Protecting Lithium Metal Anodes in Solid-State Batteries

Yuxi Zhong , Xiaoyu Yang , Ruiqi Guo , Liqing Zhai , Xinran Wang , Feng Wu , Chuan Wu , Ying Bai

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 30

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :30 DOI: 10.1007/s41918-024-00230-z
Review Article
review-article

Protecting Lithium Metal Anodes in Solid-State Batteries

Author information +
History +
PDF

Abstract

Lithium metal is considered a highly promising anode material because of its low reduction potential and high theoretical specific capacity. However, lithium metal is prone to irreversible side reactions with liquid electrolytes, resulting in the consumption of metallic lithium and electrolytes due to the high reactivity of lithium metal. The uneven plating/stripping of lithium ions leads to the growth of lithium dendrites and battery safety risks, hindering the further development and commercial application of lithium metal batteries (LMBs). Constructing solid-state electrolyte (SSE) systems with high mechanical strength and low flammability is among the most effective strategies for suppressing dendrite growth and improving the safety of LMBs. However, the structural defects, intrinsic ionic conductivity, redox potential and solid-solid contacts of SSEs can cause new electrochemical problems and solid-phase dendrite growth drawbacks in the application of solid-state batteries (SSBs). In this review, the mechanisms of lithium dendrite growth in SSEs are comprehensively summarized. Strategies to suppress lithium dendrite growth, stabilize the interface, and enhance ion transport in organic, inorganic and composite SSEs are emphasized. We conclude with not only relevant experimental findings but also computational predictions to qualitatively and quantitatively characterize the ionic conductivity, interfacial stability and other properties of SSEs based on both chemical and physical principles. The development direction and urgent problems of SSEs are summarized and discussed.

Graphical Abstract

Keywords

Lithium metal batteries / Solid-state electrolytes / Lithium metal anode / Lithium dendrites

Cite this article

Download citation ▾
Yuxi Zhong, Xiaoyu Yang, Ruiqi Guo, Liqing Zhai, Xinran Wang, Feng Wu, Chuan Wu, Ying Bai. Protecting Lithium Metal Anodes in Solid-State Batteries. Electrochemical Energy Reviews, 2024, 7(1): 30 DOI:10.1007/s41918-024-00230-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu W, Wang JL, Ding F, et al.. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014, 7: 513-537

[2]

Peng HJ, Huang JQ, Cheng XB, et al.. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater., 2017, 7: 1700260

[3]

Fang RP, Zhao SY, Sun ZH, et al.. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater., 2017, 29: 1606823

[4]

Liang J, Sun ZH, Li F, et al.. Carbon materials for Li-S batteries: functional evolution and performance improvement. Energy Storage Mater., 2016, 2: 76-106

[5]

Manthiram A, Chung SH, Zu CX. lithium-sulfur batteries: progress and prospects. Adv. Mater., 2015, 27: 1980-2006

[6]

Kanamura K, Shiraishi S, Takehara ZI. Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J. Electrochem. Soc., 1996, 143: 2187-2197

[7]

Okamoto H. The Li–Si (lithium-silicon) system. Bull. Alloy Phase Diagrams, 1990, 11: 306-312

[8]

Tan J, Yao W, Ye MX, et al.. Atomistic insights into the morphology of deposited Li. J. Mater. Chem. A, 2022, 10: 18577-18591

[9]

Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7: 414-429

[10]

Wang SL, Wang RH, Chang J, et al.. Self-supporting Co3O4/graphene hybrid films as binder-free anode materials for lithium ion batteries. Sci. Rep., 2018, 8: 3182

[11]

Wu H, Yu GH, Pan LJ, et al.. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun., 2013, 4: 1943

[12]

Cheng XB, Zhang Q. Growth mechanisms and suppression strategies of lithium metal dendrites. Prog. Chem., 2018, 30: 51-72

[13]

Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta, 2012, 76: 270-274

[14]

Ozhabes, Y., Gunceler, D., Arias, T.A.: Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv 1504, 05799 (2015). https://arxiv.org/abs/1504.05799

[15]

Yamaki JI, Tobishima SI, Hayashi K, et al.. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources, 1998, 74: 219-227

[16]

Dollé M, Sannier L, Beaudoin B, et al.. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid-State Lett., 2002, 5(12): A286

[17]

Monroe C, Newman J. Dendrite growth in lithium/polymer systems. J. Electrochem. Soc., 2003, 150: A1377

[18]

Ely DR, García RE. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc., 2013, 160: A662-A668

[19]

Harry KJ, Liao XX, Parkinson DY, et al.. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc., 2015, 162: A2699-A2706

[20]

Wenzel S, Leichtweiss T, Krüger D, et al.. Interphase formation on lithium solid electrolytes: an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion., 2015, 278: 98-105

[21]

Yu S, Siegel DJ. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl. Mater. Interfaces, 2018, 10: 38151-38158

[22]

Tian HK, Xu B, Qi Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources, 2018, 392: 79-86

[23]

Kushima A, So KP, Su C, et al.. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy, 2017, 32: 271-279

[24]

Xiao J. How lithium dendrites form in liquid batteries. Science, 2019, 366: 426-427

[25]

Cao C, Li Y, Feng YY, et al.. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater., 2019, 19: 401-407

[26]

Gao XW, Zhou YN, Han DH, et al.. Thermodynamic understanding of Li-dendrite formation. Joule, 2020, 4: 1864-1879

[27]

Shi Y, Wan J, Liu GX, et al.. Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries. Angew. Chem. Int. Ed., 2020, 59: 18120-18125

[28]

Cha E, Yun JH, Ponraj R, et al.. A mechanistic review of lithiophilic materials: resolving lithium dendrites and advancing lithium metal-based batteries. Mater. Chem. Front., 2021, 5: 6294-6314

[29]

Wang HC, Gao HW, Chen XX, et al.. Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries. Adv. Energy Mater., 2021, 11: 2102148

[30]

Yang MH, Liu YS, Mo YF. Lithium crystallization at solid interfaces. Nat. Commun., 2023, 14: 2986

[31]

Sadd M, Xiong SZ, Bowen JR, et al.. Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy. Nat. Commun., 2023, 14: 854

[32]

Cao TC, Xu R, Cheng XP, et al.. Chemomechanical origins of the dynamic evolution of isolated Li filaments in inorganic solid-state electrolytes. Nano Lett., 2024, 24: 1843-1850

[33]

Li YH, Xu H, Ning QR, et al.. Visualizing structure, growth, and dynamics of Li dendrite in batteries: from atomic to device scales. Adv. Funct. Mater., 2024

[34]

Li BR, Chao Y, Li MC, et al.. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy Rev., 2023, 6: 7

[35]

Chazalviel JN. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A, 1990, 42: 7355-7367

[36]

Qiu XG, Liu W, Liu JD, et al.. Nucleation mechanism and substrate modification of lithium metal anode. Acta Phys. Chim. Sin., 2021, 37: 2009012

[37]

Fleury V, Chazalviel JN, Rosso M, et al.. The role of the anions in the growth speed of fractal electrodeposits. J. Electroanal. Chem. Interfacial Electrochem., 1990, 290: 249-255

[38]

Rosso M, Brissot C, Teyssot A, et al.. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta, 2006, 51: 5334-5340

[39]

Sand HJS. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1901, 1: 45-79

[40]

Yang L, Smith C, Patrissi C, et al.. Surface reactions and performance of non-aqueous electrolytes with lithium metal anodes. J. Power Sources, 2008, 185: 1359-1366

[41]

Liang Z, Lin DC, Zhao J, et al.. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 2862-2867

[42]

Rao BML, Francis RW, Christopher HA. Lithium-aluminum electrode. J. Electrochem. Soc., 1977, 124: 1490-1492

[43]

Chenebault P, Vallin D, Thevenin J, et al.. Properties of surface layers formed on lithium in Li-SOCl2 cells: synergetic effect of SO2 and LiAl(SO3Cl)4. J. Appl. Electrochem., 1988, 18: 625-632

[44]

Bi ZJ, Sun QF, Jia MY, et al.. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Adv. Funct. Mater., 2022, 32: 2208751

[45]

Ning ZY, Li GC, Melvin DLR, et al.. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature, 2023, 618: 287-293

[46]

Jin S, Ye YD, Niu YJ, et al.. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc., 2020, 142: 8818-8826

[47]

Yang CP, Yin YX, Zhang SF, et al.. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun., 2015, 6: 8058

[48]

Ma Q, Fang Z, Liu P, et al.. Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3: 531-536

[49]

Jeong SK, Seo HY, Kim DH, et al.. Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. Commun., 2008, 10: 635-638

[50]

Chen HN, Zhou YC, Lu YC. Lithium-organic nanocomposite suspension for high-energy-density redox flow batteries. ACS Energy Lett., 2018, 3: 1991-1997

[51]

Ding F, Xu W, Graff GL, et al.. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc., 2013, 135: 4450-4456

[52]

Yoon S, Lee J, Kim SO, et al.. Enhanced cyclability and surface characteristics of lithium batteries by Li-Mg co-deposition and addition of HF acid in electrolyte. Electrochim. Acta, 2008, 53: 2501-2506

[53]

Stark JK, Ding Y, Kohl PA. Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J. Electrochem. Soc., 2011, 158: A1100

[54]

Xu R, Xiao Y, Zhang R, et al.. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater., 2019, 31: 1808392

[55]

Cheng XB, Zhang R, Zhao CZ, et al.. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci., 2015, 3: 1500213

[56]

Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev., 2014, 114: 11503-11618

[57]

Chen RJ, Qu WJ, Guo X, et al.. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz., 2016, 3: 487-516

[58]

Sun YZ, Huang JQ, Zhao CZ, et al.. A review of solid electrolytes for safe lithium-sulfur batteries. Sci. China Chem., 2017, 60: 1508-1526

[59]

Fan L, Wei SY, Li SY, et al.. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater., 2018, 8: 1702657

[60]

Wu F, Zhang K, Liu YR, et al.. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Storage Mater., 2020, 33: 26-54

[61]

Cao DX, Sun X, Li Q, et al.. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter, 2020, 3: 57-94

[62]

Brissot C, Rosso M, Chazalviel JN, et al.. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources, 1999, 81(82925-929

[63]

Zhao CZ, Chen PY, Zhang R, et al.. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv., 2018, 4: eaat3446

[64]

Tsai CL, Roddatis V, Chandran CV, et al.. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces, 2016, 8: 10617-10626

[65]

Sharafi A, Kazyak E, Davis AL, et al.. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater., 2017, 29: 7961-7968

[66]

Sharafi A, Yu S, Naguib M, et al.. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A, 2017, 5: 13475-13487

[67]

Li YQ, Wang Z, Li CL, et al.. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J. Power Sources, 2014, 248: 642-646

[68]

Nagao M, Hayashi A, Tatsumisago M, et al.. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys. Chem. Chem. Phys., 2013, 15: 18600

[69]

Yu S, Siegel DJ. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater., 2017, 29: 9639-9647

[70]

Chen YT, Jena A, Pang WK, et al.. Voltammetric enhancement of Li-ion conduction in Al-doped Li7−xLa3Zr2O12 solid electrolyte. J. Phys. Chem. C, 2017, 121: 15565-15573

[71]

Aguesse F, Manalastas W, Buannic L, et al.. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces, 2017, 9: 3808-3816

[72]

Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973, 14: 589

[73]

Gorecki W, Jeannin M, Belorizky E, et al.. Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J. Phys. Condens. Matter, 1995, 7: 6823-6832

[74]

Gao HC, Grundish NS, Zhao YJ, et al.. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Mater. Adv., 2021, 2021: 1932952

[75]

Xiao QZ, Wang XZ, Li W, et al.. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J. Membr. Sci., 2009, 334: 117-122

[76]

Saito Y, Takeda S, Yamagami S, et al.. Effect of the morphological features of the poly(vinylidene difluoride)-based gel electrolytes on the ionic mobility for lithium secondary batteries. Macromolecules, 2019, 52: 2112-2119

[77]

Zhang H, Liu CY, Zheng LP, et al.. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim. Acta, 2014, 133: 529-538

[78]

Zhou WD, Wang ZX, Pu Y, et al.. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater., 2019, 31: 1805574

[79]

Wu XL, Xin S, Seo HH, et al.. Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ion., 2011, 186: 1-6

[80]

Bandara LRAK, Dissanayake MAKL, Mellander BE. Ionic conductivity of plasticized (PEO)-LiCF3SO3 electrolytes. Electrochim. Acta, 1998, 43: 1447-1451

[81]

Yang CR, Perng JT, Wang YY, et al.. Conductive behaviour of lithium ions in polyacrylonitrile. J. Power Sour., 1996, 62: 89-93

[82]

Forsyth M, Sun JZ, MacFarlane DR. Novel polymer-in-salt electrolytes based on polyacrylonitrile (PAN) lithium triflate salt mixtures. Solid State Ion., 1998, 112: 161-163

[83]

Chai JC, Liu ZH, Ma J, et al.. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci., 2017, 4: 1600377

[84]

Zhang K, Wu F, Wang XR, et al.. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv. Funct. Mater., 2022, 32: 2107764

[85]

Huang SQ, Cui ZL, Qiao LX, et al.. An in situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries. Electrochim. Acta, 2019, 299: 820-827

[86]

Zhang K, Wu F, Wang XR, et al.. 8.5 µm-Thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv. Energy Mater., 2022, 12: 2200368

[87]

Zhou WD, Wang SF, Li YT, et al.. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc., 2016, 138: 9385-9388

[88]

Yuan F, Chen HZ, Yang HY, et al.. PAN-PEO solid polymer electrolytes with high ionic conductivity. Mater. Chem. Phys., 2005, 89: 390-394

[89]

Choudhary S, Sengwa RJ. Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta, 2017, 247: 924-941

[90]

Liang B, Tang SQ, Jiang QB, et al.. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim. Acta, 2015, 169: 334-341

[91]

Zhang AL, Cao FY, Na GZ, et al.. A novel PEO-based blends solid polymer electrolytes doping liquid crystalline ionomers. Ionics, 2016, 22: 2103-2112

[92]

Tsuchida E, Ohno H, Tsunemi K, et al.. Lithium ionic conduction in poly(methacrylic acid)-poly(ethylene oxide) complex containing lithium perchlorate. Solid State Ion., 1983, 11: 227-233

[93]

Lee M. Effect of phase separation on ionic conductivity of poly(methyl methacrylate)-based solid polymer electrolyte. Solid State Ion., 1996, 85: 91-98

[94]

Niitani T, Shimada M, Kawamura K, et al.. Characteristics of new-type solid polymer electrolyte controlling nano-structure. J. Power Sources, 2005, 146: 386-390

[95]

Morita M, Fujisaki T, Yoshimoto N, et al.. Ionic conductance behavior of polymeric composite solid electrolytes containing lithium aluminate. Electrochim. Acta, 2001, 46: 1565-1569

[96]

Lin DC, Yuen PY, Liu YY, et al.. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater., 2018, 30: 1802661

[97]

Rajendran S, Babu R, Sivakumar P. Optimization of PVC-PAN-based polymer electrolytes. J. Appl. Polym. Sci., 2009, 113: 1651-1656

[98]

Liu WY, Yi CJ, Li LP, et al.. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed., 2021, 60: 12931-12940

[99]

Pradeepa P, Edwin Raj S, Sowmya G, et al.. Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends. Mater. Sci. Eng. B, 2016, 205(6): 17

[100]

Li YJ, Fan CY, Zhang JP, et al.. A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton Trans., 2018, 47: 14932-14937

[101]

Tao C, Gao MH, Yin BH, et al.. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta, 2017, 257: 31-39

[102]

Zhang YH, Lu W, Cong LN, et al.. Cross-linking network based on poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery. J. Power Sources, 2019, 420: 63-72

[103]

Bouchet R, Maria S, Meziane R, et al.. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater., 2013, 12: 452-457

[104]

Kimura K, Yajima M, Tominaga Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun., 2016, 66: 46-48

[105]

Zhou D, He YB, Liu RL, et al.. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater., 2015, 5: 1500353

[106]

Zhou D, Liu RL, Zhang J, et al.. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33: 45-54

[107]

Xi JY, Qiu XP, Li J, et al.. PVDF-PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J. Power Sour., 2006, 157: 501-506

[108]

Zheng JY, Li X, Yu YJ, et al.. Cross-linking copolymers of acrylates’ gel electrolytes with high conductivity for lithium-ion batteries. J. Solid State Electrochem., 2014, 18: 2013-2018

[109]

Zhao Y, Wang L, Zhou YN, et al.. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv. Sci., 2021, 8: 2003675

[110]

Xie T, France-Lanord A, Wang YM, et al.. Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties. Nat. Commun., 2022, 13: 3415

[111]

Webb MA, Jung Y, Pesko DM, et al.. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci., 2015, 1: 198-205

[112]

Savoie BM, Webb MA, Miller TFIII. Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. J. Phys. Chem. Lett., 2017, 8: 641-646

[113]

France-Lanord A, Wang YM, Xie T, et al.. Effect of chemical variations in the structure of poly(ethylene oxide)-based polymers on lithium transport in concentrated electrolytes. Chem. Mater., 2020, 32: 121-126

[114]

France-Lanord A, Grossman JC. Correlations from ion pairing and the nernst-einstein equation. Phys. Rev. Lett., 2019, 122 136001

[115]

Zhang S, Ma J, Dong SM, et al.. Designing all-solid-state batteries by theoretical computation: a review. Electrochem. Energy Rev., 2023, 6: 4

[116]

Deng KR, Zeng QG, Wang D, et al.. Single-ion conducting gel polymer electrolytes: design, preparation and application. J. Mater. Chem. A, 2020, 8: 1557-1577

[117]

Cao C, Li Y, Chen SS, et al.. Electrolyte-solvent-modified alternating copolymer as a single-ion solid polymer electrolyte for high-performance lithium metal batteries. ACS Appl. Mater. Interfaces, 2019, 11: 35683-35692

[118]

Doyle RP, Chen XR, MacRae M, et al.. Poly(ethylenimine)-based polymer blends as single-ion lithium conductors. Macromolecules, 2014, 47: 3401-3408

[119]

Liu KW, Jiang SS, Dzwiniel TL, et al.. Molecular design of a highly stable single-ion conducting polymer gel electrolyte. ACS Appl. Mater. Interfaces, 2020, 12(2629162-29172

[120]

Zhang YF, Xu GD, Sun YB, et al.. A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries. RSC Adv., 2013, 3: 14934

[121]

Meziane R, Bonnet JP, Courty M, et al.. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta, 2011, 57: 14-19

[122]

Sun YB, Rohan R, Cai WW, et al.. A polyamide single-ion electrolyte membrane for application in lithium-ion batteries. Energy Technol., 2014, 2: 698-704

[123]

Borzutzki K, Thienenkamp J, Diehl M, et al.. Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries. J. Mater. Chem. A, 2019, 7: 188-201

[124]

Zhang H, Li CM, Piszcz M, et al.. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev., 2017, 46: 797-815

[125]

Hou TY, Qian YM, Li DG, et al.. Electronegativity-induced single-ion conducting polymer electrolyte for solid-state lithium batteries. Energy Environ. Mater., 2023, 6: 12428

[126]

Stephan AM, Prem Kumar T, Angulakshmi N, et al.. Influence of calix[2]-p-benzo[4]pyrrole on the electrochemical properties of poly(ethylene oxide)-based electrolytes for lithium batteries. J. Appl. Polym. Sci., 2011, 120: 2215-2221

[127]

Dai K, Ma C, Feng YM, et al.. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries. J. Mater. Chem. A, 2019, 7: 18547-18557

[128]

Guan TY, Qian SJ, Guo YK, et al.. Star brush block copolymer electrolytes with high ambient-temperature ionic conductivity for quasi-solid-state lithium batteries. ACS Mater. Lett., 2019, 1: 606-612

[129]

Ji XY, Cao MX, Fu XW, et al.. Efficient room-temperature solid-state lithium ion conductors enabled by mixed-graft block copolymer architectures. Giant, 2020, 3 100027

[130]

Ren ZH, Li JX, Cai MH, et al.. An in situ formed copolymer electrolyte with high ionic conductivity and high lithium-ion transference number for dendrite-free solid-state lithium metal batteries. J. Mater. Chem. A, 2023, 11: 1966-1977

[131]

Fu F, Zheng Y, Jiang N, et al.. A dual-salt PEO-based polymer electrolyte with cross-linked polymer network for high-voltage lithium metal batteries. Chem. Eng. J., 2022, 450 137776

[132]

Zhang W, Jin L, Lee S, et al.. In situ induced crosslinking highly conductive solid polymer electrolyte with intimated electrodes interfacial compatibility for safe Li-ion batteries. J. Power Sources, 2023, 557 232568

[133]

Zhu YH, Cao J, Chen H, et al.. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A, 2019, 7: 6832-6839

[134]

Mardegan L, Dreessen C, Sessolo M, et al.. Stable light-emitting electrochemical cells using hyperbranched polymer electrolyte. Adv. Funct. Mater., 2021, 31: 2104249

[135]

Zhou TH, Zhao Y, Choi JW, et al.. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem. Int. Ed., 2021, 60: 22791-22796

[136]

Hoffknecht JP, Wettstein A, Atik J, et al.. Coordinating anions “to the rescue” of the lithium ion mobility in ternary solid polymer electrolytes plasticized with ionic liquids. Adv. Energy Mater., 2023, 13: 2202789

[137]

Cho WJ, Cho SK, Lee JH, et al.. Solid polymer electrolytes of ionic liquids via a bicontinuous ion transport channel for lithium metal batteries. J. Mater. Chem. A, 2023, 11: 1676-1683

[138]

Grazioli D, Verners O, Zadin V, et al.. Electrochemical-mechanical modeling of solid polymer electrolytes: impact of mechanical stresses on Li-ion battery performance. Electrochim. Acta, 2019, 296: 1122-1141

[139]

Sun ZF, Wu JN, Yuan HC, et al.. Self-healing polymer electrolyte for long-life and recyclable lithium-metal batteries. Mater. Today Energy, 2022, 24 100939

[140]

Jo YH, Li SQ, Zuo C, et al.. Self-healing solid polymer electrolyte facilitated by a dynamic cross-linked polymer matrix for lithium-ion batteries. Macromolecules, 2020, 53: 1024-1032

[141]

Rong JC, Zhong J, Yan WL, et al.. Study on waterborne self-healing polyurethane with dual dynamic units of quadruple hydrogen bonding and disulfide bonds. Polymer, 2021, 221 123625

[142]

Li SB, Zuo C, Zhang Y, et al.. Covalently cross-linked polymer stabilized electrolytes with self-healing performance via boronic ester bonds. Polym. Chem., 2020, 11: 5893-5902

[143]

Zhou SP, Deng KR, Xu ZL, et al.. Highly conductive self-healing polymer electrolytes based on synergetic dynamic bonds for highly safe lithium metal batteries. Chem. Eng. J., 2022, 442 136083

[144]

Goor OJGM, Brouns JEP, Dankers PYW. Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives. Polym. Chem., 2017, 8: 5228-5238

[145]

Chen XY, Yi LG, Zou CF, et al.. High-performance gel polymer electrolyte with self-healing capability for lithium-ion batteries. ACS Appl. Energy Mater., 2022, 5: 5267-5276

[146]

Jin CM, Sinawang G, Osaki M, et al.. Self-healing thermoplastic polyurethane linked via host-guest interactions. Polymers, 2020, 12: 1393

[147]

Xia DY, Wang P, Ji XF, et al.. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev., 2020, 120: 6070-6123

[148]

Chen S, Yu C, Wei CC, et al.. Unraveling electrochemical stability and reversible redox of Y-doped Li2ZrCl6 solid electrolytes. Energy Mater. Adv., 2023, 4: 0019

[149]

Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc., 2001, 148: A742

[150]

Aono H, Sugimoto E, Sadaoka Y, et al.. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc., 1990, 137: 1023-1027

[151]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 2007, 46: 7778-7781

[152]

Guo Q, Xu F, Shen L, et al.. 20 μm-Thick Li6.4La3Zr1.4Ta0.6O1.2-based flexible solid electrolytes for all-solid-state lithium batteries. Energy Mater. Adv., 2022, 2022: 9753506

[153]

Kawai H, Kuwano J. Lithium ion conductivity of A-site deficient perovskite solid solution La0.67−xLi3xTiO3. J. Electrochem. Soc., 1994, 141: 78-79

[154]

Bohnke O. Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion., 1996, 91: 21-31

[155]

Zhao YS, Daemen LL. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc., 2012, 134: 15042-15047

[156]

Matsuo M, Remhof A, Martelli P, et al.. Complex hydrides with (BH4) and (NH2) anions as new lithium fast-ion conductors. J. Am. Chem. Soc., 2009, 131: 16389-16391

[157]

Lutz HD, Schmidt W, Haeuseler H. Chloride spinels: a new group of solid lithium electrolytes. J. Phys. Chem. Solids, 1981, 42: 287-289

[158]

Deiseroth HJ, Kong ST, Eckert H, et al.. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed., 2008, 47: 755-758

[159]

Zhao XL, Shen L, Zhang NN, et al.. Stable binder boosting sulfide solid electrolyte thin membrane for all-solid-state lithium batteries. Energy Mater. Adv., 2024, 5: 0074

[160]

Mizuno F, Hayashi A, Tadanaga K, et al.. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater., 2005, 17: 918-921

[161]

Kondo, S., Takada, K., Yamamura, Y.: New lithium ion conductors based on Li2S-SiS2 system. Solid State Ion. 53/54/55/56, 1183–1186 (1992). https://doi.org/10.1016/0167-2738(92)90310-l

[162]

Alpen UV, Rabenau A, Talat GH. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett., 1977, 30: 621-623

[163]

Yu XH, Bates JB, Jellison GE, et al.. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc., 1997, 144: 524-532

[164]

Famprikis T, Canepa P, Dawson JA, et al.. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater., 2019, 18: 1278-1291

[165]

Xiao YH, Wang Y, Bo SH, et al.. Understanding interface stability in solid-state batteries. Nat. Rev. Mater., 2020, 5: 105-126

[166]

Richards WD, Miara LJ, Wang Y, et al.. Interface stability in solid-state batteries. Chem. Mater., 2016, 28: 266-273

[167]

Guo RQ, Zhang K, Zhao WB, et al.. Interfacial challenges and strategies toward practical sulfide-based solid-state lithium batteries. Energy Mater. Adv., 2023, 4: 0022

[168]

Zhu YZ, He XF, Mo YF. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces, 2015, 7: 23685-23693

[169]

Wenzel S, Randau S, Leichtweiß T, et al.. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater., 2016, 28: 2400-2407

[170]

Wenzel S, Weber DA, Leichtweiss T, et al.. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion., 2016, 286: 24-33

[171]

Wenzel S, Sedlmaier SJ, Dietrich C, et al.. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion., 2018, 318: 102-112

[172]

Liang ZT, Xiang YX, Wang KJ, et al.. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun., 2023, 14: 259

[173]

Liu QR, Chen QQ, Tang YB, et al.. Interfacial modification, electrode/solid-electrolyte engineering, and monolithic construction of solid-state batteries. Electrochem. Energy Rev., 2023, 6: 15

[174]

Peng Y, Xiong XS, Fan WJ, et al.. Strategies to regulate the interface between Li metal anodes and all-solid-state electrolytes. Mater. Chem. Front., 2024, 8: 1421-1450

[175]

Wang Q, Lu TT, Xiao YB, et al.. Leap of Li metal anodes from coin cells to pouch cells: challenges and progress. Electrochem. Energy Rev., 2023, 6: 22

[176]

Ye LH, Lu Y, Wang YC, et al.. Fast cycling of lithium metal in solid-state batteries by constriction-susceptible anode materials. Nat. Mater., 2024, 23: 244-251

[177]

Wang ZY, Xia JL, Ji X, et al.. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy, 2024, 9: 251-262

[178]

He ZJ, Chen L, Zhang BC, et al.. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources, 2018, 392: 232-238

[179]

Tian YJ, Ding F, Zhong H, et al.. Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater., 2018, 14: 49-57

[180]

Thompson T, Sharafi A, Johannes MD, et al.. A tale of two sites: on defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries. Adv. Energy Mater., 2015, 5: 1500096

[181]

Chi SS, Liu YC, Zhao N, et al.. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater., 2019, 17: 309-316

[182]

Zhu YQ, Zhang YF, Lu L. Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic. J. Power Sources, 2015, 290: 123-129

[183]

Ma FR, Zhao EQ, Zhu SY, et al.. Preparation and evaluation of high lithium ion conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte obtained using a new solution method. Solid State Ion., 2016, 295: 7-12

[184]

Ma QL, Xu Q, Tsai CL, et al.. A novel sol-gel method for large-scale production of nanopowders: preparation of Li1.5Al0.5Ti1.5(PO4)3 as an example. J. Am. Ceram. Soc., 2016, 99: 410-414

[185]

Palmer MJ, Kalnaus S, Dixit MB, et al.. A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte. Energy Storage Mater., 2020, 26: 242-249

[186]

Sun Y, Zhan XW, Hu JZ, et al.. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl. Mater. Interfaces, 2019, 11: 12467-12475

[187]

Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X = 0–2). J. Power Sources, 2011, 196: 3342-3345

[188]

Liu ZC, Fu WJ, Payzant EA, et al.. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc., 2013, 135: 975-978

[189]

Yamane H, Shibata M, Shimane Y, et al.. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion., 2007, 178: 1163-1167

[190]

Deiseroth HJ, Maier J, Weichert K, et al.. Li7PS6 and Li6PS5X (X: Cl, Br, I): possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. Z. Für Anorg. Und Allg. Chem., 2011, 637: 1287-1294

[191]

Zhang YB, Chen RJ, Liu T, et al.. High capacity, superior cyclic performances in all-solid-state lithium-ion batteries based on 78Li2S-22P2S5 glass-ceramic electrolytes prepared via simple heat treatment. ACS Appl. Mater. Interfaces, 2017, 9: 28542-28548

[192]

Whiteley JM, Taynton P, Zhang W, et al.. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater., 2015, 27: 6922-6927

[193]

Hayashi A, Muramatsu H, Ohtomo T, et al.. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J. Alloys Compd., 2014, 591: 247-250

[194]

Ju JW, Wang YT, Chen BB, et al.. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2018, 10: 13588-13597

[195]

Rao RP, Adams S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A, 2011, 208: 1804-1807

[196]

Wang CH, Yu RZ, Duan H, et al.. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Lett., 2022, 7: 410-416

[197]

Asano T, Sakai A, Ouchi S, et al.. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater., 2018, 30: 1803075

[198]

Liang JW, Li XN, Wang S, et al.. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc., 2020, 142: 7012-7022

[199]

Tomita Y. Ionic conductivity and structure of halocomplex salts of group 13 elements. Solid State Ion., 2000, 136(137): 351-355

[200]

Tomita Y, Matsushita H, Kobayashi K, et al.. Substitution effect of ionic conductivity in lithium ion conductor, Li3InBr6xClx. Solid State Ion., 2008, 179: 867-870

[201]

Liu ZT, Ma S, Liu J, et al.. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett., 2021, 6: 298-304

[202]

Duan J, Wu WY, Nolan AM, et al.. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv. Mater., 2019, 31: 1807243

[203]

Abouali S, Yim CH, Merati A, et al.. Garnet-based solid-state Li batteries: from materials design to battery architecture. ACS Energy Lett., 2021, 6: 1920-1941

[204]

Wang TR, Luo W, Huang YH. Engineering Li metal anode for garnet-based solid-state batteries. Acc. Chem. Res., 2023, 56: 667-676

[205]

Zhang Y, Lu Y, Jin J, et al.. Electrolyte design for lithium-ion batteries for extreme temperature applications. Adv. Mater., 2024, 36: 2308484

[206]

Wang LC, Wu JX, Bao CS, et al.. Interfacial engineering for high-performance garnet-based solid-state lithium batteries. SusMat, 2024, 4: 72-105

[207]

Luo W, Gong YH, Zhu YZ, et al.. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater., 2017, 29: 1606042

[208]

Xu SM, McOwen DW, Zhang L, et al.. All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater., 2018, 15: 458-464

[209]

Han XG, Gong YH, Fu K, et al.. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017, 16: 572-579

[210]

Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta, 2017, 223: 85-91

[211]

Chung H, Kang B. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem. Mater., 2017, 29: 8611-8619

[212]

Li YT, Chen X, Dolocan A, et al.. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc., 2018, 140: 6448-6455

[213]

Sarkar S, Thangadurai V. Critical current densities for high-performance all-solid-state Li-metal batteries: fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett., 2022, 7: 1492-1527

[214]

Peng J, Wu DX, Song FM, et al.. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Adv. Funct. Mater., 2022, 32: 2105776

[215]

Zhu JD, Zhang Z, Zhao S, et al.. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges. Adv. Energy Mater., 2021, 11: 2003836

[216]

Zheng CJ, Lu Y, Chang Q, et al.. High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer. Adv. Funct. Mater., 2023, 33: 2302729

[217]

Cheng ZZ, Chen Y, Shi L, et al.. Long-lifespan lithium metal batteries enabled by a hybrid artificial solid electrolyte interface layer. ACS Appl. Mater. Interfaces, 2023, 15: 10585-10592

[218]

Fan XL, Ji X, Han FD, et al.. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv., 2018, 4: eaau9245

[219]

Kanamura K, Shiraishi S, Takehara ZI. Electrochemical deposition of uniform lithium on an Ni substrate in a nonaqueous electrolyte. J. Electrochem. Soc., 1994, 141: L108-L110

[220]

Kanamura K, Shiraishi S, Tamura H, et al.. X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents. J. Electrochem. Soc., 1994, 141: 2379-2385

[221]

Takehara ZI. Future prospects of the lithium metal anode. J. Power Sources, 1997, 68: 82-86

[222]

Han FD, Yue J, Zhu XY, et al.. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater., 2018, 8: 1703644

[223]

Chen GP, Niu CQ, Chen YB, et al.. A single-ion conducting polymer electrolyte based on poly(lithium 4-styrenesulfonate) for high-performance lithium metal batteries. Solid State Ion., 2019, 341 115048

[224]

Shin DM, Bachman JE, Taylor MK, et al.. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries. Adv. Mater., 2020, 32: 1905771

[225]

Guan X, Wu QP, Zhang XW, et al.. In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries. Chem. Eng. J., 2020, 382 122935

[226]

Liu J, Zhou JQ, Wang MF, et al.. A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries. J. Mater. Chem. A, 2019, 7: 24477-24485

[227]

Wu N, Li YT, Dolocan A, et al.. In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv. Funct. Mater., 2020, 30: 2000831

[228]

Yang P, Gao XW, Tian XL, et al.. Upgrading traditional organic electrolytes toward future lithium metal batteries: a hierarchical nano-SiO2-supported gel polymer electrolyte. ACS Energy Lett., 2020, 5: 1681-1688

[229]

Wang GX, He PG, Fan LZ. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater., 2021, 31: 2007198

[230]

Le HTT, Ngo DT, Ho VC, et al.. Insights into degradation of metallic lithium electrodes protected by a bilayer solid electrolyte based on aluminium substituted lithium lanthanum titanate in lithium-air batteries. J. Mater. Chem. A, 2016, 4: 11124-11138

[231]

Huo HY, Gao J, Zhao N, et al.. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun., 2021, 12: 176

[232]

Kataoka K, Nagata H, Akimoto J. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. Sci. Rep., 2018, 8: 9965

[233]

Jiang Z, Liang TB, Liu Y, et al.. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl. Mater. Interfaces, 2020, 12: 54662-54670

[234]

Deng T, Ji X, Zhao Y, et al.. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv. Mater., 2020, 32: 2000030

[235]

Hitz GT, McOwen DW, Zhang L, et al.. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today, 2019, 22: 50-57

[236]

Wan HL, Liu SF, Deng T, et al.. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett., 2021, 6: 862-868

[237]

Garcia-Mendez R, Mizuno F, Zhang RG, et al.. Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior. Electrochim. Acta, 2017, 237: 144-151

[238]

Liu GZ, Weng W, Zhang ZH, et al.. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Lett., 2020, 20: 6660-6665

[239]

Ji X, Hou S, Wang PF, et al.. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater., 2020, 32: 2002741

[240]

Su YB, Ye LH, Fitzhugh W, et al.. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci., 2020, 13: 908-916

[241]

Shi X, Pang Y, Wang B, et al.. In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries. Mater. Today Nano, 2020, 10 100079

[242]

Wei YQ, Yang YX, Chen ZC, et al.. In situ generated electron-blocking lih enabling an unprecedented critical current density of over 15 mA cm−2 for solid-state hydride electrolytes. Adv. Mater., 2023, 35: 2304285

[243]

Suzuki Y, Kami K, Watanabe K, et al.. Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ion., 2015, 278: 172-176

[244]

Ren YY, Shen Y, Lin YH, et al.. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun., 2015, 57: 27-30

[245]

Shen FY, Dixit MB, Xiao XH, et al.. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett., 2018, 3: 1056-1061

[246]

Singh DK, Fuchs T, Krempaszky C, et al.. Origin of the lithium metal anode instability in solid-state batteries during discharge. Matter, 2023, 6: 1463-1483

[247]

Sandoval SE, McDowell MT. Lithium metal anodes in solid-state batteries: metal microstructure matters. Matter, 2023, 6: 2101-2102

[248]

Wang MJ, Choudhury R, Sakamoto J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule, 2019, 3: 2165-2178

[249]

Yao JH, Zhu GX, Dong K, et al.. Progress and perspective of controlling Li dendrites growth in all-solid-state Li metal batteries via external physical fields. Adv. Energy Sustain. Res., 2024, 5: 2300165

[250]

Liu XM, Garcia-Mendez R, Lupini AR, et al.. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater., 2021, 20: 1485-1490

[251]

Biao J, Han B, Cao YD, et al.. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration. Adv. Mater., 2023, 35: 2208951

[252]

Jia ZH, Shen H, Kou JW, et al.. Solid electrolyte bimodal grain structures for improved cycling performance. Adv. Mater., 2024, 36: 2309019

[253]

Ning ZY, Jolly DS, Li GC, et al.. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater., 2021, 20: 1121-1129

[254]

Wang W, Wang JX, Lin C, et al.. Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries. Adv. Funct. Mater., 2023, 33: 2303484

[255]

Tufail MK, Zhai PB, Jia MY, et al.. Design of solid electrolytes with fast ion transport: computation-driven and practical approaches. Energy Mater. Adv., 2023, 4: 0015

[256]

Hashin Z. Analysis of composite materials: a survey. J. Appl. Mech., 1983, 50: 481-505

[257]

Kalnaus S, Sabau AS, Tenhaeff WE, et al.. Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J. Power Sour., 2012, 201: 280-287

[258]

Ding YQ, He B, Wang D, et al.. Software for evaluating ionic conductivity of inorganic-polymer composite solid electrolytes. Energy Mater. Adv., 2023, 4: 0041

[259]

Wang GX, Yang L, Wang JZ, et al.. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. J. Nanosci. Nanotech., 2005, 5: 1135-1140

[260]

Lin DC, Liu W, Liu YY, et al.. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett., 2016, 16: 459-465

[261]

Fan LZ, Dang ZM, Wei GD, et al.. Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes. Mater. Sci. Eng. B, 2003, 99: 340-343

[262]

Xiong H. Elucidating the conductivity enhancement effect of nano-sized SnO2 fillers in the hybrid polymer electrolyte PEO-SnO2-LiClO4. Solid State Ion., 2003, 159: 89-95

[263]

Chen-Yang Y. Polyacrylonitrile electrolytes. 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ion., 2002, 150: 327-335

[264]

Lim YS, Jung HA, Hwang H. Fabrication of PEO-PMMA-LiClO4-based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries. Energies, 2018, 11: 2559

[265]

Yap YL, You AH, Teo LL. Preparation and characterization studies of PMMA-PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics, 2019, 25: 3087-3098

[266]

Zhao YR, Wu C, Peng G, et al.. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources, 2016, 301: 47-53

[267]

Bae J, Li YT, Zhang J, et al.. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed., 2018, 57: 2096-2100

[268]

Wang CH, Yang YF, Liu XJ, et al.. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2017, 9: 13694-13702

[269]

Zhang YB, Chen RJ, Wang S, et al.. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater., 2020, 25: 145-153

[270]

Fu XL, Li YC, Liao CZ, et al.. Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al02.4O1.2 network. Compos. Sci. Technol., 2019, 184: 107863

[271]

Li J, Zhu KJ, Yao ZR, et al.. A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries. Ionics, 2020, 26: 1101-1108

[272]

Liu W, Liu N, Sun J, et al.. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett., 2015, 15: 2740-2745

[273]

Liu W, Lee SW, Lin DC, et al.. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy, 2017, 2: 17035

[274]

Wang S, Zhang X, Liu SJ, et al.. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Materiomics, 2020, 6: 70-76

[275]

Hu JK, He PG, Zhang BC, et al.. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater., 2020, 26: 283-289

[276]

Zhang WQ, Nie JH, Li F, et al.. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 2018, 45: 413-419

[277]

Gai JL, Ma FR, Zhang ZQ, et al.. Flexible organic–inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state Li-ion batteries. ACS Sustain. Chem. Eng., 2019, 7: 15896-15903

[278]

Sun JQ, Li YG, Zhang QH, et al.. A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem. Eng. J., 2019, 375: 121922

[279]

Chen L, Li WX, Fan LZ, et al.. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater., 2019, 29: 1901047

[280]

Li J, Chen HW, Shen YB, et al.. Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater., 2019, 23: 277-283

[281]

Liu YY, Xu XY, Kapitanova OO, et al.. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater., 2022, 12: 2103589

[282]

Wang JY, Huang W, Pei A, et al.. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy, 2019, 4: 664-670

[283]

Gao Y, Yan ZF, Gray JL, et al.. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater., 2019, 18: 384-389

[284]

Lai HJ, Lu Y, Zha WP, et al.. In situ generated composite gel polymer electrolyte with crosslinking structure for dendrite-free and high-performance sodium metal batteries. Energy Storage Mater., 2023, 54: 478-487

[285]

Isaac JA, Devaux D, Bouchet R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity. Nat. Mater., 2022, 21: 1412-1418

[286]

Fu KK, Gong YH, Dai JQ, et al.. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 7094-7099

[287]

Wang CH, Adair KR, Liang JW, et al.. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv. Funct. Mater., 2019, 29: 1900392

[288]

Chen Y, Li WW, Sun CZ, et al.. Sustained release-driven formation of ultrastable sei between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries. Adv. Energy Mater., 2021, 11: 2002545

[289]

Chen Y, Yao L, Chen XD, et al.. Double-faced bond coupling to induce an ultrastable lithium/Li6PS5Cl interface for high-performance all-solid-state batteries. ACS Appl. Mater. Interfaces, 2022, 14: 11950-11961

[290]

Wang ZY, Shen L, Deng SG, et al.. 10 μm-Thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater., 2021, 33: 2100353

[291]

Zhang Z, Gou JR, Cui KX, et al.. 126 μm-Thick asymmetric composite electrolyte with superior interfacial stability for solid-state lithium-metal batteries. Nano Micro Lett., 2024, 16: 181

[292]

Bao CS, Zheng CJ, Wu MF, et al.. 12 µm-Thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries. Adv. Energy Mater., 2023, 13: 2204028

Funding

Key Technologies Research and Development Program(2022YFB2404400)

RIGHTS & PERMISSIONS

The Author(s)

PDF

285

Accesses

0

Citation

Detail

Sections
Recommended

/