Solid-State Electrolytes and Their Interfacial Properties: Implications for Solid-State Lithium Batteries

Seul-Yi Lee , Jishu Rawal , Jieun Lee , Jagadis Gautam , Seok Kim , Gui-Liang Xu , Khalil Amine , Soo-Jin Park

Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 9

PDF
Electrochemical Energy Reviews ›› 2025, Vol. 8 ›› Issue (1) : 9 DOI: 10.1007/s41918-025-00242-3
Review Article

Solid-State Electrolytes and Their Interfacial Properties: Implications for Solid-State Lithium Batteries

Author information +
History +
PDF

Abstract

Solid-state batteries (SSBs) have emerged as a promising alternative technology for advancing global electrification efforts. The SSBs offer significant advantages over conventional electrolyte-based batteries, including enhanced safety, increased energy density, and improved performance. Their non-flammability, enhanced thermal and mechanical stability, and lower self-discharge rates make them particularly promising for future energy solutions. However, their prevalent implementation in large-scale industries is inhibited by inadequate ionic conductivity and the interfacial challenges associated with solid-state electrolytes (SSEs). These challenges include suboptimal solid–solid contact, grain boundary limitations, poor wettability, and unfavorable phenomena such as dendrite growth, interface voids, interdiffusion layer formation, and lattice mismatch. This comprehensive review meticulously examines recent developments and prospects in SSEs, categorizing them into halide, sulfide, oxide, hydride, and polymer types. It then analyzes the challenges and interfacial limitations of SSBs, including dendrite growth, voids, cracks, contact issues, lattice mismatch, and interdiffusion. In addition, potential solutions for enhancing interfacial adherence between electrodes and SSEs are outlined. Furthermore, recent trends in the SSB industry, including successfully commercialized products, are highlighted. Finally, this review explores the future potential of SSEs in advanced SSBs, projecting their significant industrial impact.

Graphical Abstract

Keywords

Li battery / Solid-state battery / Solid-state electrolyte / Electrode–electrolyte interface / Engineering / Materials Engineering / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Seul-Yi Lee, Jishu Rawal, Jieun Lee, Jagadis Gautam, Seok Kim, Gui-Liang Xu, Khalil Amine, Soo-Jin Park. Solid-State Electrolytes and Their Interfacial Properties: Implications for Solid-State Lithium Batteries. Electrochemical Energy Reviews, 2025, 8(1): 9 DOI:10.1007/s41918-025-00242-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HsuA, HöhneN, KuramochiT, et al. . Beyond states: harnessing sub-national actors for the deep decarbonisation of cities, regions, and businesses. Energy Res. Soc. Sci., 2020, 70. 101738

[2]

FigueresC, Le QuéréC, MahindraA, et al. . Emissions are still rising: ramp up the cuts. Nature, 2018, 564: 27-30.

[3]

TrumC. Realizing the benefits of digitalization through standards. Nat. Gas Electr., 2020, 36: 9-17.

[4]

LuiS, KuramochiT, SmitS, et al. . Correcting course: the emission reduction potential of international cooperative initiatives. Clim. Policy, 2021, 21: 232-250.

[5]

Timofeeva, E.V., Katsoudas, J.P., Segre, C.U., et al.: Battery entrepreneurship: gameboard from lab to market. In: García-Martínez, J., Li, K. (eds.) Chemistry Entrepreneurship (2021). https://doi.org/10.1002/9783527819867.ch5

[6]

SharmaK, SainiLM. Power-line communications for smart grid: progress, challenges, opportunities and status. Renew. Sust. Energ. Rev., 2017, 67: 704-751.

[7]

FamprikisT, CanepaP, DawsonJA, et al. . Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater., 2019, 18: 1278-1291.

[8]

Park, S.J., Seo, M.K., Kim, S.: Next-generation electrolytes for Li batteries. In: Aifantis, K.E., Hackney, S.A., Kumar, R.V. (eds) High Energy Density Lithium Batteries (2010). https://doi.org/10.1002/9783527630011.ch7

[9]

DuanJ, TangX, DaiHF, et al. . Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev., 2020, 3: 1-42.

[10]

WangJH, ZhengQF, FangMM, et al. . Concentrated electrolytes widen the operating temperature range of lithium-ion batteries. Adv. Sci., 2021, 8: 2101646.

[11]

Boaretto, N., Garbayo, I., Valiyaveettil-SobhanRaj, S., et al.: Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing. J. Power Sources 502, 229919 (2021). https://doi.org/10.1016/j.jpowsour.2021.229919

[12]

PingWW, WangCW, WangRL, et al. . Printable, high-performance solid-state electrolyte films. Sci. Adv., 2020, 6: eabc8641.

[13]

ShenX, ZhangQ, NingT, et al. . Critical challenges and progress of solid garnet electrolytes for all-solid-state batteries. Mater. Today Chem., 2020, 18. 100368

[14]

SunYK. Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett., 2020, 5: 3221-3223.

[15]

ShanZ, WuMM, DuYH, et al. . Covalent organic framework-based electrolytes for fast Li+ conduction and high-temperature solid-state lithium-ion batteries. Chem. Mater., 2021, 33: 5058-5066.

[16]

AlbertusP, AnadanV, BanC, et al. . Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett., 2021, 6: 1399-1404.

[17]

LouSF, ZhangF, FuCK, et al. . Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater., 2021, 33: 2000721.

[18]

Kurzweil, P.: Gaston Planté and his invention of the lead-acid battery: the genesis of the first practical rechargeable battery. J. Power Sources 195, 4424–4434 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.126

[19]

BerlinLR. Robert noyce and fairchild semiconductor, 1957–1968. Bus. Hist. Rev., 2001, 75: 63-101.

[20]

Comer, E.P.: The lithium industry today Energy 3, 237-240(1978). https://doi.org/10.1016/0360-5442(78)90017-8

[21]

GaoJ, ShiSQ, LiH. Brief overview of electrochemical potential in lithium ion batteries. Chin. Phys. B, 2016, 25. 018210

[22]

KamranU, HeoYJ, MinBG, et al. . Effect of nickel ion doping in MnO2/reduced graphene oxide nanocomposites for lithium adsorption and recovery from aqueous media. RSC Adv., 2020, 10: 9245-9257.

[23]

PatrikeA, SureshK, WahidM, et al. . Ice-colloidal templated carbon host for highly efficient, dendrite free Li metal anode. Carbon, 2021, 179: 256-265.

[24]

ZubiG, Dufo-LópezR, CarvalhoM, et al. . The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev., 2018, 89: 292-308.

[25]

Yang, G.J., Park, S.J.: Single-step solid-state synthesis and characterization of Li4Ti5−xFexO12–y (0 ⩽ x ⩽ 0.1) as an anode for lithium-ion batteries. J. Mater. Chem. A 8, 2627–2636 (2020). https://doi.org/10.1039/c9ta12117j

[26]

RyuJ, HongD, LeeHW, et al. . Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res., 2017, 10: 3970-4002.

[27]

Victor ChomboP, LaoonualY, WongwisesS. Lessons from the electric vehicle crashworthiness leading to battery fire. Energies, 2021, 14: 4802.

[28]

TakahashiT. Early history of solid state ionics. MRS Online Proc. Libr., 1988, 135: 3-9.

[29]

BonesRJ, CoetzerJ, GallowayRC, et al. . A sodium/iron(II) chloride cell with a beta alumina electrolyte. J. Electrochem. Soc., 1987, 134: 2379-2382.

[30]

DudneyNJ, BatesJB, ZuhrRA, et al. . Sputtering of lithium compounds for preparation of electrolyte thin films. Solid State Ion., 1992, 53: 655-661.

[31]

SubramanianMA, SubramanianR, ClearfieldA. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ion., 1986, 18: 562-569.

[32]

Kuboki, T., Okuyama, T., Ohsaki, T., et al.: Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources 146, 766–769 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.082

[33]

EithirajRD, JaiganeshG, KalpanaG, et al. . First-principles study of electronic structure and ground-state properties of alkali-metal sulfides: Li2S, Na2S, K2S and Rb2S. Phys. Status Solidi B, 2007, 244: 1337-1346.

[34]

Lühder, K., Schmidt, L., Schnittke, A., et al.: A study on novel lithium-iodine and lithium-bromine solid electrolyte batteries. J. Power Sources 40, 257–263 (1992). https://doi.org/10.1016/0378-7753(92)80013-2

[35]

ChengXL, PanJ, ZhaoY, et al. . Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater., 2018, 8: 1702184.

[36]

NangirM, MassoudiA, OmidvarH. Role of hybrid solid state interface as a scavenger for anomalous Li dendrites in the lithium metal battery. J. Energy Storage, 2024, 99. 113360

[37]

XuRN, YaoJM, ZhangZQ, et al. . Room temperature halide-eutectic solid electrolytes with viscous feature and ultrahigh ionic conductivity. Adv. Sci., 2022, 9: 2204633.

[38]

HussainF, ZhuJ, XiaH, et al. . Theoretical insights on the comparison of Li-ion conductivity in halide superionic conductors Li3MCl6, Li2M2/3Cl4, and LiMCl4 (M = Y, Sc, Al, and Sm). J. Phys. Chem. C, 2022, 126: 13105-13113.

[39]

TanakaY, et al. . New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm−1 for all-solid-state batteries. Angew. Chem., Int. Ed, 2023, 62: e202217581.

[40]

LiangJW, LiXN, WangS, et al. . Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc., 2020, 142: 7012-7022.

[41]

ZhouLD, ZuoTT, KwokCY, et al. . High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy, 2022, 7: 83-93.

[42]

KatoY, HoriS, SaitoT, et al. . High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy, 2016, 1: 16030.

[43]

LeeY, JeongJ, LeeHJ, et al. . Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS Energy Lett., 2022, 7: 171-179.

[44]

PengJ, WuDX, SongFM, et al. . High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Adv. Funct. Mater., 2022, 32: 2105776.

[45]

KamayaN, HommaK, YamakawaY, et al. . A lithium superionic conductor. Nat. Mater., 2011, 10: 682-686.

[46]

TatsumisagoM, HayashiA. Superionic glasses and glass-ceramics in the Li2S-P2S5 system for all-solid-state lithium secondary batteries. Solid State Ion., 2012, 225: 342-345.

[47]

WuF, FitzhughW, YeLH, et al. . Advanced sulfide solid electrolyte by core-shell structural design. Nat. Commun., 2018, 9: 4037.

[48]

LuPS, LiuLL, WangS, et al. . Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv. Mater., 2021, 33: 2100921.

[49]

NikodimosY, TsaiMC, AbrhaLH, et al. . Al-Sc dual-doped LiGe2(PO4)3: a NASICON-type solid electrolyte with improved ionic conductivity. J. Mater. Chem. A, 2020, 8: 11302-11313.

[50]

BuannicL, OrayechB, López Del AmoJM, et al. . Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem. Mater., 2017, 29: 1769-1778.

[51]

Du, F.M., Zhao, N., Li, Y.Q., et al.: All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J. Power Sources 300, 24–28 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.061

[52]

LanWJ, FanHY, LauVW, et al. . Realizing Li7La3Zr2O12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications. Sustain. Energy Fuels, 2020, 4: 1812-1821.

[53]

LuY, MengXY, AlonsoJA, et al. . Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2019, 11: 2042-2049.

[54]

BucharskyEC, SchellKG, HintennachA, et al. . Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2−x(PO4)3. Solid State Ion., 2015, 274: 77-82.

[55]

MatsuoM, NakamoriY, OrimoSI, et al. . Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett., 2007, 91. 224103

[56]

MatsuoM, RemhofA, MartelliP, et al. . Complex hydrides with (BH4) and (NH2) anions as new lithium fast-ion conductors. J. Am. Chem. Soc., 2009, 131: 16389-16391.

[57]

ZettlR, de KortL, GombotzM, et al. . Combined effects of anion substitution and nanoconfinement on the ionic conductivity of Li-based complex hydrides. J. Phys. Chem. C, 2020, 124: 2806-2816.

[58]

MatsuoM, SatoT, MiuraY, et al. . Synthesis and lithium fast-ion conductivity of a new complex hydride Li3(NH2)2I with double-layered structure. Chem. Mater., 2010, 22: 2702-2704.

[59]

TanJW, AoX, DaiA, et al. . Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries. Energy Storage Mater., 2020, 33: 173-180.

[60]

BagS, ZhouCT, KimPJ, et al. . LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries. Energy Storage Mater., 2020, 24: 198-207.

[61]

ZhuL, LiJL, JiaYF, et al. . Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte. Int. J. Energy Res., 2020, 44: 10168-10178.

[62]

LiangJN, SunYP, ZhaoY, et al. . Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. J. Mater. Chem. A, 2020, 8: 2769-2776.

[63]

YangXF, JiangM, GaoXJ, et al. . Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?. Energy Environ. Sci., 2020, 13: 1318-1325.

[64]

FangRY, XuHH, XuBY, et al. . Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Adv. Funct. Mater., 2021, 31: 2001812.

[65]

ZhaoXY, Zhao-KargerZ, FichtnerM, et al. . Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed., 2020, 59: 5902-5949.

[66]

LiXN, LiangJW, ChenN, et al. . Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed., 2019, 58: 16427-16432.

[67]

LiX, LiangJ, ChenN, et al. . Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed., 2019, 58: 16427-16432.

[68]

YuTW, LiangJW, LuoL, et al. . Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater., 2021, 11: 2101915.

[69]

LiXN, LiangJW, ChenN, et al. . Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed., 2019, 131: 16579-16584.

[70]

LiXN, LiangJW, AdairKR, et al. . Origin of superionic Li3Y1–xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Lett., 2020, 20: 4384-4392.

[71]

LiWH, LiangJW, LiMS, et al. . Unraveling the origin of moisture stability of halide solid-state electrolytes by in situ and operando synchrotron X-ray analytical techniques. Chem. Mater., 2020, 32: 7019-7027.

[72]

TanakaY, UenoK, MizunoK, et al. . New oxyhalide solid electrolytes with high lithium ionic conductivity. Angew. Chem. Int. Ed., 2023, 62. e202217581

[73]

LiuZT, MaS, LiuJ, et al. . High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett., 2021, 6: 298-304.

[74]

LiangJW, LiX, WangS, et al. . Site-occupation-tuned superionic LiScCl halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc., 2020, 142: 7012-7022.

[75]

LannelongueP, LindbergS, GonzaloE, et al. . Stable cycling of halide solid state electrolyte enabled by a dynamic layered solid electrolyte interphase between Li metal and Li3YCl4Br2. Energy Storage Mater., 2024, 72. 103733

[76]

ChenY, LiWW, SunCZ, et al. . Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries. Adv. Energy Mater., 2021, 11: 2002545.

[77]

LiuFQ, GaoL, ZhangZP, et al. . Interfacial challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes. Energy Storage Mater., 2024, 64. 103072

[78]

WuJH, LiuSF, HanFD, et al. . Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater., 2021, 33: 2000751.

[79]

KimKJ, BalaishM, WadaguchiM, et al. . Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater., 2021, 11: 2002689.

[80]

XuRC, XiaXH, LiSH, et al. . All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J. Mater. Chem. A, 2017, 5: 6310-6317.

[81]

NikodimosY, SuWN, BezabhHK, et al. . Effect of selected dopants on conductivity and moisture stability of Li3PS4 sulfide solid electrolyte: a first-principles study. Mater. Today Chem., 2022, 24. 100837

[82]

XuJR, LiYX, LuPS, et al. . Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv. Energy Mater., 2022, 12: 2102348.

[83]

LiJW, LiYY, ZhangSN, et al. . Long cycle life all-solid-state batteries enabled by solvent-free approach for sulfide solid electrolyte and cathode films. Chem. Eng. J., 2023, 455. 140605

[84]

NikodimosY, HuangCJ, TakluBW, et al. . Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ. Sci., 2022, 15: 991-1033.

[85]

SunHC, KangSF, CuiLF. Prospects of LLZO type solid electrolyte: from material design to battery application. Chem. Eng. J., 2023, 454. 140375

[86]

YangYX, YangSM, XueX, et al. . Inorganic all-solid-state sodium batteries: electrolyte designing and interface engineering. Adv. Mater., 2024, 36: 2308332.

[87]

VoropaevaDY, NovikovaSA, YaroslavtsevAB. Polymer electrolytes for metal-ion batteries. Russ. Chem. Rev., 2020, 89: 1132-1155.

[88]

LiS, ZhangSQ, ShenL, et al. . Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci., 2020, 7: 1903088.

[89]

KuganathanN, RushtonMJD, GrimesRW, et al. . Self-diffusion in garnet-type Li7La3Zr2O12 solid electrolytes. Sci. Rep., 2021, 11: 451.

[90]

AllenJL, WolfenstineJ, RangasamyE, et al. . Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources, 2012, 206: 315-319.

[91]

TolganbekN, YerkinbekovaY, KhairullinA, et al. . Enhancing purity and ionic conductivity of NASICON-typed Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceram. Int., 2021, 47: 18188-18195.

[92]

YanS, YimCH, PankovV, et al. . Perovskite solid-state electrolytes for lithium metal batteries. Batteries, 2021, 7: 75.

[93]

LiuHB, XiaoJC, CaoK, et al. . A-site deficient perovskite lithium praseodymium titanate as a high-rate anode for lithium-ion batteries. Chem. Eng. J., 2024, 479. 147765

[94]

CaoJF, JiYX, ShaoZP. Perovskites for protonic ceramic fuel cells: a review. Energy Environ. Sci., 2022, 15: 2200-2232.

[95]

KatoY, HoriS, KannoR. Li10GeP2S12-type superionic conductors: synthesis, structure, and ionic transportation. Adv. Energy Mater., 2020, 10: 2002153.

[96]

TaoBR, RenCJ, LiHD, et al. . Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv. Funct. Mater., 2022, 32: 2203551.

[97]

WooS, KangB. Superior compatibilities of a LISICON-type oxide solid electrolyte enable high energy density all-solid-state batteries. J. Mater. Chem. A, 2022, 10: 23185-23194.

[98]

CuanJ, ZhouY, ZhouTF, et al. . Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Adv. Mater., 2019, 31: 1803533.

[99]

DuchêneL, RemhofA, HagemannH, et al. . Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Mater., 2020, 25: 782-794.

[100]

de KortLM, Brandt CorstiusOE, GulinoV, et al. . Designing highly conductive sodium-based metal hydride nanocomposites: interplay between hydride and oxide properties. Adv. Funct. Mater., 2023, 33: 2209122.

[101]

GuzikMN, MohtadiR, SartoriS. Lightweight complex metal hydrides for Li-, Na-, and Mg-based batteries. J. Mater. Res., 2019, 34: 877-904.

[102]

TrückJ, HadjixenophontosE, JoshiY, et al. . Ionic conductivity of melt-frozen LiBH4 films. RSC Adv., 2019, 9: 38855-38859.

[103]

LatrocheM, BlanchardD, CuevasF, et al. . Full-cell hydride-based solid-state Li batteries for energy storage. Int. J. Hydrog. Energy, 2019, 44: 7875-7887.

[104]

UnemotoA, ChenCL, WangZC, et al. . Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery. Nanotechnology, 2015, 26. 254001

[105]

Kisu, K., Kim, S., Oguchi, H., et al.: Interfacial stability between LiBH4-based complex hydride solid electrolytes and Li metal anode for all-solid-state Li batteries. J. Power Sources 436, 226821 (2019). https://doi.org/10.1016/j.jpowsour.2019.226821

[106]

ParkSJ, HanAR, ShinJS, et al. . Influence of crystallinity on ion conductivity of PEO-based solid electrolytes for lithium batteries. Macromol. Res., 2010, 18: 336-340.

[107]

XianC, ZhangS, LiuP, et al. . An advanced gel polymer electrolyte for solid-state lithium metal batteries. Small, 2024, 20: 2306381.

[108]

Zhu, M.Y., Ma, J.F., Wang, Z.Y., et al.: In-situ polymerized gel polymer electrolytes for stable solid-state lithium batteries with long-cycle life. J. Power Sources 585, 233651 (2023). https://doi.org/10.1016/j.jpowsour.2023.233651

[109]

XiG, XiaoM, WangSJ, et al. . Polymer-based solid electrolytes: material selection, design, and application. Adv. Funct. Mater., 2021, 31: 2007598.

[110]

WuZJ, XieZK, YoshidaA, et al. . Utmost limits of various solid electrolytes in all-solid-state lithium batteries: a critical review. Renew. Sustain. Energy Rev., 2019, 109: 367-385.

[111]

ZhangTF, HeWJ, ZhangW, et al. . Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci., 2020, 11: 8686-8707.

[112]

WolfenstineJ, AllenJL, SakamotoJ, et al. . Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: A brief review. Ionics, 2018, 24: 1271-1276.

[113]

LeeMJ, ShinDO, KimJY, et al. . Interfacial barrier free organic-inorganic hybrid electrolytes for solid state batteries. Energy Storage Mater., 2021, 37: 306-314.

[114]

JungYC, ParkMS, DohCH, et al. . Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature. Electrochim. Acta, 2016, 218: 271-277.

[115]

ZhaiYF, YangGM, ZengZ, et al. . Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries. ACS Appl. Energy Mater., 2021, 4: 7973-7982.

[116]

YeF, LiaoKM, RanR, et al. . Recent advances in filler engineering of polymer electrolytes for solid-state Li-ion batteries: a review. Energy Fuels, 2020, 34: 9189-9207.

[117]

YuXJ, ZhaiPB, ZhaoN, et al. . In situ plasticized LLZTO-PVDF composite electrolytes for high-performance solid-state lithium metal batteries. Batteries, 2023, 9: 257.

[118]

HuangXY, WuJF, WangXW, et al. . In situ synthesis of a Li6.4La3Zr1.4Ta0.6O12/poly(vinylene carbonate) hybrid solid-state electrolyte with enhanced ionic conductivity and stability. ACS Appl. Energy Mater., 2021, 4: 9368-9375.

[119]

DixitMB, ZamanW, BootwalaY, et al. . Scalable manufacturing of hybrid solid electrolytes with interface control. ACS Appl. Mater. Interfaces, 2019, 11: 45087-45097.

[120]

LiuM, ZhangSN, van EckERH, et al. . Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol., 2022, 17: 959-967.

[121]

YuXW, ManthiramA. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater., 2021, 34: 282-300.

[122]

WangJM, MaX, LiuM, et al. . A general strategy for all-solid-state batteries with agglomeration-free and high conductivity achieved by improving the interface compatibility of fillers and polymer matrix. J. Colloid Interface Sci., 2024, 671: 248-257.

[123]

KimS, ParkSJ. Preparation and electrochemical behaviors of polymeric composite electrolytes containing mesoporous silicate fillers. Electrochim. Acta, 2007, 52: 3477-3484.

[124]

LuoB, WuJT, ZhangM, et al. . Surface modification of garnet fillers with a polymeric sacrificial agent enables compatible interfaces of composite solid-state electrolytes. Chem. Sci., 2023, 14: 13067-13079.

[125]

ChuaS, FangRP, SunZH, et al. . Hybrid solid polymer electrolytes with two-dimensional inorganic nanofillers. Chem., 2018, 24: 18180-18203.

[126]

NaderiR, GurungA, ZhouZP, et al. . Activation of passive nanofillers in composite polymer electrolyte for higher performance lithium-ion batteries. Adv. Sustain. Syst., 2017, 1: 1700043.

[127]

GaoL, LiJX, JuJG, et al. . Polyvinylidene fluoride nanofibers with embedded Li6.4La3Zr1.4Ta0.6O12 fillers modified polymer electrolytes for high-capacity and long-life all-solid-state lithium metal batteries. Compos. Sci. Technol., 2020, 200: 108408.

[128]

WangWM, YiE, FiciAJ, et al. . Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C, 2017, 121: 2563-2573.

[129]

ZhangY, ZhangL, GuoP, et al. . Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries. Nano Res., 2024, 17: 2663-2670.

[130]

ChenCG, JiangM, ZhouT, et al. . Interface aspects in all-solid-state Li-based batteries reviewed. Adv. Energy Mater., 2021, 11: 2003939.

[131]

LimHD, ParkJH, ShinHJ, et al. . A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Mater., 2020, 25: 224-250.

[132]

YuZJ, ZhangXY, FuCK, et al. . Dendrites in solid-state batteries: ion transport behavior, advanced characterization, and interface regulation. Adv. Energy Mater., 2021, 11: 2003250.

[133]

LiuH, ChengXB, HuangJQ, et al. . Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett., 2020, 5: 833-843.

[134]

YadavNG, FolastreN, BolmontM, et al. . Study of failure modes in two sulphide-based solid electrolyte all-solid-state batteries via in situ SEM. J. Mater. Chem. A, 2022, 10: 17142-17155.

[135]

BaraiP, HigaK, SrinivasanV. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys. Chem. Chem. Phys., 2017, 19: 20493-20505.

[136]

SudoR, NakataY, IshiguroK, et al. . Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ion., 2014, 262: 151-154.

[137]

YangXF, GaoXJ, MukherjeeS, et al. . Phase evolution of a prenucleator for fast Li nucleation in all-solid-state lithium batteries. Adv. Energy Mater., 2020, 10: 2001191.

[138]

YangXF, GaoXJ, ZhaoCT, et al. . Suppressed dendrite formation realized by selective Li deposition in all-solid-state lithium batteries. Energy Storage Mater., 2020, 27: 198-204.

[139]

ChenX, XieJ, LuYH, et al. . Two-dimensional lithiophilic YFδ enabled lithium dendrite removal for quasi-solid-state lithium batteries. J. Materiomics, 2021, 7: 355-365.

[140]

GuoHL, SunH, JiangZL, et al. . Asymmetric structure design of electrolytes with flexibility and lithium dendrite-suppression ability for solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2019, 11: 46783-46791.

[141]

LiuB, DuMJ, ChenBB, et al. . A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. Chem. Eng. J., 2022, 427. 131001

[142]

ZhangY, ShiY, HuXC, et al. . A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries. Adv. Energy Mater., 2020, 10: 1903325.

[143]

ZhangX, WangQJ, HarrisonKL, et al. . Pressure-driven interface evolution in solid-state lithium metal batteries. Cell Rep. Phys. Sci., 2020, 1. 100012

[144]

ChenXZ, HeWJ, DingLX, et al. . Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci., 2019, 12: 938-944.

[145]

AbhilashKP, SelvinPC, NaliniB, et al. . Correlation study on temperature dependent conductivity and line profile along the LLTO/LFP-C cross section for all solid-state Lithium-ion batteries. Solid State Ion., 2019, 341. 115032

[146]

LiFZ, LiJX, ZhuF, et al. . Atomically intimate contact between solid electrolytes and electrodes for Li batteries. Matter, 2019, 1: 1001-1016.

[147]

WuBB, WangSY, EvansWJ, et al. . Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J. Mater. Chem. A, 2016, 4: 15266-15280.

[148]

PambudiFI, AndersonMW, AttfieldMP. Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework. Chem. Sci., 2019, 10: 9571-9575.

[149]

XuPY, RheinheimerW, ShuvoSN, et al. . Origin of high interfacial resistances in solid-state batteries: interdiffusion and amorphous film formation in Li0.33La0.57TiO3/LiMn2O4 half cells. ChemElectroChem, 2019, 6: 4576-4585.

[150]

Ma, J., Chen, B.B., Wang, L.L., et al.: Progress and prospect on failure mechanisms of solid-state lithium batteries. J. Power Sources 392, 94–115 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.055

[151]

Arrese-IgorM, Martinez-IbañezM, López del AmoJM, et al. . Enabling double layer polymer electrolyte batteries: overcoming the Li-salt interdiffusion. Energy Storage Mater., 2022, 45: 578-585.

[152]

ShenYB, ZhangYT, HanSJ, et al. . Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule, 2018, 2: 1674-1689.

[153]

NomuraY, YamamotoK, HirayamaT, et al. . Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface. Angew. Chem. Int. Ed., 2019, 58: 5292-5296.

[154]

HaruyamaJ, SodeyamaK, HanLY, et al. . Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater., 2014, 26: 4248-4255.

[155]

HausbrandR, FingerleM, SpäthT, et al. . Energy level offsets and space charge layer formation at electrode–electrolyte interfaces: X-ray photoelectron spectroscopy analysis of Li-ion model electrodes. Thin Solid Films, 2017, 643: 43-52.

[156]

FanL, ZhuangHL, GaoLN, et al. . Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A, 2017, 5: 3483-3492.

[157]

SchwietertTK, VasileiadisA, WagemakerM. First-principles prediction of the electrochemical stability and reaction mechanisms of solid-state electrolytes. JACS Au, 2021, 1: 1488-1496.

[158]

WangLL, ChenBB, MaJ, et al. . Reviving lithium cobalt oxide-based lithium secondary batteries: toward a higher energy density. Chem. Soc. Rev., 2018, 47: 6505-6602.

[159]

WenzelS, RandauS, LeichtweißT, et al. . Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater., 2016, 28: 2400-2407.

[160]

ZhaoY, ZhengK, SunXL. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule, 2018, 2: 2583-2604.

[161]

BanerjeeA, WangXF, FangCC, et al. . Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev., 2020, 120: 6878-6933.

[162]

KimNY, KimI, BornamehrB, et al. . Recent advances in nanoengineering of electrode–electrolyte interfaces to realize high-performance Li-ion batteries. Energy Environ. Mater., 2024, 7. e12622

[163]

HatzellKB, ChenXC, CobbCL, et al. . Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett., 2020, 5: 922-934.

[164]

Hongahally BasappaR, ItoT, MorimuraT, et al. . Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. J. Power Sources, 2017, 363: 145-152.

[165]

KangJB, DengNP, LiuYR, et al. . Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Mater., 2022, 52: 130-160.

[166]

LuY, ZhaoCZ, YuanH, et al. . Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater., 2021, 31: 2009925.

[167]

YinJY, XuX, JiangS, et al. . High ionic conductivity PEO-based electrolyte with 3D framework for dendrite-free solid-state lithium metal batteries at ambient temperature. Chem. Eng. J., 2022, 431. 133352

[168]

ZhouD, LiuRL, HeYB, et al. . SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater., 2016, 6: 1502214.

[169]

YuZA, CuiY, BaoZN. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci., 2020, 1. 100119

[170]

EfawCM, LuBY, LinYX, et al. . A closed-host bi-layer dense/porous solid electrolyte interphase for enhanced lithium-metal anode stability. Mater. Today, 2021, 49: 48-58.

[171]

ZhangF, ShenF, FanZY, et al. . Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. Rare Met., 2018, 37: 510-519.

[172]

UmedaGA, MenkeE, RichardM, et al. . Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem., 2011, 21: 1593-1599.

[173]

LiQ, ZengFL, GuanYP, et al. . Poly(dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Mater., 2018, 13: 151-159.

[174]

WangC, FuX, LinS, et al. . A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries. J. Energy Chem., 2022, 64: 485-495.

[175]

BarbosaJ, DiasJ, Lanceros-MéndezS, et al. . Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes, 2018, 8: 45.

[176]

WeiLM, ChenCX, HouZY, et al. . Poly(acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci. Rep., 2016, 6: 19583.

[177]

ZhuMS, HuJP, LuQQ, et al. . A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater., 2021, 33: 2007497.

[178]

ZhaoYM, WangDW, GaoY, et al. . Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy, 2019, 64. 103893

[179]

WangC, SunXL, YangL, et al. . In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries. Adv. Mater. Interfaces, 2021, 8: 2001698.

[180]

ShinDO, KimH, JungS, et al. . Electrolyte-free graphite electrode with enhanced interfacial conduction using Li-conductive binder for high-performance all-solid-state batteries. Energy Storage Mater., 2022, 49: 481-492.

[181]

WanM, KangS, WangL, et al. . Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun., 2020, 11: 829.

[182]

KasemchainanJ, ZekollS, Spencer JollyD, et al. . Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater., 2019, 18: 1105-1111.

[183]

DouxJM, NguyenH, TanDHS, et al. . Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater., 2020, 10: 1903253.

[184]

LeeYG, et al. . High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes (vol 171, pg 568, 2020). Nat. Energy, 2020, 5: 348-348.

[185]

LeeYG, FujikiS, JungC, et al. . High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy, 2020, 5: 299-308.

[186]

ZahiriB, PatraA, KigginsC, et al. . Revealing the role of the cathode-electrolyte interface on solid-state batteries. Nat. Mater., 2021, 20: 1392-1400.

[187]

JungSH, KimUH, KimJH, et al. . Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries. Adv. Energy Mater., 2020, 10: 1903360.

[188]

DouxJM, YangY, TanDHS, et al. . Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A, 2020, 8: 5049-5055.

[189]

DoerrerC, CaponeI, NarayananS, et al. . High energy density single-crystal NMC/Li6PS5Cl cathodes for all-solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces, 2021, 13: 37809-37815.

[190]

KwakHW, ParkYJ. Cathode coating using LiInO-LiI composite for stable sulfide-based all-solid-state batteries. Sci. Rep., 2019, 9: 8099.

[191]

ZhengJG, SunCG, WangZX, et al. . Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angew. Chem. Int. Ed., 2021, 60: 18448-18453.

[192]

LiuF, ChengY, ZuoXR, et al. . Gradient trilayer solid-state electrolyte with excellent interface compatibility for high-voltage lithium batteries. Chem. Eng. J., 2022, 441. 136077

[193]

XiaoYR, TurcheniukK, NarlaA, et al. . Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater., 2021, 20: 984-990.

[194]

TanFH, AnH, LiN, et al. . Stabilization Li0.33La0.55TiO3 of solid electrolyte interphase layer and enhancement of cycling performance of LiNi0.5Co0.3Mn0.2O2 battery cathode with buffer layer. Nanomaterials, 2021, 11: 989.

[195]

SumitaM, TanakaY, IkedaM, et al. . Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J. Phys. Chem. C, 2016, 120: 13332-13339.

[196]

LiXL, PengWX, TianRZ, et al. . Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries. Electrochim. Acta, 2020, 363. 137185

[197]

HanX, ZhouWJ, ChenMF, et al. . Liquid-phase sintering enabling mixed ionic–electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. Nano Res., 2022, 15: 6156-6167.

[198]

ZouLF, LiJY, LiuZY, et al. . Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat. Commun., 2019, 10: 3447.

[199]

LiaoYH, LiGJ, XuN, et al. . Synergistic effect of electrolyte additives on the improvement in interfacial stability between ionic liquid based gel electrolyte and LiFePO4 cathode. Solid State Ion., 2019, 329: 31-39.

[200]

DuanH, FanM, ChenWP, et al. . Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater., 2019, 31: 1807789.

[201]

PearsonRG. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ., 1968, 45: 581.

[202]

Drago, R.S.: Pearson’s quantitative statement of HSAB (hard–soft acid—base). Inorg. Chem. 12, 2211–2212 (1973). https://doi.org/10.1021/ic50127a063

[203]

GutmannV. The extension of the donor-acceptor concept. Pure Appl. Chem., 1979, 51: 2197-2210.

[204]

LeeSY, LeeJH, KimYH, et al. . Surface energetics of graphene oxide and reduced graphene oxide determined by inverse gas chromatographic technique at infinite dilution at room temperature. J. Colloid Interface Sci., 2022, 628: 758-768.

[205]

MoonJ, KimDO, BekaertL, et al. . Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nat. Commun., 2022, 13: 4538.

[206]

KatiyarS, HouWT, Luciano RodriguezJ, et al. . Building a high–potential silver-sulfur redox reaction based on the hard-soft acid-base theory. Energy Fuels, 2024, 38: 11233-11239.

[207]

SungJ, HeoJ, KimDH, et al. . Recent advances in all-solid-state batteries for commercialization. Mater. Chem. Front., 2024, 8: 1861-1887.

[208]

KurianE, PitchaiJ, NeelanarayananS, et al. . In pursuit of all solid state batteries (ASSB): advances at the cathode–electrolyte interface for garnet-based ASSB. RSC Appl. Interfaces, 2024, 1: 868-895.

[209]

BroddRJ. Recent developments in batteries for portable consumer electronics applications. Electrochem. Soc. Interface, 1999, 8: 20-23.

[210]

WangCH, KimJT, WangCS, et al. . Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv. Mater., 2023, 35: 2209074.

[211]

Grand View Research. Solid state battery market size, share & trends analysis report by application (energy harvesting, EVs), by battery type (thin film, portable batteries), by capacity (below 20 mAh, above 500 mAh), and segment forecasts, 2021–2028. https://www.grandviewresearch.com/industry-analysis/solid-state-battery-market (2021). Accessed 2 Feb 2025

[212]

Doll, S.: Solid power (SLDP) Q2 results. https://electrek.co/2022/08/09/solid-power-q2-2022-results/ (2022). Accessed 2 Feb 2025

[213]

Day, L.: Toyota is road testing a prototype solid state battery EV. https://www.thedrive.com/tech/42287/toyota-is-road-testing-a-prototype-solid-state-battery-ev (2021). Accessed 2 Feb 2025

[214]

Kim, H.K., Kim, I.G.: LG energy develops safer, long-lasting solid-state battery technology. https://www.kedglobal.com/ev-batteries/newsView/ked202109240010 (2021). Accessed 2 Feb 2025

[215]

Manthey, N.: FEV joins prologium in solid-state battery development. https://www.electrive.com/2022/06/25/fev-joins-prologium-in-solid-state-battery-development/ (2022). Accessed 2 Feb 2025

[216]

Randall, C.: QuantumScape starts testing ten-layered solid-state cells. https://www.electrive.com/2021/07/29/quantumscape-starts-testing-ten-layered-solid-state-cells/ (2021). Accessed 2 Feb 2025

[217]

Redmond, W.: BrightVolt raises $16 million in series B funding led by New Science Ventures and Caterpillar Venture Capital Inc. https://www.globenewswire.com/news-release/2021/10/06/2309483/0/en/BrightVolt-Raises-16-Million-in-Series-B-Funding-Led-by-New-Science-Ventures-and-Caterpillar-Venture-Capital-Inc.html (2021). Accessed 2 Feb 2025

[218]

HarveyLD. Rethinking electric vehicle subsidies, rediscovering energy efficiency. Energy Policy, 2020, 146. 111760

[219]

KongL, WangLP, ZhuJL, et al. . Configuring solid-state batteries to power electric vehicles: a deliberation on technology, chemistry and energy. Chem. Commun., 2021, 57: 12587-12594.

[220]

ZengXQ, LiM, El-HadyDA, et al. . Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater., 2019, 9: 1900161.

[221]

ShenH, YiE, ChengL, et al. . Solid-state electrolyte considerations for electric vehicle batteries. Sustainable Energy Fuels, 2019, 3: 1647-1659.

[222]

MukherjeeS, AlbertengoA, DjenizianT. Beyond flexible-Li-ion battery systems for soft electronics. Energy Storage Mater., 2021, 42: 773-785.

[223]

LeeJH, YangGJ, KimCH, et al. . Flexible solid-state hybrid supercapacitors for the Internet of everything (IoE). Energy Environ. Sci., 2022, 15: 2233-2258.

[224]

InselMA, SadikogluH, MelikogluM. Assessment and determination of 2030 onshore wind and solar PV energy targets of Türkiye considering several investment and cost scenarios. Results Eng., 2022, 16. 100733

[225]

RyuH, ParkHM, KimMK, et al. . Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun., 2021, 12: 4374.

[226]

DornbuschDA, ViggianoR, DynysFW, et al. . Solid-state battery designed for electric aviation. Meet. Abstr., 2020.

Funding

the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT)(2022M3J7A1062940)

Argonne National Laboratory(U.S. Department of Energy (DOE) Vehicle Technologies Office)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

AI Summary AI Mindmap
PDF

1198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/