Li Alloy/Li Halide Mixed Layer: An Emerging Star for Electro-Chemo-Mechanically Stable Li/Electrolyte Interface

Jiaqi Cao , Guangyuan Du , Guoyu Qian , Xueyi Lu , Yang Sun , Xia Lu

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 31

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 31 DOI: 10.1007/s41918-024-00229-6
Review Article

Li Alloy/Li Halide Mixed Layer: An Emerging Star for Electro-Chemo-Mechanically Stable Li/Electrolyte Interface

Author information +
History +
PDF

Abstract

Lithium-ion batteries are limited by the low energy density of graphite anodes and are gradually becoming unable to meet the demand for energy storage development. A further increase in high capacity requires new battery materials and chemistry, such as the innovative lithium metal anodes (LMAs). However, the actual commercialization of LMAs is limited by the unstable Li/electrolyte interface, impeding their progress from the laboratory to industrial production. To address these problems, constructing a Li alloy/Li halide mixed layer upon a Li surface is considered to be an ideal direction because of the combined advantages of Li alloys and Li halides. In this context, by comparing the limitations of self-generated solid electrolyte interfaces, the unique merits of Li alloys and Li halides are discussed in depth with summaries of their respective advances. Accordingly, mixed layers of Li alloy/Li halides are introduced, and the mechanisms of Li deposition behaviors are clearly described, along with their manufacturing strategies and recent progress. Moreover, the emerging techniques for interface characterization are also comprehensively summarized. Furthermore, the necessary considerations and outlooks for the future design of Li alloy/Li halide mixed layers are highlighted, with the aim of elucidating the structure-property relationships and providing rational directions for the attainment of the next-generation high-performance batteries.

Cite this article

Download citation ▾
Jiaqi Cao, Guangyuan Du, Guoyu Qian, Xueyi Lu, Yang Sun, Xia Lu. Li Alloy/Li Halide Mixed Layer: An Emerging Star for Electro-Chemo-Mechanically Stable Li/Electrolyte Interface. Electrochemical Energy Reviews, 2024, 7(1): 31 DOI:10.1007/s41918-024-00229-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TarasconJM, ArmandM. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367

[2]

NittaN, WuFX, LeeJT, et al. . Li-ion battery materials: present and future. Mater. Today, 2015, 18: 252-264

[3]

JanekJ, ZeierWG. A solid future for battery development. Nat. Energy, 2016, 1: 16141

[4]

LiYN, WangCY, GaoRM, et al. . Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Storage Mater., 2021, 38: 262-275

[5]

ChuS, CuiY, LiuN. The path towards sustainable energy. Nat. Mater., 2017, 16: 16-22

[6]

ZhouBX, BonakdarpourA, StoševskiI, et al. . Modification of Cu current collectors for lithium metal batteries: a review. Prog. Mater. Sci., 2022, 130: 100996

[7]

WangZX, SunZH, LiJ, et al. . Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev., 2021, 50: 3178-3210

[8]

YangHC, LiJ, SunZH, et al. . Reliable liquid electrolytes for lithium metal batteries. Energy Storage Mater., 2020, 30: 113-129

[9]

XiaoJ, LiQY, BiYJ, et al. . Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy, 2020, 5: 561-568

[10]

KangJB, DengNP, LiuYR, et al. . Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Mater., 2022, 52: 130-160

[11]

KoS, ObukataT, ShimadaT, et al. . Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy, 2022, 7: 1217-1224

[12]

LinDC, LiuYY, CuiY. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol., 2017, 12: 194-206

[13]

WhittinghamMS. Lithium batteries and cathode materials. Chem. Rev., 2004, 104: 4271-4302

[14]

GoodenoughJB, KimY. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22: 587-603

[15]

GongxunL, NaiJ, LuanD, et al. . Surface engineering toward stable lithium metal anodes. Sci. Adv., 2023

[16]

JinLM, ShenC, WuQ, et al. . Pre-lithiation strategies for next-generation practical lithium-ion batteries. Adv. Sci., 2021, 8: 2005031

[17]

ZhangY, ZuoTT, PopovicJ, et al. . Towards better Li metal anodes: challenges and strategies. Mater. Today, 2020, 33: 56-74

[18]

CaoJ, XieY, LiW, et al. . Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes. Mater. Today Energy, 2021, 20: 100663

[19]

LiBR, ChaoY, LiMC, et al. . A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy Rev., 2023, 6: 7

[20]

WangQ, LuTT, XiaoYB, et al. . Leap of Li metal anodes from coin cells to pouch cells: challenges and progress. Electrochem. Energy Rev., 2023, 6: 22

[21]

ZhangX, YangYA, ZhouZ. Towards practical lithium-metal anodes. Chem. Soc. Rev., 2020, 49: 3040-3071

[22]

FangCC, LiJX, ZhangMH, et al. . Quantifying inactive lithium in lithium metal batteries. Nature, 2019, 572: 511-515

[23]

HuangY, DuanJ, ZhengXY, et al. . Lithium metal-based composite: an emerging material for next-generation batteries. Matter, 2020, 3: 1009-1030

[24]

LiuHJ, YangCY, HanMC, et al. . In-situ constructing a heterogeneous layer on lithium metal anodes for dendrite-free lithium deposition and high Li-ion flux. Angew. Chem. Int. Ed., 2023, 62: 2217458

[25]

WangHS, YuZA, KongX, et al. . Liquid electrolyte: the nexus of practical lithium metal batteries. Joule, 2022, 6: 588-616

[26]

HanYY, LiuB, XiaoZ, et al. . Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives. InfoMat, 2021, 3: 155-174

[27]

ZhangSS. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta, 2012, 70: 344-348

[28]

ZhongY, HuangP, YanW, et al. . Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv. Funct. Mater., 2022, 32: 2110347

[29]

ZhangYJ, WuY, LiHY, et al. . A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nat. Commun., 2022, 13: 1297

[30]

ZhangXQ, ChengXB, ChenX, et al. . Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater., 2017, 27: 1605989

[31]

HanB, ZhangZ, ZouYC, et al. . Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv. Mater., 2021, 33: 2100404

[32]

XuC, AhmadZ, AryanfarA, et al. . Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 57-61

[33]

YanC, XuR, XiaoY, et al. . Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater., 2020, 30: 1909887

[34]

LiuYJ, TaoXY, WangY, et al. . Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science, 2022, 375: 739-745

[35]

WangYD, LiangJC, SongXM, et al. . Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. Energy Storage Mater., 2023, 54: 732-775

[36]

BanerjeeA, WangXF, FangCC, et al. . Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev., 2020, 120: 6878-6933

[37]

GuoJC, TanSJ, ZhangCH, et al. . A self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries. Adv. Mater., 2023, 35: 2300350

[38]

ChengXB, ZhangR, ZhaoCZ, et al. . Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev., 2017, 117: 10403-10473

[39]

AurbachD, TalyosefY, MarkovskyB, et al. . Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta, 2004, 50: 247-254

[40]

YanC, LiHR, ChenX, et al. . Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc., 2019, 141: 9422-9429

[41]

LiangHM, WangL, ShengL, et al. . Focus on the electroplating chemistry of Li ions in nonaqueous liquid electrolytes: toward stable lithium metal batteries. Electrochem. Energy Rev., 2022, 5: 23

[42]

SaganeF, IkedaKI, OkitaK, et al. . Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J. Power. Sources, 2013, 233: 34-42

[43]

ShiSQ, LuP, LiuZY, et al. . Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc., 2012, 134: 15476-15487

[44]

WangH, MatsuiM, KuwataH, et al. . A reversible dendrite-free high-areal-capacity lithium metal electrode. Nat. Commun., 2017, 8: 15106

[45]

ZhangSQ, LiRH, HuN, et al. . Tackling realistic Li+ flux for high-energy lithium metal batteries. Nat. Commun., 2022, 13: 5431

[46]

ChazalvielJN. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A, 1990, 42: 7355-7367

[47]

RossoM, BrissotC, TeyssotA, et al. . Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta, 2006, 51: 5334-5340

[48]

LeungK, SotoF, HankinsK, et al. . Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces. J. Phys. Chem. C, 2016, 120: 6302-6313

[49]

HuoHY, LiXN, SunYP, et al. . Li2CO3 effects: new insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy, 2020, 73: 104836

[50]

GuoYX, ChengJ, ZengZ, et al. . Li2CO3: insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS Appl. Energy Mater., 2022, 5: 2853-2861

[51]

HuoHY, LuoJ, ThangaduraiV, et al. . Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett., 2019, 5: 252-262

[52]

SuzukiY, KamiK, WatanabeK, et al. . Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ion., 2015, 278: 172-176

[53]

SharafiA, KazyakE, DavisAL, et al. . Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater., 2017, 29: 7961-7968

[54]

GuptaA, SakamotoJ. Controlling ionic transport through the PEO-LiTFSI/LLZTO interface. Electrochem. Soc. Interface, 2019, 28: 63-69

[55]

TanS, KimJM, CorraoA, et al. . Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes. Nat. Nanotechnol., 2023, 18: 243-249

[56]

ViláRA, BoyleDT, DaiA, et al. . LiH formation and its impact on Li batteries revealed by cryogenic electron microscopy. Sci. Adv., 2023

[57]

ZhangH, ShunlongJ, XiaG, et al. . Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv., 2022

[58]

ZachmanMJ, TuZY, ChoudhuryS, et al. . Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries. Nature, 2018, 560: 345-349

[59]

JäckleM, GroßA. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys., 2014, 141: 174710

[60]

LingC, BanerjeeD, MatsuiM. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta, 2012, 76: 270-274

[61]

MatsuiM. Study on electrochemically deposited Mg metal. J. Power. Sources, 2011, 196: 7048-7055

[62]

Ozhabes, Y., Gunceler, D., Arias, T. A.: Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv: 1504.05799 (2015). https://doi.org/10.48550/arXiv.1504.05799

[63]

LiYZ, LiYB, PeiA, et al. . Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science, 2017, 358: 506-510

[64]

ZhangJ, WangR, YangXC, et al. . Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano Lett., 2012, 12: 2153-2157

[65]

MonroeC, NewmanJ. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc., 2005, 152: A396

[66]

LiuXR, DengX, LiuRR, et al. . Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. ACS Appl. Mater. Interfaces, 2014, 6: 20317-20323

[67]

LiSM, HuangJL, CuiY, et al. . A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol., 2022, 17: 613-621

[68]

WuJY, RaoZX, LiuXT, et al. . Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes. Adv. Mater., 2021, 33: 2007428

[69]

ChenZR, LiangZT, ZhongHY, et al. . Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries. ACS Energy Lett., 2022, 7: 2761-2770

[70]

ChenH, PeiA, LinDC, et al. . Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater., 2019, 9: 1900858

[71]

MaY, WeiL, GuYT, et al. . Insulative ion-conducting lithium selenide as the artificial solid-electrolyte interface enabling heavy-duty lithium metal operations. Nano Lett., 2021, 21: 7354-7362

[72]

LuoL, LiJY, Yaghoobnejad AslH, et al. . A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell. Adv. Mater., 2019, 31: 1904537

[73]

JiangH, ZhouYG, GuanCH, et al. . Ion/electron redistributed 3D flexible host for achieving highly reversible Li metal batteries. Small, 2022, 18: 2107641

[74]

CuiC, ZhangRP, FuCK, et al. . Stable lithium anode enabled by biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chem. Eng. J., 2022, 433: 133570

[75]

WangSH, YueJP, DongW, et al. . Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun., 2019, 10: 4930

[76]

WangJY, WangHS, XieJ, et al. . Fundamental study on the wetting property of liquid lithium. Energy Storage Mater., 2018, 14: 345-350

[77]

LiYQ, LiuQN, WuSY, et al. . Unraveling the reaction mystery of Li and Na with dry air. J. Am. Chem. Soc., 2023, 145: 10576-10583

[78]

HeG, LiQW, ShenYL, et al. . Flexible amalgam film enables stable lithium metal anodes with high capacities. Angew. Chem., 2019, 131: 18637-18641

[79]

LiuS, ZhaoQQ, ZhangXY, et al. . A high rate and long cycling life lithium metal anode with a self-repairing alloy coating. J. Mater. Chem. A, 2020, 8: 17415-17419

[80]

XiaSX, ZhangX, LiangC, et al. . Stabilized lithium metal anode by an efficient coating for high-performance Li-S batteries. Energy Storage Mater., 2020, 24: 329-335

[81]

YeYD, XieHY, YangYH, et al. . Solid-solution or intermetallic compounds: phase dependence of the Li-alloying reactions for Li-metal batteries. J. Am. Chem. Soc., 2023, 145: 24775-24784

[82]

XuH, LiS, ZhangC, et al. . Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci., 2019, 12: 2991-3000

[83]

KimH, LeeJT, LeeDC, et al. . Enhancing performance of Li-S cells using a Li-Al alloy anode coating. Electrochem. Commun., 2013, 36: 38-41

[84]

WanMT, KangSJ, WangL, et al. . Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun., 2020, 11: 829

[85]

HuYH, LiH, ChenZD, et al. . Li-Alloy texture creates in-built Li(110) epitaxy in a thin Li-metal anode allowing high depth-of-discharge cycling in carbonate electrolyte. Chem. Eng. J., 2023, 466: 143084

[86]

WenCJ, HugginsRA. Chemical diffusion in intermediate phases in the lithium-tin system. J. Solid State Chem., 1980, 35: 376-384

[87]

ShiZ. Electrochemical properties of Li-Zn alloy electrodes prepared by kinetically controlled vapor deposition for lithium batteries. Electrochem. Solid-State Lett., 1999, 3: 312

[88]

HirataniM. Effect of a lithium alloy layer inserted between a lithium anode and a solid electrolyte. Solid State Ion., 1988, 28(29/30): 1406-1410

[89]

WenCJ, HugginsRA. Thermodynamic and mass transport properties of “LiIn”. Mater. Res. Bull., 1980, 15: 1225-1234

[90]

WenCJ, HugginsRA. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem., 1981, 37: 271-278

[91]

JinS, YeYD, NiuYJ, et al. . Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc., 2020, 142: 8818-8826

[92]

ShiZ, LiuML, NaikD, et al. . Electrochemical properties of Li-Mg alloy electrodes for lithium batteries. J. Power. Sources, 2001, 92: 70-80

[93]

WeppnerW, HugginsRA. Electrochemical investigation of the chemical diffusion, partial ionic conductivities, and other kinetic parameters in Li3Sb and Li3Bi. J. Solid State Chem., 1977, 22: 297-308

[94]

MesserR, NoackF. Nuclear magnetic relaxation by self-diffusion in solid lithium: T1-frequency dependence. Appl. Phys., 1975, 6: 79-88

[95]

GuanPJ, LiuL, LinXK. Simulation and experiment on solid electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion. J. Electrochem. Soc., 2015, 162: A1798-A1808

[96]

QuJL, XiaoJW, WangTS, et al. . High rate transfer mechanism of lithium ions in lithium-tin and lithium-indium alloys for lithium batteries. J. Phys. Chem. C, 2020, 124: 24644-24652

[97]

HuAJ, ChenW, DuXC, et al. . An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci., 2021, 14: 4115-4124

[98]

HanB, XuDW, ChiSS, et al. . 500 Wh kg–1 class Li metal battery enabled by a self-organized core-shell composite anode. Adv. Mater., 2020, 32: 2004793

[99]

WangXY, LuoKL, XiongLX, et al. . Li+ solvation mediated interfacial kinetic of alloying matrix for stable Li anodes. Energy Environ. Mater., 2023, 6: 12317

[100]

YanK, LuZD, LeeHW, et al. . Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy, 2016, 1: 16010

[101]

PeiA, ZhengGY, ShiFF, et al. . Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett., 2017, 17: 1132-1139

[102]

LuanJY, ZhangQ, YuanHY, et al. . Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem. Eng. J., 2020, 395: 124922

[103]

ChenYQ, XuXY, GaoLW, et al. . Two birds with one stone: using indium oxide surficial modification to tune inner Helmholtz plane and regulate nucleation for dendrite-free lithium anode. Small Methods, 2022, 6: 2200113

[104]

LiuN, HuLB, McDowellMT, et al. . Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano, 2011, 5: 6487-6493

[105]

LiSW, ChaiZG, WangZH, et al. . A multiscale, dynamic elucidation of Li solubility in the alloy and metallic plating process. Adv. Mater., 2023, 35: 2306826

[106]

YangLu, ZhaoC-Z, ZhangR, et al. . The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv., 2021

[107]

WebbSA, BaggettoL, BridgesCA, et al. . The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J. Power. Sources, 2014, 248: 1105-1117

[108]

FuL, WanMT, ZhangB, et al. . A lithium metal anode surviving battery cycling above 200 °C. Adv. Mater., 2020, 32: 2000952

[109]

JiaWS, ChenJX, WangZH, et al. . Dendrite-free dual-phase Li-Ba alloy anode enabled by ordered array of built-in mixed conducting microchannels. Small, 2024, 20: 2308279

[110]

ZhaoK, JiaoW, MaJ, et al. . Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature. J. Mater. Res., 2012, 27: 2593-2600

[111]

RatchfordJB, SchusterBE, CrawfordBA, et al. . Young’s modulus of polycrystalline Li22Si5. J. Power. Sources, 2011, 196: 7747-7749

[112]

RenYX, ZengL, JiangHR, et al. . Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries. Nat. Commun., 2019, 10: 3249

[113]

KalarasseL, BennecerB, KalarasseF. Elastic and electronic properties of the alkali pnictide compounds Li3Sb, Li3Bi, Li2NaSb and Li2NaBi. Comput. Mater. Sci., 2011, 50: 2880-2885

[114]

CountsWA, FriákM, RaabeD, et al. . Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications. Acta Mater., 2009, 57: 69-76

[115]

LiuYY, XuXY, KapitanovaOO, et al. . Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater., 2022, 12: 2103589

[116]

HeYF, ZhangMY, WangAP, et al. . Regulation of dendrite-free Li plating via lithiophilic sites on lithium-alloy surface. ACS Appl. Mater. Interfaces, 2022, 14: 33952-33959

[117]

CaoJQ, ShiYS, GaoAS, et al. . Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nat. Commun., 2024, 15: 1354

[118]

WangXC, HeYF, LiuSY, et al. . Dynamic concentration of alloying element on anode surface enabling cycle-stable Li metal batteries. Adv. Funct. Mater., 2023, 33: 2307281

[119]

ZhouY, ZhangJM, ZhaoK, et al. . A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes. Energy Storage Mater., 2021, 39: 403-411

[120]

GaoPY, WuHP, ZhangXH, et al. . Optimization of magnesium-doped lithium metal anode for high performance lithium metal batteries through modeling and experiment. Angew. Chem. Int. Ed., 2021, 60: 16506-16513

[121]

GaoXJ, YangXF, JiangM, et al. . Fast ion transport in Li-rich alloy anode for high-energy-density all solid-state lithium metal batteries. Adv. Funct. Mater., 2023, 33: 2209715

[122]

LiaoXB, LiuQ, LiuXL, et al. . A facile surface alloy-engineering route to enable robust lithium metal anodes. Phys. Chem. Chem. Phys., 2022, 24: 4751-4758

[123]

WangXC, HeYF, TuSB, et al. . Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Mater., 2022, 49: 135-143

[124]

ZhangZ, LuoH, LiuZ, et al. . A chemical lithiation induced Li4.4Sn lithiophilic layer for anode-free lithium metal batteries. J. Mater. Chem. A, 2022, 10(17): 9670-9679

[125]

CaoLY, ChengX, XuHJ, et al. . Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode. J. Mater. Sci. Technol., 2021, 76: 156-165

[126]

ChenT, MengFB, ZhangZW, et al. . Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy, 2020, 76: 105068

[127]

YangCP, XieH, PingWW, et al. . An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater., 2019, 31: 1804815

[128]

XuTH, GaoP, LiPR, et al. . Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying. Adv. Energy Mater., 2020, 10: 1902343

[129]

XuY, ZhaoSY, ZhouGM, et al. . Solubility-dependent protective effects of binary alloys for lithium anode. ACS Appl. Energy Mater., 2020, 3: 2278-2284

[130]

ZhangZL, JinY, ZhaoY, et al. . Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode. Nano Res., 2021, 14: 3999-4005

[131]

FengY, ZhongBD, ZhangRC, et al. . Achieving high-power and dendrite-free lithium metal anodes via interfacial ion-transport-rectifying pump. Adv. Energy Mater., 2023, 13: 2203912

[132]

LiBQ, SunZ, LvN, et al. . Dual protection of a Li-Ag alloy anode for all-solid-state lithium metal batteries with the argyrodite Li6PS5Cl solid electrolyte. ACS Appl. Mater. Interfaces, 2022, 14: 37738-37746

[133]

ChoiHJ, KangDW, ParkJW, et al. . In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv. Sci., 2022, 9: 2103826

[134]

ZhangSN, SunQ, HouGM, et al. . Boosting fast interfacial Li+ transport in solid-state Li metal batteries via ultrathin Al buffer layer. Nano Res., 2023, 16: 6825-6832

[135]

KatoA, HayashiA, TatsumisagoM. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power. Sources, 2016, 309: 27-32

[136]

WanZ, ShiK, Yanfei HuangL, et al. . Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J. Power. Sources, 2021, 505: 230062

[137]

ZhaiL, YangK, JiangFY, et al. . High-performance solid-state lithium metal batteries achieved by interface modification. J. Energy Chem., 2023, 79: 357-364

[138]

LiMQ, ZhouD, WangC, et al. . In situ formed Li-Ag alloy interface enables Li10GeP2S12-based all-solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2021, 13: 50076-50082

[139]

FuKK, GongYH, FuZZ, et al. . Transient behavior of the metal interface in lithium metal-garnet batteries. Angew. Chem. Int. Ed., 2017, 56: 14942-14947

[140]

LuoW, GongYH, ZhuYZ, et al. . Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc., 2016, 138: 12258-12262

[141]

ZhengZJ, YeH, GuoZP. Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci., 2020, 7: 2002212

[142]

WangCW, XieH, ZhangL, et al. . Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater., 2018, 8: 1701963

[143]

HeXZ, JiX, ZhangB, et al. . Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett., 2022, 7: 131-139

[144]

LiuYY, MengJW, LeiM, et al. . Alloyable viscous fluid for interface welding of garnet electrolyte to enable highly reversible fluoride conversion solid state batteries. Adv. Funct. Mater., 2023, 33: 2208013

[145]

TantardiniC, OganovAR. Thermochemical electronegativities of the elements. Nat. Commun., 2021, 12: 4406

[146]

LiJJ, HuHM, FangWH, et al. . Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater., 2023, 33: 2303718

[147]

ZhaoXX, GuZY, GuoJZ, et al. . Constructing bidirectional fluorine-rich electrode/electrolyte interphase via solvent redistribution toward long-term sodium battery. Energy Environ. Mater., 2023, 6: 12474

[148]

LiangHJ, LiuHH, ZhaoXX, et al. . Electrolyte chemistry toward ultrawide-temperature (–25 to 75 °C) sodium-ion batteries achieved by phosphorus/silicon-synergistic interphase manipulation. J. Am. Chem. Soc., 2024, 146: 7295-7304

[149]

XieD, SangY, WangDH, et al. . ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed., 2023, 62: e202216934

[150]

WangY, YangX, MengYF, et al. . Fluorine chemistry in rechargeable batteries: challenges, progress, and perspectives. Chem. Rev., 2024, 124: 3494-3589

[151]

XuC, LindgrenF, PhilippeB, et al. . Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater., 2015, 27: 2591-2599

[152]

HuXJ, ZhengYP, LiZW, et al. . Artificial LiF-rich interface enabled by in situ electrochemical fluorination for stable lithium-metal batteries. Angew. Chem. Int. Ed., 2024, 63: 2319600

[153]

ShenX, ChengXB, ShiP, et al. . Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J. Energy Chem., 2019, 37: 29-34

[154]

WuZH, WangCY, HuiZY, et al. . Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy, 2023, 8: 340-350

[155]

Zhang, Y.H., Zhao, P.Y., Nie, Q.N., et al.: Enabling 420 Wh kg−1 stable lithium-metal pouch cells by lanthanum doping. Adv. Mater., 2211032 (2023). https://doi.org/10.1002/adma.202211032

[156]

HuangGX, ChenSR, GuoPM, et al. . In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy. Chem. Eng. J., 2020, 395: 125122

[157]

LiT, LiL, CaoYL, et al. . Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries. J. Phys. Chem. C, 2010, 114: 3190-3195

[158]

LinDC, LiuYY, ChenW, et al. . Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon. Nano Lett., 2017, 17: 3731-3737

[159]

WangHS, LinDC, XieJ, et al. . An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater., 2019, 9: 1802720

[160]

QinKQ, BaucomJ, LiuDL, et al. . A powder metallurgic approach toward high-performance lithium metal anodes. Small, 2020, 16: 2000794

[161]

HeMF, GuoR, HoboldGM, et al. . The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl. Acad. Sci. U. S. A., 2020, 117: 73-79

[162]

ZhaoJ, LiaoL, ShiFF, et al. . Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc., 2017, 139: 11550-11558

[163]

YuBZ, TaoT, MatetiS, et al. . Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater., 2018, 28: 1803023

[164]

YuanYX, WuF, BaiY, et al. . Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater., 2019, 16: 411-418

[165]

Ginnings, D.C., Phipps, T.E.: Temperature-conductance curves of solid salts. III. Halides of lithium. J. Am. Chem. Soc. 52, 1340–1345 (1930). https://doi.org/10.1021/ja01367a006

[166]

LinYX, LiuZ, LeungK, et al. . Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power. Sources, 2016, 309: 221-230

[167]

DuanC, ChengZ, LiW, et al. . Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine–vapor deposition. Energy Environ. Sci., 2022, 15: 3236-3245

[168]

DuanH, ZhangJ, ChenX, et al. . Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries. J. Am. Chem. Soc., 2018, 140: 18051-18057

[169]

LinYX, WenZP, LiuJX, et al. . Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. J. Energy Chem., 2021, 55: 129-135

[170]

LiaoKM, WuSC, MuXW, et al. . Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl4 pretreatment method. Adv. Mater., 2018, 30: 1705711

[171]

ZhangK, WuF, ZhangK, et al. . Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Mater., 2021, 41: 485-494

[172]

WangJJ, DengMH, ChenYH, et al. . Structural, elastic, electronic and optical properties of lithium halides (LiF, LiCl, LiBr, and LiI): first-principle calculations. Mater. Chem. Phys., 2020, 244: 122733

[173]

FanXL, JiX, HanFD, et al. . Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv., 2018, 4: 9245

[174]

LiuSF, JiX, YueJ, et al. . High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc., 2020, 142: 2438-2447

[175]

ChenYC, OuyangCY, SongLJ, et al. . Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J. Phys. Chem. C, 2011, 115: 7044-7049

[176]

GuoR, GallantBM. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem. Mater., 2020, 32: 5525-5533

[177]

DissanayakeM. Phase diagram and electrical conductivity of the Li2SO4-Li2CO3 system. Solid State Ion., 1986, 21: 279-285

[178]

LuYY, TuZY, ShuJ, et al. . Stable lithium electrodeposition in salt-reinforced electrolytes. J. Power. Sources, 2015, 279: 413-418

[179]

ZhuJH, YangJ, ZhouJJ, et al. . A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries. J. Power Sources, 2017, 366: 265-269

[180]

YangQF, LiCL. Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Mater., 2018, 14: 100-117

[181]

BenitezL, SeminarioJM. Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc., 2017, 164: E3159-E3170

[182]

HavenY. The ionic conductivity of Li-halide crystals. Recl. Trav. Chim. Pays-Bas, 1950, 69: 1471-1489

[183]

BachmanJC, MuyS, GrimaudA, et al. . Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev., 2016, 116: 140-162

[184]

LiuP, QiuZ, CaoF, et al. . Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance. J. Mater. Sci. Technol., 2024, 177: 68-78

[185]

LiJW, LiYY, ZhangSN, et al. . In situ formed LiI interfacial layer for all-solid-state lithium batteries with Li6PS5Cl solid electrolyte membranes. ACS Appl. Mater. Interfaces, 2022, 14: 55727-55734

[186]

XuRC, HanFD, JiX, et al. . Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy, 2018, 53: 958-966

[187]

JurngS, BrownZL, KimJ, et al. . Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci., 2018, 11: 2600-2608

[188]

LouliAJ, EldesokyA, WeberR, et al. . Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy, 2020, 5: 693-702

[189]

WangZX, QiFL, YinLC, et al. . An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater., 2020, 10: 1903843

[190]

LiuY, HuangYT, XuX, et al. . Fluorinated solvent-coupled anion-derived interphase to stabilize silicon microparticle anodes for high-energy-density batteries. Adv. Funct. Mater., 2023, 33: 2303667

[191]

ZhangJB, ZhangHK, LiRH, et al. . Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries. J. Energy Chem., 2023, 78: 71-79

[192]

KangQ, LiY, ZhuangZC, et al. . Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater., 2024, 36: 2308799

[193]

LiYC, CaoZ, WangY, et al. . New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries. ACS Energy Lett., 2023, 8: 4193-4203

[194]

LiSP, FangS, DouH, et al. . RbF as a dendrite-inhibiting additive in lithium metal batteries. ACS Appl. Mater. Interfaces, 2019, 11: 20804-20811

[195]

XieZK, WuZJ, AnXW, et al. . 2-Fluoropyridine: a novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chem. Eng. J., 2020, 393: 124789

[196]

FengYY, ZhangCF, LiB, et al. . Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface. J. Mater. Chem. A, 2019, 7: 6090-6098

[197]

EfawCM, LuBY, LinYX, et al. . A closed-host bi-layer dense/porous solid electrolyte interphase for enhanced lithium-metal anode stability. Mater. Today, 2021, 49: 48-58

[198]

ChenJE, ZhangH, FangMM, et al. . Design of localized high-concentration electrolytes via donor number. ACS Energy Lett., 2023, 8: 1723-1734

[199]

LiS, DaiHL, LiYH, et al. . Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Mater., 2019, 18: 222-228

[200]

FuXX, WangG, DangD, et al. . Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes. J. Mater. Chem. A, 2019, 7: 25003-25009

[201]

FanYX, WuTW, HeM, et al. . Achieving stable lithium metal anode at 50 mA cm−2 current density by LiCl enriched SEI. Small, 2023, 19: 2301433

[202]

BiswalP, KludzeA, RodriguesJ, et al. . The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Proc. Natl. Acad. Sci. U. S. A., 2021, 118: e2012071118

[203]

WangG, XiongXH, XieD, et al. . Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater., 2019, 23: 701-706

[204]

YangJJ, HuCJ, JiaY, et al. . Surface restraint synthesis of an organic-inorganic hybrid layer for dendrite-free lithium metal anode. ACS Appl. Mater. Interfaces, 2019, 11: 8717-8724

[205]

YaoX, WangJ, LinSR, et al. . Surface bromination of lithium-metal anode for high cyclic efficiency. Adv. Energy Mater., 2023, 13: 2203233

[206]

LiuP, SuH, LiuY, et al. . LiBr-LiF-rich solid-electrolyte interface layer on lithiophilic 3D framework for enhanced lithium metal anode. Small Struct., 2022, 3: 2200010

[207]

JiaWS, WangQJ, YangJY, et al. . Pretreatment of lithium surface by using iodic acid (HIO3) to improve its anode performance in lithium batteries. ACS Appl. Mater. Interfaces, 2017, 9: 7068-7074

[208]

LiZQ, HuangXL, KongL, et al. . Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries. Energy Storage Mater., 2022, 45: 40-47

[209]

JiangZ, PengHL, LiuY, et al. . A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries. Adv. Energy Mater., 2021, 11: 2101521

[210]

ZengDW, YaoJM, ZhangL, et al. . Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat. Commun., 2022, 13: 1909

[211]

LiY, ArnoldW, JasinskiJB, et al. . Interface stability of LiCl-rich argyrodite Li6PS5Cl with propylene carbonate boosts high-performance lithium batteries. Electrochim. Acta, 2020, 363: 137128

[212]

SongRF, YaoJM, XuRN, et al. . Metastable decomposition realizing dendrite-free solid-state Li metal batteries. Adv. Energy Mater., 2023, 13: 2203631

[213]

YinYC, YangJT, LuoJD, et al. . A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature, 2023, 616: 77-83

[214]

ZhaoFP, SunQ, YuC, et al. . Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett., 2020, 5: 1035-1043

[215]

YanH, SongRF, XuRN, et al. . Synergy of I-Cl co-occupation on halogen-rich argyrodites and resultant dual-layer interface for advanced all-solid-state Li metal batteries. J. Energy Chem., 2023, 86: 499-509

[216]

ShengOW, JinCB, JuZJ, et al. . Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries. Nano Lett., 2022, 22: 8346-8354

[217]

ChenY, LiWW, SunCZ, et al. . Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries. Adv. Energy Mater., 2021, 11: 2002545

[218]

JiangPF, CaoJQ, WeiB, et al. . LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention. Energy Storage Mater., 2022, 48: 145-154

[219]

MaXX, ShenX, ChenX, et al. . The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes. Small Struct., 2022, 3: 2200071

[220]

YunJ, ParkBK, WonES, et al. . Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Lett., 2020, 5: 3108-3114

[221]

LiangX, PangQ, KochetkovIR, et al. . A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy, 2017, 2: 17119

[222]

ZhengGY, LeeSW, LiangZ, et al. . Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol., 2014, 9: 618-623

[223]

MaWC, ShiYR, JiangJL, et al. . Regulated lithium deposition behavior by chlorinated hybrid solid-electrolyte-interphase for stable lithium metal anode. Chem. Eng. J., 2022, 442: 136297

[224]

ZhangYJ, WangGY, TangL, et al. . Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating. J. Mater. Chem. A, 2019, 7: 25369-25376

[225]

AiLF, ChenZY, LiSP, et al. . Stabilizing Li plating by a fluorinated hybrid protective layer. ACS Appl. Energy Mater., 2021, 4: 14407-14414

[226]

ThannerK, VarziA, BuchholzD, et al. . Artificial solid electrolyte interphases for lithium metal electrodes by wet processing: the role of metal salt concentration and solvent choice. ACS Appl. Mater. Interfaces, 2020, 12: 32851-32862

[227]

JiangZP, JinL, HanZL, et al. . Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem. Int. Ed., 2019, 58: 11374-11378

[228]

HouGM, CiC, GuoHH, et al. . Facile construction of a hybrid artificial protective layer for stable lithium metal anode. Chem. Eng. J., 2020, 391: 123542

[229]

LiSS, HuangY, RenWH, et al. . Stabilize lithium metal anode through in situ forming a multi-component composite protective layer. Chem. Eng. J., 2021, 422: 129911

[230]

ChenT, KongWH, ZhaoPY, et al. . Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase. Chem. Mater., 2019, 31: 7565-7573

[231]

WangR, YuJ, TangJT, et al. . Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Mater., 2020, 32: 178-184

[232]

XuBQ, LiuZ, LiJX, et al. . Engineering interfacial adhesion for high-performance lithium metal anode. Nano Energy, 2020, 67: 104242

[233]

JiangLY, TanSP, YangJ, et al. . Zinc atoms introduction alloying to the artificial interface protection layer for ultra-stable LiB alloy anodes. J. Power. Sources, 2023, 556: 232373

[234]

HanZY, RenHR, HuangZJ, et al. . A permselective coating protects lithium anode toward a practical lithium-sulfur battery. ACS Nano, 2023, 17: 4453-4462

[235]

WangLL, FuSY, ZhaoT, et al. . In situ formation of a LiF and Li-Al alloy anode protected layer on a Li metal anode with enhanced cycle life. J. Mater. Chem. A, 2020, 8: 1247-1253

[236]

DingYF, SunYJ, ShiZX, et al. . Bismuthene arrays harvesting reversible plating-alloying electrochemistry toward robust lithium metal batteries. Small Struct., 2023, 4: 2200313

[237]

LiF, TanYH, YinYC, et al. . A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes. Chem. Sci., 2019, 10: 9735-9739

[238]

WangAN, LiJ, YiMY, et al. . Stable all-solid-state lithium metal batteries enabled by ultrathin LiF/Li3Sb hybrid interface layer. Energy Storage Mater., 2022, 49: 246-254

[239]

WangJ, HuHM, DuanSR, et al. . Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv. Funct. Mater., 2022, 32: 2110468

[240]

WangSZ, ChenJH, LuHC, et al. . Artificial alloy/Li3N double-layer enabling stable high-capacity lithium metal anodes. ACS Appl. Energy Mater., 2021, 4: 13132-13139

[241]

RanQW, ZhaoHY, LiuJT, et al. . Stable lithium metal anode enabled by a robust artificial fluorinated hybrid interphase. J. Energy Chem., 2023, 83: 612-621

[242]

KimMH, WiTU, SeoJ, et al. . Design principles for fluorinated interphase evolution via conversion-type alloying processes for anticorrosive lithium metal anodes. Nano Lett., 2023, 23: 3582-3591

[243]

PathakR, ChenK, GurungA, et al. . Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun., 2020, 11: 93

[244]

ZhengYX, LuoSN, PangYP, et al. . In situ construction of inorganic component-rich polymers as interfacial stabilizers for high-rate lithium metal batteries. J. Alloys Compd., 2023, 955: 170177

[245]

WangJ, HuHM, ZhangJ, et al. . Hydrophobic lithium diffusion-accelerating layers enables long-life moisture-resistant metallic lithium anodes in practical harsh environments. Energy Storage Mater., 2022, 52: 210-219

[246]

GuoW, HanQ, JiaoJR, et al. . In situ construction of robust biphasic surface layers on lithium metal for lithium-sulfide batteries with long cycle life. Angew. Chem., 2021, 133: 7343-7350

[247]

LiangYH, ShenC, LiuH, et al. . Tailoring conversion-reaction-induced alloy interlayer for dendrite-free sulfide-based all-solid-state lithium-metal battery. Adv. Sci., 2023, 10: 2300985

[248]

TuZY, ChoudhuryS, ZachmanMJ, et al. . Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat. Energy, 2018, 3: 310-316

[249]

ChoudhuryS, TuZY, StalinS, et al. . Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed., 2017, 56: 13070-13077

[250]

LinYX, WenZP, YangCC, et al. . Strengthening dendrite suppression in lithium metal anode by in situ construction of Li-Zn alloy layer. Electrochem. Commun., 2019, 108: 106565

[251]

JiaZQ, LyuHJ, WangWR, et al. . Long-life lithium-metal batteries with dendrite-free anodes enabled by Zn(TFSI)2 additive. J. Alloys Compd., 2023, 936: 168108

[252]

LiR, YangLW, SongL, et al. . A thin LiGa alloy layer from in situ electroreduction to suppress anode dendrite formation in lithium-sulfur pouch cell. Chem. Eng. J., 2023, 455: 140707

[253]

YuDN, LeeC, WangWC, et al. . Solid electrolyte interphase-ization of Mg2+-blocking layers for lithium ions in anode-free rechargeable lithium metal batteries. Electrochim. Acta, 2023, 449: 142215

[254]

LiYJ, MaoEY, MinZW, et al. . Hybrid polymer-alloy-fluoride interphase enabling fast ion transport kinetics for low-temperature lithium metal batteries. ACS Nano, 2023, 17: 19459-19469

[255]

LiaoYL, HuJK, FuZH, et al. . Integrated interface configuration by in situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries. J. Energy Chem., 2023, 80: 458-465

[256]

LuZY, LiWT, LongY, et al. . Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode. Adv. Funct. Mater., 2020, 30: 1907343

[257]

JinCB, HuangYY, LiLH, et al. . A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun., 2023, 14: 8269

[258]

KimS, KwonYM, ChoKY, et al. . Metal iodides (LiI, MgI2, AlI3, TiI4, and SnI4) potentiality as electrolyte additives for Li-S batteries. Electrochim. Acta, 2021, 391: 138927

[259]

MaL, KimMS, ArcherLA. Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater., 2017, 29: 4181-4189

[260]

PangQ, LiangX, KochetkovIR, et al. . Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem., 2018, 130: 9943-9946

[261]

LiuJ, WuT, ZhangSQ, et al. . InBr3 as a self-defensed redox mediator for Li-O2 batteries: in situ construction of a stable indium-rich composite protective layer on the Li anode. J. Power. Sources, 2019, 439: 227095

[262]

ZhangYZ, SunCW. Composite lithium protective layer formed in situ for stable lithium metal batteries. ACS Appl. Mater. Interfaces, 2021, 13: 12099-12105

[263]

JiaWS, WangY, QuSJ, et al. . ZnF2 coated three dimensional Li-Ni composite anode for improved performance. J. Materiomics, 2019, 5: 176-184

[264]

JiaWS, LiHD, WangZH, et al. . 3D composite lithium metal with multilevel micro-nano structure combined with surface modification for stable lithium metal anodes. Appl. Surf. Sci., 2021, 570: 151159

[265]

HuangK, SongSP, XueZY, et al. . In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode. Energy Storage Mater., 2023, 55: 301-311

[266]

HuYF, LiZC, WangZP, et al. . Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci., 2023, 10: 2206995

[267]

YinYC, WangQ, YangJT, et al. . Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nat. Commun., 2020, 11: 1761

[268]

WenYC, DingJY, LiuJ, et al. . A separator rich in SnF2 and NO3 directs an ultra-stable interface toward high performance Li metal batteries. Energy Environ. Sci., 2023, 16: 2957-2967

[269]

ShiYR, HuLB, LiQH, et al. . An optimizing hybrid interface architecture for unleashing the potential of sulfide-based all-solid-state battery. Energy Storage Mater., 2023, 63: 103009

[270]

ZhaoB, ShiYR, WuJ, et al. . Stabilizing Li7P3S11/lithium metal anode interface by in situ bifunctional composite layer. Chem. Eng. J., 2022, 429: 132411

[271]

LeeGH, LeeSG, ParkSH, et al. . Interface engineering on a Li metal anode for an electro-chemo-mechanically stable anodic interface in all-solid-state batteries. J. Mater. Chem. A, 2022, 10: 10662-10671

[272]

YiJG, ShiS, LiuQ, et al. . High-performance all-solid-state lithium batteries enabled by high-conductivity free-standing sulfide electrolyte membrane and Li-Zn/LiCl bifunctional interphase. J. Power. Sources, 2024, 602: 234370

[273]

WanHL, LiuSF, DengT, et al. . Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett., 2021, 6: 862-868

[274]

RenYX, ZengL, ZhaoC, et al. . A safe and efficient lithiated silicon-sulfur battery enabled by a bi-functional composite interlayer. Energy Storage Mater., 2020, 25: 217-223

[275]

XuQS, YangXF, RaoMM, et al. . High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Mater., 2020, 26: 73-82

[276]

YuJH, LiuQ, HuX, et al. . Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li intermediate interfaces for solid-state batteries. Energy Storage Mater., 2022, 46: 68-75

[277]

WangHS, LinDC, LiuYY, et al. . Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv., 2017, 3: e1701301

[278]

WangZH, ChenT, LiuYC, et al. . LiF headspace affixed metallic Li composite enables Li accommodation on the anode surface with excellent electrochemical performance. Chem. Eng. J., 2022, 430: 132970

[279]

WangCW, GongYH, LiuBY, et al. . Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett., 2017, 17: 565-571

[280]

BaiHN, HuJL, DuanYS, et al. . Surface modification of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte by Al2O3-doped ZnO coating to enable dendrites-free all-solid-state lithium-metal batteries. Ceram. Int., 2019, 45: 14663-14668

[281]

JiangJL, OuYH, LuSY, et al. . In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery. Energy Storage Mater., 2022, 50: 810-818

[282]

LiZY, JiangXP, LuGJ, et al. . Composite lithium with high ionic conducting Li3Bi alloy enabled high-performance garnet-type solid-state lithium batteries. Chem. Eng. J., 2023, 465: 142895

[283]

LeeK, HanS, LeeJ, et al. . Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett., 2022, 7: 381-389

[284]

HuBK, YuW, XuBQ, et al. . An in situ-formed mosaic Li7Sn3/LiF interface layer for high-rate and long-life garnet-based lithium metal batteries. ACS Appl. Mater. Interfaces, 2019, 11: 34939-34947

[285]

LiuW, LiuPC, MitlinD. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater., 2020, 10: 2002297

[286]

LiuXR, WangD, WanLJ. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy. Sci. Bull., 2015, 60: 839-849

[287]

WuJX, Ihsan-Ul-HaqM, ChenYM, et al. . Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations. Nano Energy, 2021, 89: 106489

[288]

YanYY, ChengC, ZhangL, et al. . Deciphering the reaction mechanism of lithium-sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater., 2019, 9: 1900148

[289]

ShiYS, GengFS, SunY, et al. . Sustainable anionic redox by inhibiting Li cross-layer migration in Na-based layered oxide cathodes. ACS Nano, 2024, 18: 5609-5621

[290]

SunYG, RenY. In situ synchrotron X-ray techniques for real-time probing of colloidal nanoparticle synthesis. Part. Part. Syst. Charact., 2013, 30: 399-419

[291]

ShadikeZ, LeeH, BorodinO, et al. . Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat. Nanotechnol., 2021, 16: 549-554

[292]

MaireE, WithersPJ. Quantitative X-ray tomography. Int. Mater. Rev., 2014, 59: 1-43

[293]

VanpeeneV, VillanovaJ, SuuronenJP, et al. . Monitoring the morphological changes of Si-based electrodes by X-ray computed tomography: a 4D-multiscale approach. Nano Energy, 2020, 74: 104848

[294]

VanpeeneV, KingA, MaireE, et al. . In situ characterization of Si-based anodes by coupling synchrotron X-ray tomography and diffraction. Nano Energy, 2019, 56: 799-812

[295]

TripathiAM, SuWN, HwangBJ. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev., 2018, 47: 736-851

[296]

WoodKN, TeeterG. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater., 2018, 1: 4493-4504

[297]

NandasiriMI, Camacho-ForeroLE, SchwarzAM, et al. . In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries. Chem. Mater., 2017, 29: 4728-4737

[298]

WuJP, WengST, ZhangX, et al. . In situ detecting thermal stability of solid electrolyte interphase (SEI). Small, 2023, 19: 2208239

[299]

ZachmanMJ, TuZY, ArcherLA, et al. . Nanoscale elemental mapping of intact solid-liquid interfaces and reactive materials in energy devices enabled by cryo-FIB/SEM. ACS Energy Lett., 2020, 5: 1224-1232

[300]

RubanovS, MunroePR. Investigation of the structure of damage layers in TEM samples prepared using a focused ion beam. J. Mater. Sci. Lett., 2001, 20: 1181-1183

[301]

LeeJZ, WynnTA, SchroederMA, et al. . Cryogenic focused ion beam characterization of lithium metal anodes. ACS Energy Lett., 2019, 4: 489-493

[302]

EgertonRF. Radiation damage to organic and inorganic specimens in the TEM. Micron, 2019, 119: 72-87

[303]

WangXF, ZhangMH, AlvaradoJ, et al. . New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett., 2017, 17: 7606-7612

[304]

LiYB, HuangW, LiYZ, et al. . Opportunities for cryogenic electron microscopy in materials science and nanoscience. ACS Nano, 2020, 14: 9263-9276

[305]

LiYZ, HuangW, LiYB, et al. . Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule, 2018, 2: 2167-2177

[306]

LangSY, ShiY, GuoYG, et al. . Insight into the interfacial process and mechanism in lithium-sulfur batteries: an in situ AFM study. Angew. Chem. Int. Ed., 2016, 55: 15835-15839

[307]

KumarR, TokranovA, SheldonBW, et al. . In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett., 2016, 1: 689-697

[308]

DomkeJ, RadmacherM. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir, 1998, 14: 3320-3325

[309]

WolffB, HausenF. Mechanical evolution of solid electrolyte interphase on metallic lithium studied by in situ atomic force microscopy. J. Electrochem. Soc., 2023, 170: 010534

[310]

LiuXS, LiangZT, XiangYX, et al. . Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization. Adv. Mater., 2021, 33: 2005878

[311]

HopeMA, RinkelBLD, GunnarsdóttirAB, et al. . Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun., 2020, 11: 2224

[312]

HuJZ, ZhaoZC, HuMY, et al. . In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process. J. Power. Sources, 2016, 304: 51-59

[313]

ChangHJ, TreaseNM, IlottAJ, et al. . Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM. J. Phys. Chem. C, 2015, 119: 16443-16451

[314]

GunnarsdóttirAB, AmanchukwuCV, MenkinS, et al. . Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc., 2020, 142: 20814-20827

[315]

BhattacharyyaR, KeyB, ChenHL, et al. . In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater., 2010, 9: 504-510

[316]

LimH, JunS, SongYB, et al. . Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy Storage Mater., 2022, 50: 543-553

[317]

WuWY, LuoW, HuangYH. Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chem. Soc. Rev., 2023, 52: 2553-2572

[318]

WangQ, ZouPK, RenLT, et al. . Ultrathin composite Li electrode for high-performance Li metal batteries: a review from synthetic chemistry. Adv. Funct. Mater., 2023, 33: 2213648

[319]

CaoJQ, QianGY, LuXY, et al. . Advanced composite lithium metal anodes with 3D frameworks: preloading strategies, interfacial optimization, and perspectives. Small, 2023, 19: 2205653

[320]

LuoJ, SunQ, LiangJW, et al. . Rapidly in situ cross-linked poly(butylene oxide) electrolyte interface enabling halide-based all-solid-state lithium metal batteries. ACS Energy Lett., 2023, 8: 3676-3684

[321]

WuDX, ChenLQ, LiH, et al. . Solid-state lithium batteries-from fundamental research to industrial progress. Prog. Mater. Sci., 2023, 139: 101182

[322]

ZhuYZ, HeXF, MoYF. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces, 2015, 7: 23685-23693

[323]

QiaoY, HuR, GuY, et al. . Exploring new generation of characterization approaches for energy electrochemistry: from operando to artificial intelligence. Sci. Sin. Chim., 2024, 54: 338-352

[324]

PeiF, WuL, ZhangY, et al. . Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun., 2024, 15: 351

[325]

LiGC, DuanXR, LiuXT, et al. . Locking active Li metal through localized redistribution of fluoride enabling stable Li-metal batteries. Adv. Mater., 2023, 35: 2207310

[326]

SenyshynA, MühlbauerMJ, DolotkoO, et al. . Spatially resolved in operando neutron scattering studies on Li-ion batteries. J. Power. Sources, 2014, 245: 678-683

[327]

XuZX, YangJ, ZhangT, et al. . Stable Na metal anode enabled by a reinforced multistructural SEI layer. Adv. Funct. Mater., 2019, 29: 1901924

[328]

FangW, JiangR, ZhengH, et al. . Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive. Rare Met., 2021, 40: 433-439

[329]

ZhouY, TongH, WuY, et al. . A dendrite-free Zn anode co-modified with in and ZnF2 for long-life Zn-ion capacitors. ACS Appl. Mater. Interfaces, 2022, 14: 46665-46672

[330]

LiangGJ, ZhuJX, YanBX, et al. . Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci., 2022, 15: 1086-1096

[331]

HouGM, CiC, SalpekarD, et al. . Stable lithium metal anode enabled by an artificial multi-phase composite protective film. J. Power. Sources, 2020, 448: 227547

[332]

LuGJ, LiuW, YangZG, et al. . Superlithiophilic, ultrastable, and ionic-conductive interface enabled long lifespan all-solid-state lithium-metal batteries under high mass loading. Adv. Funct. Mater., 2023, 33: 2304407

Funding

National Key Research and Development Project(2019YFA0705702)

National Natural Science Foundation of China(22075328)

Guangdong Basic and Applied Basic Research Foundation(2021B1515120002)

AI Summary AI Mindmap
PDF

308

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/