]

WuJ, ChenE, YuY, et al. . Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl. Mater. Interfaces, 2017, 9: 1542-1552.

[54]

El ShinawiH, JanekJ. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J. Power. Sources, 2013, 225: 13-19.

[55]

ZhangYH, ChenF, TuR, et al. . Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. J. Power. Sources, 2014, 268: 960-964.

[56]

RettenwanderD, RedhammerG, Preishuber-PflüglF, et al. . Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes. Chem. Mater., 2016, 28: 2384-2392.

[57]

RangasamyE, WolfenstineJ, SakamotoJ. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion., 2012, 206: 28-32.

[58]

LiYT, HanJT, WangCA, et al. . Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem., 2012, 22: 15357.

[59]

HongM, DongQ, XieH, et al. . Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane. Mater. Today, 2021, 42: 41-48.

[60]

ChenSJ, NieL, HuXC, et al. . Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries. Adv. Mater., 2022, 34: 2200430.

[61]

KataokaK, NagataH, AkimotoJ. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. Sci. Rep., 2018, 8: 9965.

[62]

RametteC, PressleyL, AvdeevM, et al. . Floating zone crystal growth, structure, and properties of a cubic Li5.5La3Nb1.5Zr0.5O12 garnet-type lithium-ion conductor. J. Mater. Chem. A, 2023, 11: 21754-21766.

[63]

OhtaS, KobayashiT, AsaokaT. High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X =0–2). J. Power. Sources, 2011, 196: 3342-3345.

[64]

LiYQ, WangZ, CaoY, et al. . W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim. Acta, 2015, 180: 37-42.

[65]

QinSY, ZhuXH, JiangY, et al. . Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl. Phys. Lett., 2018, 112: 113901.

[66]

KimuraN, GreenblattM. Ionic conductivity of substituted Li2SO4 phases. Mater. Res. Bull., 1984, 19: 1653-1658.

[67]

SuzukiY, KamiK, WatanabeK, et al. . Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ion., 2015, 278: 172-176.

[68]

AllenJL, WolfenstineJ, RangasamyE, et al. . Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power. Sources, 2012, 206: 315-319.

[69]

ZeierWG, ZhouSL, Lopez-BermudezB, et al. . Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12. ACS Appl. Mater. Interfaces, 2014, 6: 10900-10907.

[70]

SarkarS, SantosC, GlennebergJ, et al. . Probing alkaline-earth-doped garnet-type Li7La2.75A0.25Zr1.75M0.25O12 (A = Ca, Sr, Ba; M = Nb, Ta) electrolytes for all-solid-state Li metal batteries. Chem. Mater., 2024, 36: 2685-2697.

[71]

MuruganR, ThangaduraiV, WeppnerW. Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes. J. Electrochem. Soc., 2008, 155: A90.

[72]

YeandelSR, ChapmanBJ, SlaterPR, et al. . Structure and lithium-ion dynamics in fluoride-doped cubic Li7La3Zr2O12 (LLZO) garnet for Li solid-state battery applications. J. Phys. Chem. C, 2018, 122: 27811-27819.

[73]

LuY, MengXY, AlonsoJA, et al. . Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2019, 11: 2042-2049.

[74]

MaXN, XuYL. Efficient anion fluoride-doping strategy to enhance the performance in garnet-type solid electrolyte Li7La3Zr2O12. ACS Appl. Mater. Interfaces, 2022, 14: 2939-2948.

[75]

ZhangXX, OhTS, FergusJW. Densification of Ta-doped garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolyte materials by sintering in a lithium-rich air atmosphere. J. Electrochem. Soc., 2019, 166: A3753-A3759.

[76]

AonoH, SugimotoE, SadaokaY, et al. . Ionic conductivity and sinterability of lithium titanium phosphate system. Solid State Ion., 1990, 40: 38-42.

[77]

AonoH, SugimotoE, SadaokaY, et al. . Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc., 1990, 137: 1023-1027.

[78]

KatoY, HoriS, SaitoT, et al. . High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy, 2016, 1: 16030.

[79]

RangasamyE, LiuZC, GobetM, et al. . An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc., 2015, 137: 1384-1387.

[80]

GuoZH, LiXH, WangZX, et al. . Empirical decay relationship between ionic conductivity and porosity of garnet type inorganic solid-state electrolytes. Trans. Nonferrous Metals Soc. China, 2022, 32: 3362-3373.

[81]

WolfenstineJ, SakamotoJ, AllenJL. Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12. J. Mater. Sci., 2012, 47: 4428-4431.

[82]

BaekSW, LeeJM, KimTY, et al. . Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J. Power. Sources, 2014, 249: 197-206.

[83]

YamadaH, ItoT, Hongahally BasappaR. Sintering mechanisms of high-performance garnet-type solid electrolyte densified by spark plasma sintering. Electrochim. Acta, 2016, 222: 648-656.

[84]

AmoresM, AshtonTE, BakerPJ, et al. . Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy. J. Mater. Chem. A, 2016, 4: 1729-1736.

[85]

WangCW, PingWW, BaiQ, et al. . A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020, 368: 521-526.

[86]

TadanagaK, TakanoR, IchinoseT, et al. . Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3 composites. Electrochem. Commun., 2013, 33: 51-54.

[87]

HuangX, ShenC, RuiK, et al. . Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet. JOM, 2016, 68: 2593-2600.

[88]

HuangX, LiuC, LuY, et al. . A Li-garnet composite ceramic electrolyte and its solid-state Li–S battery. J. Power. Sources, 2018, 382: 190-197.

[89]

TianYJ, DingF, ZhongH, et al. . Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater., 2018, 14: 49-57.

[90]

HuangX, SongZ, XiuTP, et al. . Sintering, micro-structure and Li+ conductivity of Li7−xLa3Zr2−xNbxO12/MgO (x = 0.2–0.7) Li-garnet composite ceramics. Ceram. Int., 2019, 45: 56-63.

[91]

XieHL, LiCL, KanWH, et al. . Consolidating the grain boundary of the garnet electrolyte LLZTO with Li3BO3 for high-performance LiNi0.8Co0.1Mn0.1O2/LiFePO4 hybrid solid batteries. J. Mater. Chem. A, 2019, 7: 20633-20639.

[92]

ZhangSS, ZhaoHL, WangJ, et al. . Enhanced densification and ionic conductivity of Li-garnet electrolyte: efficient Li2CO3 elimination and fast grain-boundary transport construction. Chem. Eng. J., 2020, 393: 124797.

[93]

YangL, HuangX, ZouCF, et al. . Rapid preparation and performances of garnet electrolyte with sintering aids for solid-state Li–S battery. Ceram. Int., 2021, 47: 18196-18204.

[94]

ZhouH, ZhouYJ, LiXY, et al. . Li5AlO4-assisted low-temperature sintering of dense Li7La3Zr2O12 solid electrolyte with high critical current density. ACS Appl. Mater. Interfaces, 2024, 16: 5989-5998.

[95]

HuangM, DumonA, NanCW. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem. Commun., 2012, 21: 62-64.

[96]

NarayananS, RamezanipourF, ThangaduraiV. Enhancing Li ion conductivity of garnet-type Li5La3Nb2O12 by Y- and Li-codoping: synthesis, structure, chemical stability, and transport properties. J. Phys. Chem. C, 2012, 116: 20154-20162.

[97]

DumonA, HuangM, ShenY, et al. . High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ion., 2013, 243: 36-41.

[98]

RangasamyE, WolfenstineJ, AllenJ, et al. . The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−x La3−x AxZr2O12 garnet-based ceramic electrolyte. J. Power. Sources, 2013, 230: 261-266.

[99]

RamakumarS, SatyanarayanaL, ManoramaSV, et al. . Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys. Chem. Chem. Phys., 2013, 15: 11327.

[100]

WangD, ZhongG, DolotkoO, et al. . The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J. Mater. Chem. A, 2014, 2: 20271-20279.

[101]

BuannicL, OrayechB, López Del AmoJM, et al. . Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem. Mater., 2017, 29: 1769-1778.

[102]

MeesalaY, LiaoYK, JenaA, et al. . An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. J. Mater. Chem. A, 2019, 7: 8589-8601.

[103]

SongSF, WuYM, DongZC, et al. . Multi-substituted garnet-type electrolytes for solid-state lithium batteries. Ceram. Int., 2020, 46: 5489-5494.

[104]

ZhangTH, ChristopherTD, HuangSF, et al. . Electrochemical properties of Li6+yLa3−yBayNbZrO12 lithium garnet oxide solid-state electrolytes with co-doping barium and zirconium. J. Alloys Compd., 2021, 862: 158600.

[105]

FuZ, FergusonJ. Processing and characterization of an Li7La3Zr0.5Nb0.5Ta0.5Hf0.5O12 high-entropy Li-garnet electrolyte. J. Am. Ceram. Soc., 2022, 105: 6175-6183.

[106]

FengYT, YangL, YanZH, et al. . Discovery of high entropy garnet solid-state electrolytes via ultrafast synthesis. Energy Storage Mater., 2023, 63: 103053.

[107]

ZhangL, ZhuangQC, ZhengRG, et al. . Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Mater., 2022, 49: 299-338.

[108]

LiangF, SunY, YuanY, et al. . Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet. Mater. Today, 2021, 50: 418-441.

[109]

LiYX, SongSB, KimH, et al. . A lithium superionic conductor for millimeter-thick battery electrode. Science, 2023, 381: 50-53.

[110]

LuPS, WuDX, ChenLQ, et al. . Air stability of solid-state sulfide batteries and electrolytes. Electrochem. Energy Rev., 2022, 5: 3.

[111]

LiSH, LinJ, SchallerM, et al. . High-entropy lithium argyrodite solid electrolytes enabling stable all-solid-state batteries. Angew. Chem. Int. Ed., 2023, 62: e202314155.

[112]

LeeY, JeongJ, LeeHJ, et al. . Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS Energy Lett., 2022, 7: 171-179.

[113]

LeeY-G, FujikiS, JungC, et al. . High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy, 2020, 5: 299-308.

[114]

LiangJW, LiXN, KimJT, et al. . Halide layer cathodes for compatible and fast-charged halides-based all-solid-state Li metal batteries. Angew. Chem. Int. Ed., 2023, 62: e202217081.

[115]

YinYC, YangJT, LuoJD, et al. . A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature, 2023, 616: 77-83.

[116]

LiXN, LiangJW, ChenN, et al. . Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed., 2019, 58: 16427-16432.

[117]

TuoKY, SunCW, LiuSQ. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries. Electrochem. Energy Rev., 2023, 6: 17.

[118]

XiongBQ, LiuXY, NianQS, et al. . Field-responsive grain boundary against dendrite penetration for all-solid-state batteries. Energy Environ. Sci., 2024, 17: 6707-6716.

[119]

MaiLQ, ShengJZ, XuL, et al. . One-dimensional hetero-nanostructures for rechargeable batteries. Acc. Chem. Res., 2018, 51: 950-959.

[120]

DongDR, ZhouB, SunYF, et al. . Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett., 2019, 19: 2343-2349.

[121]

HuoHY, GaoJ, ZhaoN, et al. . A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun., 2021, 12: 176.

[122]

LiuBY, GongYH, FuK, et al. . Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces, 2017, 9: 18809-18815.

[123]

ZhengCJ, LuY, ChangQ, et al. . High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer. Adv. Funct. Mater., 2023, 33: 2302729.

[124]

YangYN, JiangFL, LiYQ, et al. . Surface coordination interphase stabilizes solid-state battery. Angew. Chem. Int. Ed., 2021, 60: 24162-24170.

[125]

LuZH, YangZW, LiC, et al. . Modulating nanoinhomogeneity at electrode–solid electrolyte interfaces for dendrite-proof solid-state batteries and long-life memristors. Adv. Energy Mater., 2021, 11: 2003811.

[126]

YangGY, BaiXM, ZhangY, et al. . A bridge between ceramics electrolyte and interface layer to fast Li+ transfer for low interface impedance solid-state batteries. Adv. Funct. Mater., 2023, 33: 2211387.

[127]

LiuYY, MengJW, LeiM, et al. . Alloyable viscous fluid for interface welding of garnet electrolyte to enable highly reversible fluoride conversion solid state batteries. Adv. Funct. Mater., 2023, 33: 2208013.

[128]

LuoW, GongYH, ZhuYZ, et al. . Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc., 2016, 138: 12258-12262.

[129]

LuoW, GongYH, ZhuYZ, et al. . Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater., 2017, 29: 1606042.

[130]

HeMH, CuiZH, ChenC, et al. . Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J. Mater. Chem. A, 2018, 6: 11463-11470.

[131]

ShaoYJ, WangHC, GongZL, et al. . Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett., 2018, 3: 1212-1218.

[132]

FengWL, DongXL, ZhangX, et al. . Li/garnet interface stabilization by thermal-decomposition vapor deposition of an amorphous carbon layer. Angew. Chem. Int. Ed., 2020, 59: 5346-5349.

[133]

ZhangY, MengJW, ChenKY, et al. . Behind the candelabra: a facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF3 conversion batteries. ACS Appl. Mater. Interfaces, 2020, 12: 33729-33739.

[134]

ChenLH, ZhangJ, TongRA, et al. . Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small, 2022, 18: 2106142.

[135]

ThenuwaraAC, NarayanS, ThompsonEL, et al. . High-rate and stable LLZO-based lithium–metal batteries enabled via a tin interlayer. ACS Energy Lett., 2024, 9: 2401-2409.

[136]

FuKK, GongY, LiuB, et al. . Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv., 2017, 3: e1601659.

[137]

MengJW, ZhangY, ZhouXJ, et al. . Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nat. Commun., 2020, 11: 3716.

[138]

YangCP, XieH, PingWW, et al. . An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater., 2019, 31: 1804815.

[139]

HeXZ, JiX, ZhangB, et al. . Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett., 2022, 7: 131-139.

[140]

DubeyR, SastreJ, CancellieriC, et al. . Building a better Li-garnet solid electrolyte/metallic Li interface with antimony. Adv. Energy Mater., 2021, 11: 2102086.

[141]

TsaiCL, RoddatisV, ChandranCV, et al. . Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces, 2016, 8: 10617-10626.

[142]

AlexanderGV, PatraS, Sobhan RajSV, et al. . Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. J. Power. Sources, 2018, 396: 764-773.

[143]

HuangX, LuY, GuoHJ, et al. . None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density. ACS Appl. Energy Mater., 2018, 1: 5355-5365.

[144]

CaiML, LuY, SuJM, et al. . In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface. ACS Appl. Mater. Interfaces, 2019, 11: 35030-35038.

[145]

KimJS, YoonG, KimS, et al. . Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries. Nat. Commun., 2023, 14: 782.

[146]

FengWL, DongXL, LiPL, et al. . Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. J. Power. Sources, 2019, 419: 91-98.

[147]

HanXG, GongYH, FuK, et al. . Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017, 16: 572-579.

[148]

WangCW, GongYH, LiuBY, et al. . Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett., 2017, 17: 565-571.

[149]

XuHH, LiYT, ZhouAJ, et al. . Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett., 2018, 18: 7414-7418.

[150]

DengT, JiX, ZhaoY, et al. . Tuning the anode–electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv. Mater., 2020, 32: 2000030.

[151]

TangZH, ChoiJ, Lorie LopezJL, et al. . Optimization of the Li3BO3 glass interlayer for garnet-based all-solid-state lithium-metal batteries. ACS Appl. Energy Mater., 2022, 5: 12132-12142.

[152]

Rosero-NavarroNC, KajiuraR, JalemR, et al. . Significant reduction in the interfacial resistance of garnet-type solid electrolyte and lithium metal by a thick amorphous lithium silicate layer. ACS Appl. Energy Mater., 2020, 3: 5533-5541.

[153]

LiaoYK, LiuRS, YaoST, et al. . In situ and low-cost improvement of the lithium anode interface in garnet-type solid-state electrolytes. ACS Appl. Mater. Interfaces, 2023, 15: 57828-57834.

[154]

LiaoYK, TongZZ, LiuSA, et al. . Spontaneous in situ formation of lithium metal nitride in the interface of garnet-type solid-state electrolyte by tuning of molten lithium. ACS Appl. Mater. Interfaces, 2023, 15: 10283-10291.

[155]

ChenB, ZhangJ, WongD, et al. . Achieving the high capacity and high stability of Li-rich oxide cathode in garnet-based solid-state battery. Angew. Chem. Int. Ed., 2024, 63: e202315856.

[156]

LouJT, WangGG, XiaY, et al. . Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. J. Power. Sources, 2020, 448: 227440.

[157]

HuoHY, ChenY, LiRY, et al. . Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci., 2020, 13: 127-134.

[158]

ZhaiL, WangJH, ZhangXY, et al. . Interface engineering of Li6.75La3Zr1.75Ta0.25O12 via in situ built LiI/ZnLix mixed buffer layer for solid-state lithium metal batteries. Chem. Sci., 2024, 15: 7144-7149.

[159]

LeeK, HanS, LeeJ, et al. . Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett., 2022, 7: 381-389.

[160]

DuMJ, SunY, LiuB, et al. . Smart construction of an intimate lithium|garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv. Funct. Mater., 2021, 31: 2101556.

[161]

WangTR, DuanJ, ZhangB, et al. . A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci., 2022, 15: 1325-1333.

[162]

FengWL, HuJM, QianGN, et al. . Stabilization of garnet/Li interphase by diluting the electronic conductor. Sci. Adv., 2022, 8: eadd8972.

[163]

RuanYD, LuY, HuangX, et al. . Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries. J. Mater. Chem. A, 2019, 7: 14565-14574.

[164]

GuoSJ, LiYT, LiB, et al. . Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries. J. Am. Chem. Soc., 2022, 144: 2179-2188.

[165]

JinY, McGinnPJ. Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery. J. Power. Sources, 2013, 239: 326-331.

[166]

ChengL, CrumlinEJ, ChenW, et al. . The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys. Chem. Chem. Phys., 2014, 16: 18294-18300.

[167]

XiaW, XuB, DuanH, et al. . Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl. Mater. Interfaces, 2016, 8: 5335-5342.

[168]

XiaWH, XuBY, DuanHN, et al. . Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J. Am. Ceram. Soc., 2017, 100: 2832-2839.

[169]

BruggeRH, Ola HekselmanAK, CavallaroA, et al. . Garnet electrolytes for solid state batteries: visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics. Chem. Mater., 2018, 30: 3704-3713.

[170]

HofstetterK, SamsonAJ, NarayananS, et al. . Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J. Power. Sources, 2018, 390: 297-312.

[171]

HuoHY, LuoJ, ThangaduraiV, et al. . Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett., 2020, 5: 252-262.

[172]

SharafiA, KazyakE, DavisAL, et al. . Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater., 2017, 29: 7961-7968.

[173]

WuJF, PuBW, WangD, et al. . In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Interfaces, 2019, 11: 898-905.

[174]

ZhengHP, WuSP, TianR, et al. . Intrinsic lithiophilicity of Li-garnet electrolytes enabling high-rate lithium cycling. Adv. Funct. Mater., 2020, 30: 1906189.

[175]

ZhengHP, LiGY, OuyangRX, et al. . Origin of lithiophilicity of lithium garnets: compositing or cleaning?. Adv. Funct. Mater., 2022, 32: 2205778.

[176]

OttoSK, FuchsT, MorysonY, et al. . Storage of lithium metal: the role of the native passivation layer for the anode interface resistance in solid state batteries. ACS Appl. Energy Mater., 2021, 4: 12798-12807.

[177]

ChengL, LiuM, MehtaA, et al. . Garnet electrolyte surface degradation and recovery. ACS Appl. Energy Mater., 2018, 1: 7244-7252.

[178]

LiYT, ChenX, DolocanA, et al. . Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc., 2018, 140: 6448-6455.

[179]

LiJ, GongZN, XieWF, et al. . Growth process and removal of interface contaminants for garnet-based solid-state lithium metal batteries. ACS Appl. Energy Mater., 2023, 6: 12432-12441.

[180]

DuanH, ChenWP, FanM, et al. . Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew. Chem. Int. Ed., 2020, 59: 12069-12075.

[181]

ZhangJX, WangCH, ZhengM, et al. . Rational design of air-stable and intact anode-electrolyte interface for garnet-type solid-state batteries. Nano Energy, 2022, 102: 107672.

[182]

BiZJ, SunQF, JiaMY, et al. . Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Adv. Funct. Mater., 2022, 32: 2208751.

[183]

FlatscherF, PhilippM, GanschowS, et al. . The natural critical current density limit for Li7La3Zr2O12 garnets. J. Mater. Chem. A, 2020, 8: 15782-15788.

[184]

LuY, ZhaoCZ, YuanH, et al. . Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater., 2021, 31: 2009925.

[185]

SharafiA, MeyerHM, NandaJ, et al. . Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power. Sources, 2016, 302: 135-139.

[186]

TaylorNJ, Stangeland-MoloS, HaslamCG, et al. . Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J. Power. Sources, 2018, 396: 314-318.

[187]

WangM, WolfenstineJB, SakamotoJ. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim. Acta, 2019, 296: 842-847.

[188]

SarkarS, ThangaduraiV. Critical current densities for high-performance all-solid-state Li-metal batteries: fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett., 2022, 7: 1492-1527.

[189]

KlimpelM, ZhangHY, KovalenkoMV, et al. . Standardizing critical current density measurements in lithium garnets. Commun. Chem., 2023, 6: 192.

[190]

WangLC, WuJX, BaoCS, et al. . Interfacial engineering for high-performance garnet-based solid-state lithium batteries. SusMat, 2024, 4: 72-105.

[191]

LinJ, WuLB, HuangZ, et al. . La2Zr2O7 and MgO co-doped composite Li-garnet solid electrolyte. J. Energy Chem., 2020, 40: 132-136.

[192]

GuoZH, LiXH, WangZX, et al. . Revealing the potential of apparent critical current density of Li/garnet interface with capacity perturbation strategy. J. Energy Chem., 2023, 79: 56-63.

[193]

ZhaoB, MaWC, LiBB, et al. . A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries. Nano Energy, 2022, 91: 106643.

[194]

YanS, AboualiS, YimCH, et al. . Revealing the role of liquid electrolytes in cycling of garnet-based solid-state lithium-metal batteries. J. Phys. Chem. C, 2022, 126: 14027-14035.

[195]

YanS, YimCH, ZhouJG, et al. . Elucidating the origins of rapid capacity fade in hybrid garnet-based solid-state lithium metal batteries. J. Phys. Chem. C, 2023, 127: 24641-24650.

[196]

KimS, KimJS, MiaraL, et al. . High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility. Nat. Commun., 2022, 13: 1883.

[197]

KitauraH, HosonoE, ZhouHS. An ultrafast process for the fabrication of a Li metal–inorganic solid electrolyte interface. Energy Environ. Sci., 2021, 14: 4474-4480.

[198]

ChiSS, LiuYC, ZhaoN, et al. . Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater., 2019, 17: 309-316.

[199]

LiYT, XuBY, XuHH, et al. . Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed., 2017, 56: 753-756.

[200]

ZhangY, MengJW, ChenKY, et al. . Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett., 2020, 5: 1167-1176.

[201]

YangBB, DengCL, ChenN, et al. . Super-ionic conductor soft filler promotes Li+ transport in integrated cathode-electrolyte for solid-state battery at room temperature. Adv. Mater., 2024, 36: 2403078.

[202]

YangK, MaJB, LiYH, et al. . Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries. J. Am. Chem. Soc., 2024.

[203]

WangHC, YangYL, GaoC, et al. . An entanglement association polymer electrolyte for Li-metal batteries. Nat. Commun., 2024, 15: 2500.

[204]

ZhuJ, ZhaoRQ, ZhangJP, et al. . Long-cycling and high-voltage solid state lithium metal batteries enabled by fluorinated and crosslinked polyether electrolytes. Angew. Chem. Int. Ed., 2024, 63: e202400303.

[205]

DemuthT, FuchsT, WaltherF, et al. . Influence of the sintering temperature on LLZO-NCM cathode composites for solid-state batteries studied by transmission electron microscopy. Matter, 2023, 6: 2324-2339.

[206]

HongS, SongSH, ChoM, et al. . Structural and chemical compatibilities of Li1−xNi0.5Co0.2Mn0.3O2 cathode material with garnet-type solid electrolyte for all-solid-state batteries. Small, 2021, 17: 2103306.

[207]

OhtaS, KomagataS, SekiJ, et al. . All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power. Sources, 2013, 238: 53-56.

[208]

ZhangN, LongXH, WangZ, et al. . Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials. ACS Appl. Energy Mater., 2018, 1: 5968-5976.

[209]

IhrigM, FinsterbuschM, TsaiCL, et al. . Low temperature sintering of fully inorganic all-solid-state batteries: impact of interfaces on full cell performance. J. Power. Sources, 2021, 482: 228905.

[210]

IhrigM, FinsterbuschM, LaptevAM, et al. . Study of LiCoO2/Li7La3Zr2O12: Ta interface degradation in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2022, 14: 11288-11299.

[211]

WooSP, LeeSH, YoonYS. Characterization of LiCoO2/multiwall carbon nanotubes with garnet-type electrolyte fabricated by spark plasma sintering for bulk-type all-solid-state batteries. Compos. Part B Eng., 2017, 124: 242-249.

[212]

KimKH, IriyamaY, YamamotoK, et al. . Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power. Sources, 2011, 196: 764-767.

[213]

ParkK, YuBC, JungJW, et al. . Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater., 2016, 28: 8051-8059.

[214]

RoitzheimC, SohnYJ, KuoLY, et al. . All-solid-state Li batteries with NCM–garnet-based composite cathodes: the impact of NCM composition on material compatibility. ACS Appl. Energy Mater., 2022, 5: 6913-6926.

[215]

BauerA, RoitzheimC, LobeS, et al. . Impact of Ni–Mn–Co–Al-based cathode material composition on the sintering with garnet solid electrolytes for all-solid-state batteries. Chem. Mater., 2023, 35: 8958-8968.

[216]

OhtaS, KihiraY, AsaokaT. Spontaneous formation of a core-shell structure by a lithium ion conductive garnet-type oxide electrolyte for co-sintering with the cathode. J. Mater. Chem. A, 2021, 9: 3353-3359.

[217]

HayashiN, WatanabeK, OhnishiT, et al. . Impact of intentional composition tuning on the sintering properties of Ca-Bi co-doped Li7La3Zr2O12 for co-fired solid-state batteries. J. Mater. Chem. A, 2023, 11: 15681-15690.

[218]

OhtaS, SekiJ, YagiY, et al. . Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J. Power. Sources, 2014, 265: 40-44.

[219]

HanFD, YueJ, ChenC, et al. . Interphase engineering enabled all-ceramic lithium battery. Joule, 2018, 2: 497-508.

[220]

ChenK, ShenY, JiangJ, et al. . High capacity and rate performance of LiNi0.5Co0.2Mn0.3O2 composite cathode for bulk-type all-solid-state lithium battery. J. Mater. Chem. A, 2014, 2: 13332-13337.

[221]

WakayamaH, KawaiY. The effect of the LiCoO2/Li7La3Zr2O12 ratio on the structure and electrochemical properties of nanocomposite cathodes for all-solid-state lithium batteries. J. Mater. Chem. A, 2017, 5: 18816-18822.

[222]

KatoT, HamanakaT, YamamotoK, et al. . In situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J. Power. Sources, 2014, 260: 292-298.

[223]

SastreJ, ChenXB, AribiaA, et al. . Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture. ACS Appl. Mater. Interfaces, 2020, 12: 36196-36207.

[224]

LiYX, LiYQ, YangYN, et al. . Conversion inorganic interlayer of a LiF/graphene composite in all-solid-state lithium batteries. Chem. Commun., 2020, 56: 1725-1728.

[225]

JungSK, GwonH, YoonG, et al. . Pliable lithium superionic conductor for all-solid-state batteries. ACS Energy Lett., 2021, 6: 2006-2015.

[226]

LiuLL, XuJR, WangS, et al. . Practical evaluation of energy densities for sulfide solid-state batteries. eTransportation, 2019, 1: 100010.

[227]

WangCH, YuRZ, DuanH, et al. . Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Lett., 2022, 7: 410-416.

[228]

LuY, HuangX, SongZ, et al. . Highly stable garnet solid electrolyte based Li–S battery with modified anodic and cathodic interfaces. Energy Storage Mater., 2018, 15: 282-290.

[229]

KearBH, ColaizziJ, MayoWE, et al. . On the processing of nanocrystalline and nanocomposite ceramics. Scr. Mater., 2001, 44: 2065-2068.

[230]

PanchulaML, YingJY. Nanocrystalline aluminum nitride: II, sintering and properties. J. Am. Ceram. Soc., 2003, 86: 1121-1127.

[231]

KuntzJD, ZhanGD, MukherjeeAK. Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bull., 2004, 29: 22-27.

[232]

Ovid’koIA, SkibaNV, SheinermanAG. Influence of grain boundary sliding on fracture toughness of nanocrystalline ceramics. Phys. Solid State, 2008, 50: 1261-1265.

[233]

TrunecM, ChlupZ. Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure. Scr. Mater., 2009, 61: 56-59.

[234]

KimS, HirayamaM, TaminatoS, et al. . Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. Dalton Trans., 2013, 42: 13112.

[235]

KazyakE, ChenKH, WoodKN, et al. . Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chem. Mater., 2017, 29: 3785-3792.

[236]

ReinacherJ, BerendtsS, JanekJ. Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ion., 2014, 258: 1-7.

[237]

RawlenceM, GarbayoI, BuechelerS, et al. . On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films. Nanoscale, 2016, 8: 14746-14753.

[238]

SaccoccioM, YuJ, LuZH, et al. . Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes. J. Power. Sources, 2017, 365: 43-52.

[239]

LohoC, DjenadicR, MundtP, et al. . On processing-structure-property relations and high ionic conductivity in garnet-type Li5La3Ta2O12 solid electrolyte thin films grown by CO2-laser assisted CVD. Solid State Ion., 2017, 313: 32-44.

[240]

NazarenusT, SunYY, ExnerJ, et al. . Powder aerosol deposition as a method to produce garnet-type solid ceramic electrolytes: a study on electrochemical film properties and industrial applications. Energy Technol., 2021, 9: 2100211.

[241]

ChenJX, PalliottoA, YunS, et al. . Post-lithiation: a way to control the ionic conductivity of solid-state thin film electrolyte. Mater. Adv., 2023, 4: 6638-6644.

[242]

PfenningerR, StruzikM, GarbayoI, et al. . A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy, 2019, 4: 475-483.

[243]

SastreJ, LinTY, FilippinAN, et al. . Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries. ACS Appl. Energy Mater., 2019, 2: 8511-8524.

[244]

SastreJ, PriebeA, DöbeliM, et al. . Lithium garnet Li7La3Zr2O12 electrolyte for all-solid-state batteries: closing the gap between bulk and thin film Li-ion conductivities. Adv. Mater. Interfaces, 2020, 7: 2000425.

[245]

YiE, WangWM, KiefferJ, et al. . Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J. Mater. Chem. A, 2016, 4: 12947-12954.

[246]

XiangWY, MaRT, LiuXY, et al. . Rapid Li compensation toward highly conductive solid state electrolyte film. Nano Energy, 2023, 116: 108816.

[247]

ChenL, LiYT, LiSP, et al. . PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46: 176-184.

[248]

JiangTL, HePG, WangGX, et al. . Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater., 2020, 10: 1903376.

[249]

WangRL, DongQ, WangCW, et al. . High-temperature ultrafast sintering: exploiting a new kinetic region to fabricate porous solid-state electrolyte scaffolds. Adv. Mater., 2021, 33: 2100726.

[250]

BaoCS, ZhengCJ, WuMF, et al. . 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater., 2023, 13: 2204028.

[251]

WeberR, GenoveseM, LouliAJ, et al. . Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy, 2019, 4: 683-689.

[252]

HuangWZ, ZhaoCZ, WuP, et al. . Anode-free solid-state lithium batteries: a review. Adv. Energy Mater., 2022, 12: 2201044.

[253]

WangMJ, CarmonaE, GuptaA, et al. . Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun., 2020, 11: 5201.

[254]

FuchsT, BeckerJ, HaslamCG, et al. . Current-dependent lithium metal growth modes in “anode-free” solid-state batteries at the Cu|LLZO interface. Adv. Energy Mater., 2023, 13: 2203174.

[255]

LeeK, KazyakE, WangMJ, et al. . Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule, 2022, 6: 2547-2565.

[256]

WenJY, WangTR, WangC, et al. . A tailored interface design for anode-free solid-state batteries. Adv. Mater., 2024, 36: 2307732.

[257]

FallarinoL, ChishtiUN, PesceA, et al. . Towards lithium-free solid-state batteries with nanoscale Ag/Cu sputtered bilayer electrodes. Chem. Commun., 2023, 59: 12346-12349.

[258]

ChenSJ, ZhangJX, NieL, et al. . All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte. Adv. Mater., 2021, 33: 2002325.

[259]

SinghDK, FuchsT, KrempaszkyC, et al. . Overcoming anode instability in solid-state batteries through control of the lithium metal microstructure. Adv. Funct. Mater., 2023, 33: 2211067.

[260]

JanekJ, ZeierWG. A solid future for battery development. Nat. Energy, 2016, 1: 16141.

[261]

NittaN, WuFX, LeeJT, et al. . Li-ion battery materials: present and future. Mater. Today, 2015, 18: 252-264.

[262]

ZhaoC, WangCW, LiuX, et al. . Suppressing strain propagation in ultrahigh-Ni cathodes during fast charging via epitaxial entropy-assisted coating. Nat. Energy, 2024, 9: 345-356.

[263]

LiB, ZhangK, YangYL, et al. . Perspectives on the practicability of Li-rich NMC layered oxide cathodes. Adv. Mater., 2024, 36: 2400259.

[264]

WuFX, YushinG. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci., 2017, 10: 435-459.

[265]

BiCX, YaoN, LiXY, et al. . Unveiling the reaction mystery between lithium polysulfides and lithium metal anode in lithium-sulfur batteries. Adv. Mater., 2024, 36: 2411197.

[266]

HanQ, GuoW, HeXF, et al. . Decoupling mass transport and electron transfer by a double-cathode structure of a Li-O2 battery with high cyclic stability. Joule, 2022, 6: 381-398.

[267]

ZhouXM, LiuJ, OuyangZJ, et al. . In situ construction of electronically insulating and air-stable ionic conductor layer on electrolyte surface and grain boundary to enable high-performance garnet-type solid-state batteries. Small, 2024, 20: 2402086.

[268]

HayashiN, WatanabeK, ShimanoeK. Co-sintering a cathode material and garnet electrolyte to develop a bulk-type solid-state Li metal battery with wide electrochemical windows. J. Mater. Chem. A, 2024, 12: 5269-5281.

[269]

HänselC, AfyonS, RuppJLM. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode: LiMn1.5Ni0.5O4. Nanoscale, 2016, 8: 18412-18420.

[270]

YuJM, ZhaiWB, ZhangC, et al. . Solvent-free and long-cycling garnet-based lithium-metal batteries. ACS Energy Lett., 2023, 8: 1468-1476.

[271]

HuaX, RobertR, DuLS, et al. . Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J. Phys. Chem. C, 2014, 118: 15169-15184.

[272]

JiXL, LeeKT, NazarLF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater., 2009, 8: 500-506.

[273]

YinYX, XinS, GuoYG, et al. . Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. Engl., 2013, 52: 13186-13200.

[274]

QuHT, JuJW, ChenBB, et al. . Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium–sulfur batteries. J. Mater. Chem. A, 2018, 6: 23720-23729.

[275]

FuKK, GongYH, XuSM, et al. . Stabilizing the garnet solid-electrolyte/polysulfide interface in Li–S batteries. Chem. Mater., 2017, 29: 8037-8041.

[276]

PervezSA, VinayanBP, Ali CambazM, et al. . Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state Li–sulfur battery. J. Mater. Chem. A, 2020, 8: 16451-16462.

[277]

MaK, ChenB, LiC, et al. . Improvement of Li-ion conductivity and air stability of Ta-doped Li7La3Zr2O12 electrolyte via Ga co-doping and its application in Li–S battery. J. Mater. Chem. A, 2024, 12: 3601-3615.

[278]

WangCW, FuK, KammampataSP, et al. . Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev., 2020, 120: 4257-4300.

[279]

FuK, GongYH, HitzGT, et al. . Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ. Sci., 2017, 10: 1568-1575.

[280]

XuSM, McOwenDW, WangCW, et al. . Three-dimensional, solid-state mixed electron–ion conductive framework for lithium metal anode. Nano Lett., 2018, 18: 3926-3933.

[281]

XuSM, McOwenDW, ZhangL, et al. . All-in-one lithium–sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater., 2018, 15: 458-464.

[282]

HitzGT, McOwenDW, ZhangL, et al. . High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today, 2019, 22: 50-57.

[283]

WeiSY, MaL, HendricksonKE, et al. . Metal–sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc., 2015, 137: 12143-12152.

[284]

Perez BeltranS, BalbuenaPB. Sulfurized polyacrylonitrile (SPAN): changes in mechanical properties during electrochemical lithiation. J. Phys. Chem. C, 2021, 125: 13185-13194.

[285]

AhmedMS, LeeS, AgostiniM, et al. . Multiscale understanding of covalently fixed sulfur-polyacrylonitrile composite as advanced cathode for metal–sulfur batteries. Adv. Sci., 2021, 8: 2101123.

[286]

ShiCM, AlexanderGV, O’NeillJ, et al. . All-solid-state garnet type sulfurized polyacrylonitrile/lithium-metal battery enabled by an inorganic lithium conductive salt and a bilayer electrolyte architecture. ACS Energy Lett., 2023, 8: 1803-1810.

[287]

ShiCM, TakeuchiS, AlexanderGV, et al. . High sulfur loading and capacity retention in bilayer garnet sulfurized-polyacrylonitrile/lithium-metal batteries with gel polymer electrolytes. Adv. Energy Mater., 2023, 13: 2301656.

[288]

WachsmanED, AlexanderGV, MooresR, et al. . Toward solid-state Limetal-air batteries; an SOFC perspective of solid 3D architectures, heterogeneous interfaces, and oxygen exchange kinetics. Faraday Discuss., 2024, 248: 266-276.

[289]

GuZ, XinX, XuZL, et al. . Garnet electrolyte-based integrated architecture for high-performance all-solid-state lithium-oxygen batteries. Adv. Funct. Mater., 2023, 33: 2301583.

[290]

SunJY, ZhaoN, LiYQ, et al. . A rechargeable Li-air fuel cell battery based on garnet solid electrolytes. Sci. Rep., 2017, 7: 41217.

[291]

YangH, MuDB, WuBR, et al. . Improving cathode/Li6.4La3Zr1.4Ta0.6O12 electrolyte interface with a hybrid PVDF-HFP-based buffer layer for solid lithium battery. J. Mater. Sci., 2020, 55: 11451-11461.

[292]

ShiCM, HamannT, TakeuchiS, et al. . 3D asymmetric bilayer garnet-hybridized high-energy-density lithium–sulfur batteries. ACS Appl. Mater. Interfaces, 2023, 15: 751-760.

[293]

YangCP, ZhangL, LiuBY, et al. . Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 3770-3775.

[294]

AlexanderGV, ShiCM, O’NeillJ, et al. . Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater., 2023, 22: 1136-1143.

[295]

XuR, LiuF, YeYS, et al. . A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv. Mater., 2021, 33: 2104009.

[296]

KravchykK, ZhangHY, OkurF, et al. . Li-garnet solid-state batteries with LLZO scaffolds. Acc. Mater. Res., 2022, 3: 411-415.

[297]

KrauskopfT, HartmannH, ZeierWG, et al. . Toward a fundamental understanding of the lithium metal anode in solid-state batteries: an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces, 2019, 11: 14463-14477.

[298]

ChangW, MayR, WangM, et al. . Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface. Nat. Commun., 2021, 12: 6369.

[299]

WangMJ, ChoudhuryR, SakamotoJ. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule, 2019, 3: 2165-2178.

[300]

MeyerA, XiaoXC, ChenMY, et al. . A power-law decrease in interfacial resistance between Li7La3Zr2O12 and lithium metal after removing stack pressure. J. Electrochem. Soc., 2021, 168: 100522.

[301]

ZamanW, ZhaoL, MartinT, et al. . Temperature and pressure effects on unrecoverable voids in Li metal solid-state batteries. ACS Appl. Mater. Interfaces, 2023, 15: 37401-37409.

[302]

SiniscalchiM, LiuJL, GibsonJS, et al. . On the relative importance of Li bulk diffusivity and interface morphology in determining the stripped capacity of metallic anodes in solid-state batteries. ACS Energy Lett., 2022, 7: 3593-3599.

[303]

KrauskopfT, MogwitzB, RosenbachC, et al. . Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater., 2019, 9: 1902568.

[304]

ThenuwaraAC, ThompsonEL, MalkowskiTF, et al. . Interplay among metallic interlayers, discharge rate, and pressure in LLZO-based lithium–metal batteries. ACS Energy Lett., 2023, 8: 4016-4023.

[305]

FuchsT, HaslamCG, MoyAC, et al. . Increasing the pressure-free stripping capacity of the lithium metal anode in solid-state-batteries by carbon nanotubes. Adv. Energy Mater., 2022, 12: 2201125.

[306]

LewisJA, CavallaroKA, LiuY, et al. . The promise of alloy anodes for solid-state batteries. Joule, 2022, 6: 1418-1430.

[307]

LiJR, SuH, LiuY, et al. . Li alloys in all solid-state lithium batteries: a review of fundamentals and applications. Electrochem. Energy Rev., 2024, 7: 18.

[308]

ZhangR, WangCY, ZouPC, et al. . Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610: 67-73.

[309]

GeorgeEP, RaabeD, RitchieRO. High-entropy alloys. Nat. Rev. Mater., 2019, 4: 515-534.

[310]

ZhaoX, FuZQ, ZhangX, et al. . More is better: high-entropy electrolyte design in rechargeable batteries. Energy Environ. Sci., 2024, 17: 2406-2430.

[311]

ZhangXY, XiangQ, TangS, et al. . Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett., 2020, 20: 2871-2878.

[312]

HanJ, LeeMJ, LeeK, et al. . Role of bicontinuous structure in elastomeric electrolytes for high-energy solid-state lithium-metal batteries. Adv. Mater., 2023, 35: 2205194.

[313]

LeeMJ, HanJ, LeeK, et al. . Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601: 217-222.

[314]

ZhouZK, TaoZR, ChenRY, et al. . Elastomeric electrolyte for high capacity and long-cycle-life solid-state lithium metal battery. Small Methods, 2023, 7: 2201328.

[315]

JinY, LiuK, LangJL, et al. . An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat. Energy, 2018, 3: 732-738.

[316]

YamadaH, ItoT, NakamuraT, et al. . High cathode loading and low-temperature operating garnet-based all-solid-state lithium batteries: material/process/architecture optimization and understanding of cell failure. Small, 2023, 19: 2301904.

[317]

LiJ, CaiYJ, CuiYY, et al. . Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for −20–70 °C lithium metal battery. Nano Energy, 2022, 95: 107027.

Funding

Xiong’an New Area Science and Technology Innovation Special Project(2022XAGG0110)

Postdoctoral Fellowship Program of CPSF(GZC20233123)

Beijing Natural Science Foundation(2244090)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

AI Summary AI Mindmap
PDF

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/