Engineering, Understanding, and Optimizing Electrolyte/Anode Interfaces for All-Solid-State Sodium Batteries

Wenhao Tang , Ruiyu Qi , Jiamin Wu , Yinze Zuo , Yiliang Shi , Ruiping Liu , Wei Yan , Jiujun Zhang

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 23

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :23 DOI: 10.1007/s41918-024-00228-7
Review Article
review-article

Engineering, Understanding, and Optimizing Electrolyte/Anode Interfaces for All-Solid-State Sodium Batteries

Author information +
History +
PDF

Abstract

Rechargeable all-solid-state sodium batteries (ASS-SBs), including all-solid-state sodium-ion batteries and all-solid-state sodium-metal batteries, are considered highly advanced electrochemical energy storage technologies. This is owing to their potentially high safety and energy density and the high abundance of sodium resources. However, these materials are limited by the properties of their solid-state electrolytes (SSEs) and various SSE/Na interfacial challenges. In recent years, extensive research has focused on understanding the interfacial behavior and strategies to overcome the challenges in developing ASS-SBs. In this prospective, the sodium-ion conduction mechanisms in different SSEs and the interfacial failure mechanisms of their corresponding batteries are comprehensively reviewed in terms of chemical/electrochemical stability, interfacial contacts, sodium dendrite growth, and thermal stability. Based on mechanistic analysis, representative interfacial engineering strategies for the interface between SSEs and Na anodes are summarized. Advanced techniques, including in situ/ex situ instrumental and electrochemical measurements and analysis for interface characterization, are also introduced. Furthermore, advanced computer-assisted methods, including artificial intelligence and machine learning (which can complement experimental systems), are discussed. The purpose of this review is to outline the solid-state electrolyte and electrolyte/anode interface challenges, and the potential research directions for overcoming these challenges. This would enable target-oriented research for the development of solid-state electrochemical energy storage devices.

Graphical Abstract

Keywords

All-solid-state electrolyte / Sodium-ion battery / Interfacial failure / Interfacial engineering / Computer-assisted methods

Cite this article

Download citation ▾
Wenhao Tang, Ruiyu Qi, Jiamin Wu, Yinze Zuo, Yiliang Shi, Ruiping Liu, Wei Yan, Jiujun Zhang. Engineering, Understanding, and Optimizing Electrolyte/Anode Interfaces for All-Solid-State Sodium Batteries. Electrochemical Energy Reviews, 2024, 7(1): 23 DOI:10.1007/s41918-024-00228-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Usiskin R, Lu YX, Popovic J, et al.. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater., 2021, 6: 1020-1035

[2]

Lee B, Paek E, Mitlin D, et al.. Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev., 2019, 119: 5416-5460

[3]

Liu Y, Li W, Xia YY. Recent progress in polyanionic anode materials for Li (Na)-ion batteries. Electrochem. Energy Rev., 2021, 4: 447-472

[4]

Tang Z, Zhou SY, Huang YC, et al.. Improving the initial Coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: origins, solutions, and perspectives. Electrochem. Energy Rev., 2023, 6: 8

[5]

Zhao LF, Hu Z, Huang ZY, et al.. In situ plating of Mg sodiophilic seeds and evolving sodium fluoride protective layers for superior sodium metal anodes. Adv. Energy Mater., 2022, 12: 2200990

[6]

Yao WT, Zou PC, Wang M, et al.. Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy Rev., 2021, 4: 601-631

[7]

Zhao Q, Stalin S, Zhao CZ, et al.. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater., 2020, 5: 229-252

[8]

Chi XW, Zhang Y, Hao F, et al.. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun., 2022, 13: 2854

[9]

Yang J, Liu GZ, Avdeev M, et al.. Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett., 2020, 5: 2835-2841

[10]

Bashir T, Zhou SW, Yang SQ, et al.. Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev., 2023, 6: 5

[11]

Zhou QB, Wang LL, Li WY, et al.. Sodium superionic conductors (NASICONs) as cathode materials for sodium-ion batteries. Electrochem. Energy Rev., 2021, 4: 793-823

[12]

Kundu DP, Talaie E, Duffort V, et al.. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed., 2015, 54: 3431-3448

[13]

Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci., 2013, 6: 734

[14]

Jia HH, Peng LF, Yu C, et al.. Chalcogenide-based inorganic sodium solid electrolytes. J. Mater. Chem. A, 2021, 9: 5134-5148

[15]

Yang ZD, Tang B, Xie ZJ, et al.. NASICON-type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries. ChemElectroChem, 2021, 8: 1035-1047

[16]

Wang TY, Zhang M, Zhou KF, et al.. A hetero-layered, mechanically reinforced, ultra-lightweight composite polymer electrolyte for wide-temperature-range, solid-state sodium batteries. Adv. Funct. Mater., 2023, 33: 2215117

[17]

Zhou CT, Bag S, Thangadurai V. Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett., 2018, 3: 2181-2198

[18]

Zhao CL, Liu LL, Qi XG, et al.. Solid-state sodium batteries. Adv. Energy Mater., 2018, 8: 1703012

[19]

Yao Y, Wei ZY, Wang HY, et al.. Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater., 2020, 10: 1903698

[20]

Pacios R, Villaverde A, Martínez-Ibañez M, et al.. Roadmap for competitive production of solid-state batteries: how to convert a promise into reality. Adv. Energy Mater., 2023, 13: 2301018

[21]

Wu JF, Zhang R, Fu QF, et al.. Inorganic solid electrolytes for all-solid-state sodium batteries: fundamentals and strategies for battery optimization. Adv. Funct. Mater., 2021, 31: 2008165

[22]

Dong YF, Wen PC, Shi HD, et al.. Solid-state electrolytes for sodium metal batteries: recent status and future opportunities. Adv. Funct. Mater., 2024, 34: 2213584

[23]

Huang JW, Wu K, Xu G, et al.. Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chem. Soc. Rev., 2023, 52: 4933-4995

[24]

Gao XR, Xing Z, Wang MY, et al.. Comprehensive insights into solid-state electrolytes and electrode–electrolyte interfaces in all-solid-state sodium-ion batteries. Energy Storage Mater., 2023, 60 102821

[25]

Lopez J, Mackanic DG, Cui Y, et al.. Designing polymers for advanced battery chemistries. Nat. Rev. Mater., 2019, 4: 312-330

[26]

Tang B, Yu XY, Gao YR, et al.. Positioning solid-state sodium batteries in future transportation and energy storage. Sci. Bull., 2022, 67: 2149-2153

[27]

Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973, 14: 589

[28]

Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J., 1975, 7: 319-327

[29]

Xue ZG, He D, Xie XL. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A, 2015, 3: 19218-19253

[30]

Mindemark J, Mogensen R, Smith MJ, et al.. Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries. Electrochem. Commun., 2017, 77: 58-61

[31]

Zhang JJ, Zhao JH, Yue LP, et al.. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater., 2015, 5: 1501082

[32]

Subba Reddy CV, Han X, Zhu QY, et al.. Conductivity and discharge characteristics of (PVC + NaClO4) polymer electrolyte systems. Eur. Polym. J., 2006, 42: 3114-3120

[33]

Subba Reddy CV, Jin AP, Zhu QY, et al.. Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications. Eur. Phys. J. E, 2006, 19: 471-476

[34]

Bhargav PB, Mohan VM, Sharma AK, et al.. Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications. J. Appl. Polym. Sci., 2008, 108: 510-517

[35]

Osman Z, Md Isa KB, Ahmad A, et al.. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics, 2010, 16: 431-435

[36]

Zhang XJ, Wang XC, Liu S, et al.. A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res., 2018, 11: 6244-6251

[37]

Wu SL, Yu ZF, Nie XL, et al.. Fast ion conduction nanofiber matrix composite electrolyte for dendrite-free solid-state sodium-ion batteries with wide temperature operation. Adv. Energy Mater., 2022, 12: 2202930

[38]

Zhou D, Liu RL, Zhang J, et al.. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33: 45-54

[39]

Ratner MA, Shriver DF. Ion transport in solvent-free polymers. Chem. Rev., 1988, 88: 109-124

[40]

Diederichsen KM, McShane EJ, McCloskey BD. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett., 2017, 2: 2563-2575

[41]

Berthier C, Gorecki W, Minier M, et al.. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion., 1983, 11: 91-95

[42]

Reinoso DM, Frechero MA. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater., 2022, 52: 430-464

[43]

Oh JAS, He LC, Chua B, et al.. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Mater., 2021, 34: 28-44

[44]

Yao YFY, Kummer JT. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem., 1967, 29: 2453-2475

[45]

Dell RM, Moseley PT. Beta-alumina electrolyte for use in sodium/sulphur batteries. J. Power. Sources, 1981, 6: 143-160

[46]

Oshima T, Kajita M, Okuno A. Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol., 2004, 1: 269-276

[47]

Lu Y, Li L, Zhang Q, et al.. Electrolyte and interface engineering for solid-state sodium batteries. Joule, 2018, 2: 1747-1770

[48]

Ran LB, Baktash A, Li M, et al.. Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries’ performance. Energy Storage Mater., 2021, 40: 282-291

[49]

Duchardt M, Ruschewitz U, Adams S, et al.. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12. Angew. Chem. Int. Ed., 2018, 57: 1351-1355

[50]

Udovic TJ, Matsuo M, Tang WS, et al.. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater., 2014, 26: 7622-7626

[51]

Wang YG, Wang QF, Liu ZP, et al.. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites. J. Power. Sources, 2015, 293: 735-740

[52]

Goodenough JB, Hong HYP, Kafalas JA. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull., 1976, 11: 203-220

[53]

Vonalpen U, Bell M, Hofer H. Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3−xO12). Solid State Ion., 1981, 3(4): 215-218

[54]

Anantharamulu N, Koteswara Rao K, Rambabu G, et al.. A wide-ranging review on Nasicon type materials. J. Mater. Sci., 2011, 46: 2821-2837

[55]

Jansen M, Henseler U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem., 1992, 99: 110-119

[56]

Tanibata N, Noi K, Hayashi A, et al.. X-ray crystal structure analysis of sodium-ion conductivity in 94Na3PS4·6Na4SiS4 glass-ceramic electrolytes. ChemElectroChem, 2014, 1: 1130-1132

[57]

Hayashi A, Noi K, Sakuda A, et al.. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun., 2012, 3: 856

[58]

Banerjee A, Park KH, Heo JW, et al.. Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem., 2016, 128: 9786-9790

[59]

Zhang L, Yang K, Mi JL, et al.. Na3PSe4: a novel chalcogenide solid electrolyte with high ionic conductivity. Adv. Energy Mater., 2015, 5: 1501294

[60]

Yu ZX, Shang SL, Seo JH, et al.. Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries. Adv. Mater., 2017, 29: 1605561

[61]

Hayashi A, Masuzawa N, Yubuchi S, et al.. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun., 2019, 10: 5266

[62]

Zhang Z, Ramos E, Lalère F, et al.. Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci., 2018, 11: 87-93

[63]

Heo JW, Banerjee A, Park KH, et al.. New Na-ion solid electrolytes Na4−xSn1−xSbxS4 (0.02 ≤ x ≤ 0.33) for all-solid-state Na-ion batteries. Adv. Energy Mater., 2018, 8: 1702716

[64]

Jia HH, Sun YL, Zhang ZR, et al.. Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors. Energy Storage Mater., 2019, 23: 508-513

[65]

Fuchs T, Culver SP, Till P, et al.. Defect-mediated conductivity enhancements in Na3−xPn1−xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett., 2020, 5: 146-151

[66]

Matsuo M, Oguchi H, Sato T, et al.. Sodium and magnesium ionic conduction in complex hydrides. J. Alloys Compd., 2013, 580: S98-S101

[67]

Chen HC, Hong T. First-principles investigation of the mechanical and thermodynamic properties of the metal-borohydrides as electrolytes for solid-state batteries. J. Electrochem. Soc., 2019, 166: A493-A500

[68]

Oguchi H, Matsuo M, Kuromoto S, et al.. Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6. J. Appl. Phys., 2012, 111 036102

[69]

Tang WS, Unemoto A, Zhou W, et al.. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci., 2015, 8: 3637-3645

[70]

Udovic TJ, Matsuo M, Unemoto A, et al.. Sodium superionic conduction in Na2B12H12. Chem. Commun., 2014, 50: 3750-3752

[71]

Her JH, Zhou W, Stavila V, et al.. Role of cation size on the structural behavior of the alkali-metal dodecahydro-closo-dodecaborates. J. Phys. Chem. C, 2009, 113: 11187-11189

[72]

Verdal N, Her JH, Stavila V, et al.. Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12. J. Solid State Chem., 2014, 212: 81-91

[73]

Lu ZH, Ciucci F. Structural origin of the superionic Na conduction in Na2B10H10 closo-borates and enhanced conductivity by Na deficiency for high performance solid electrolytes. J. Mater. Chem. A, 2016, 4: 17740-17748

[74]

Kweon KE, Varley JB, Shea P, et al.. Structural, chemical, and dynamical frustration: origins of superionic conductivity in closo-borate solid electrolytes. Chem. Mater., 2017, 29: 9142-9153

[75]

Cuan J, Zhou Y, Zhou TF, et al.. Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Adv. Mater., 2019, 31: 1803533

[76]

Asakura R, Duchêne L, Kühnel RS, et al.. Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Appl. Energy Mater., 2019, 2: 6924-6930

[77]

Wang YG, Wen T, Park C, et al.. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2. J. Appl. Phys., 2016, 119 025901

[78]

Dawson JA, Chen H, Islam MS. Composition screening of lithium- and sodium-rich anti-perovskites for fast-conducting solid electrolytes. J. Phys. Chem. C, 2018, 122: 23978-23984

[79]

Wan TH, Lu ZH, Ciucci F. A first principle study of the phase stability, ion transport and substitution strategy for highly ionic conductive sodium antipervoskite as solid electrolyte for sodium ion batteries. J. Power. Sources, 2018, 390: 61-70

[80]

Zhu JL, Wang YG, Li S, et al.. Sodium ion transport mechanisms in antiperovskite electrolytes Na3OBr and Na4OI2: an in situ neutron diffraction study. Inorg. Chem., 2016, 55: 5993-5998

[81]

Goldmann BA, Clarke MJ, Dawson JA, et al.. Atomic-scale investigation of cation doping and defect clustering in the anti-perovskite Na3OCl sodium-ion conductor. J. Mater. Chem. A, 2022, 10: 2249-2255

[82]

Zhao YS, Daemen LL. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc., 2012, 134: 15042-15047

[83]

Lu ZH, Ciucci F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem. Mater., 2017, 29: 9308-9319

[84]

Sun YL, Wang YC, Liang XM, et al.. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4. J. Am. Chem. Soc., 2019, 141: 5640-5644

[85]

Sun JG, Sun QM, Plewa A, et al.. Abnormal ionic conductivities in halide NaBi3O4Cl2 induced by absorbing water and a derived oxhydryl group. Angew. Chem. Int. Ed., 2020, 59: 8991-8997

[86]

Famprikis T, Canepa P, Dawson JA, et al.. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater., 2019, 18: 1278-1291

[87]

Chen L, Li YT, Li SP, et al.. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46: 176-184

[88]

Bachman JC, Muy S, Grimaud A, et al.. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev., 2016, 116: 140-162

[89]

Wang YM, Wang ZT, Zheng F, et al.. Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery. Adv. Sci., 2022, 9 e2105849

[90]

Fan LZ, He HC, Nan CW. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater., 2021, 6: 1003-1019

[91]

Matios E, Wang H, Luo JM, et al.. Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. J. Mater. Chem. A, 2021, 9: 18632-18643

[92]

Niu W, Chen L, Liu YC, et al.. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chem. Eng. J., 2020, 384 123233

[93]

Liu SL, Liu WY, Ba DL, et al.. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater., 2023, 35: 2110423

[94]

Sun CW, Liu J, Gong YD, et al.. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33: 363-386

[95]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22: 587-603

[96]

Xu K. Interfaces and interphases in batteries. J. Power. Sources, 2023, 559 232652

[97]

Wenzel S, Leichtweiss T, Krüger D, et al.. Interphase formation on lithium solid electrolytes: an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion., 2015, 278: 98-105

[98]

Wenzel S, Leichtweiss T, Weber DA, et al.. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl. Mater. Interfaces, 2016, 8: 28216-28224

[99]

Lou SF, Zhang F, Fu CK, et al.. Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater., 2021, 33: 2000721

[100]

Wu EA, Kompella CS, Zhu ZY, et al.. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study. ACS Appl. Mater. Interfaces, 2018, 10: 10076-10086

[101]

Liu LL, Qi XG, Yin SJ, et al.. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett., 2019, 4: 1650-1657

[102]

Wang H, Chen Y, Hood ZD, et al.. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem., 2016, 128: 8693-8697

[103]

Guo XL, Zhang LY, Ding Y, et al.. Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci., 2019, 12: 2605-2619

[104]

Yu XL, Yao YW, Wang XX, et al.. Rapid ultrasound welding toward compact Na/beta-Al2O3 interface realizing room-temperature solid-state sodium metal battery. Energy Storage Mater., 2023, 54: 221-226

[105]

Zhou WD, Li YT, Xin S, et al.. Rechargeable sodium all-solid-state battery. ACS Cent. Sci., 2017, 3: 52-57

[106]

Yang JY, Gao ZH, Ferber T, et al.. Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries. J. Mater. Chem. A, 2020, 8: 7828-7835

[107]

Spencer Jolly D, Ning ZY, Darnbrough JE, et al.. Sodium/Na β″ alumina interface: effect of pressure on voids. ACS Appl. Mater. Interfaces, 2020, 12: 678-685

[108]

Ortmann T, Burkhardt S, Eckhardt JK, et al.. Kinetics and pore formation of the sodium metal anode on NASICON-type Na3.4Zr2Si2.4P0.6O12 for sodium solid-state batteries. Adv. Energy Mater., 2023, 13: 2202712

[109]

Uchida Y, Hasegawa G, Shima K, et al.. Insights into sodium ion transfer at the Na/NASICON interface improved by uniaxial compression. ACS Appl. Energy Mater., 2019, 2: 2913-2920

[110]

Hänsel C, Kumar PV, Kundu DP. Stack pressure effect in Li3PS4 and Na3PS4 based alkali metal solid-state cells: the dramatic implication of interlayer growth. Chem. Mater., 2020, 32: 10501-10510

[111]

Fincher CD, Zhang YW, Pharr GM, et al.. Elastic and plastic characteristics of sodium metal. ACS Appl. Energy Mater., 2020, 3: 1759-1767

[112]

Singh DK, Fuchs T, Krempaszky C, et al.. Overcoming anode instability in solid-state batteries through control of the lithium metal microstructure. Adv. Funct. Mater., 2023, 33: 2211067

[113]

Matios E, Wang H, Wang CL, et al.. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability. ACS Appl. Mater. Interfaces, 2019, 11: 5064-5072

[114]

Deng Z, Wang ZB, Chu IH, et al.. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc., 2015, 163: A67-A74

[115]

Hitchcock DC, De Jonghe LC. Fracture toughness anisotropy of sodium β-alumina. J. Am. Ceram. Soc., 1983, 66: c204-c205

[116]

Chen MW, Ma E, Hemker KJ, et al.. Deformation twinning in nanocrystalline aluminum. Science, 2003, 300: 1275-1277

[117]

Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep., 2013, 3: 2261

[118]

Nose M, Kato A, Sakuda A, et al.. Evaluation of mechanical properties of Na2S-P2S5 sulfide glass electrolytes. J. Mater. Chem. A, 2015, 3: 22061-22065

[119]

Tsai CL, Lan T, Dellen C, et al.. Dendrite-tolerant all-solid-state sodium batteries and an important mechanism of metal self-diffusion. J. Power. Sources, 2020, 476 228666

[120]

Liu H, Cheng XB, Huang JQ, et al.. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett., 2020, 5: 833-843

[121]

Ma QL, Ortmann T, Yang AK, et al.. Enhancing the dendrite tolerance of NaSICON electrolytes by suppressing edge growth of Na electrode along ceramic surface. Adv. Energy Mater., 2022, 12: 2201680

[122]

Li DL, Sun C, Wang CZ, et al.. Regulating Na/NASCION electrolyte interface chemistry for stable solid-state Na metal batteries at room temperature. Energy Storage Mater., 2023, 54: 403-409

[123]

Gao ZH, Yang JY, Li GC, et al.. TiO2 as second phase in Na3Zr2Si2PO12 to suppress dendrite growth in sodium metal solid-state batteries. Adv. Energy Mater., 2022, 12: 2103607

[124]

Sun Z, Zhao YJ, Ni Q, et al.. Solid-state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface. Small, 2022, 18: 2200716

[125]

Chu IH, Kompella CS, Nguyen H, et al.. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor. Sci. Rep., 2016, 6: 33733

[126]

Yu ZX, Shang SL, Wang DW, et al.. Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery. Energy Storage Mater., 2019, 17: 70-77

[127]

Zeng Y, Ouyang B, Liu J, et al.. High-entropy mechanism to boost ionic conductivity. Science, 2022, 378: 1320-1324

[128]

Li YX, Song SB, Kim H, et al.. A lithium superionic conductor for millimeter-thick battery electrode. Science, 2023, 381: 50-53

[129]

Serra Moreno J, Armand M, Berman MB, et al.. Composite PEOn: NaTFSI polymer electrolyte: preparation, thermal and electrochemical characterization. J. Power. Sources, 2014, 248: 695-702

[130]

Boschin A, Johansson P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries. Electrochim. Acta, 2015, 175: 124-133

[131]

Qi XG, Ma Q, Liu LL, et al.. Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries. ChemElectroChem, 2016, 3: 1741-1745

[132]

Ma Q, Liu JJ, Qi XG, et al.. A new Na [(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. J. Mater. Chem. A, 2017, 5: 7738-7743

[133]

Zheng YW, Pan QW, Clites M, et al.. High-capacity all-solid-state sodium metal battery with hybrid polymer electrolytes. Adv. Energy Mater., 2018, 8: 1801885

[134]

Wang XE, Zhang C, Sawczyk M, et al.. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater., 2022, 21: 1057-1065

[135]

Xu XY, Li YY, Cheng J, et al.. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. J. Energy Chem., 2020, 41: 73-78

[136]

Ling W, Fu N, Yue JP, et al.. A flexible solid electrolyte with multilayer structure for sodium metal batteries. Adv. Energy Mater., 2020, 10: 1903966

[137]

Zhang ZZ, Zhang QQ, Ren C, et al.. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. A, 2016, 4: 15823-15828

[138]

Jhang LJ, Wang DW, Silver A, et al.. Stable all-solid-state sodium-sulfur batteries for low-temperature operation enabled by sodium alloy anode and confined sulfur cathode. Nano Energy, 2023, 105 107995

[139]

Wang CW, Xie H, Zhang L, et al.. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater., 2018, 8: 1701963

[140]

Oh JAS, Sun JG, Goh M, et al.. A robust solid-solid interface using sodium-tin alloy modified metallic sodium anode paving way for all-solid-state battery. Adv. Energy Mater., 2021, 11: 2101228

[141]

Rao RP, Zhang X, Phuah KC, et al.. Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodium-selenium all-solid-state battery. J. Mater. Chem. A, 2019, 7: 20790-20798

[142]

Chi XW, Liang YL, Hao F, et al.. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem. Int. Ed., 2018, 57: 2630-2634

[143]

Cheng YF, Li MH, Yang XM, et al.. Na–K alloy anode for high-performance solid-state sodium metal batteries. Nano Lett., 2022, 22: 9614-9620

[144]

Guo XL, Liu YJ, Zhang X, et al.. Revealing the solid-state electrolyte interfacial stability model with Na–K liquid alloy. Angew. Chem. Int. Ed., 2022, 61: 2203409

[145]

Fu HY, Yin QY, Huang Y, et al.. Reducing interfacial resistance by Na–SiO2 composite anode for NASICON-based solid-state sodium battery. ACS Mater. Lett., 2020, 2: 127-132

[146]

Lu K, Li BM, Zhan XW, et al.. Elastic NaxMoS2-carbon-BASE triple interface direct robust solid-solid interface for all-solid-state Na–S batteries. Nano Lett., 2020, 20: 6837-6844

[147]

Cao KS, Zhao XT, Chen J, et al.. Hybrid design of bulk-Na metal anode to minimize cycle-induced interface deterioration of solid Na metal battery. Adv. Energy Mater., 2022, 12: 2102579

[148]

Xue LG, Gao HC, Zhou WD, et al.. Liquid K–Na alloy anode enables dendrite-free potassium batteries. Adv. Mater., 2016, 28: 9608-9612

[149]

Webster D. The effect of low melting point impurities on the properties of aluminum-lithium alloys. Metall. Trans. A, 1987, 18: 2181-2193

[150]

Zavabeti A, Ou JZ, Carey BJ, et al.. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358: 332-335

[151]

Yang JY, Xu HH, Wu JY, et al.. Improving Na/Na3Zr2Si2PO12 interface via SnOx/Sn film for high-performance solid-state sodium metal batteries. Small Methods, 2021, 5: 2100339

[152]

Li DC, Wang XX, Guo Q, et al.. Atomically bonding Na anodes with metallized ceramic electrolytes by ultrasound welding for high-energy/power solid-state sodium metal batteries. Carbon Energy, 2023, 5 e299

[153]

Cai S, Tian HQ, Liu JH, et al.. Tuning Na3Hf2Si2PO12 electrolyte surfaces by metal coating for high-rate and long cycle life solid-state sodium ion batteries. J. Mater. Chem. A, 2022, 10: 1284-1289

[154]

Suo J, Zhao QQ, Tian HQ, et al.. Designing a quasi-liquid alloy interface for solid Na-ion battery. ACS Nano, 2023, 17: 10229-10235

[155]

Ni Q, Xiong YN, Sun Z, et al.. Rechargeable sodium solid-state battery enabled by in situ formed Na–K interphase. Adv. Energy Mater., 2023, 13: 2300271

[156]

Tang HM, Deng Z, Lin ZN, et al.. Probing solid-solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater., 2018, 30: 163-173

[157]

Xiang L, Jiang DC, Gao Y, et al.. Self-formed fluorinated interphase with Fe valence gradient for dendrite-free solid-state sodium-metal batteries. Adv. Funct. Mater., 2024, 34: 2301670

[158]

Wang XX, Chen JJ, Mao ZY, et al.. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery. J. Mater. Chem. A, 2021, 9: 16039-16045

[159]

Miao XG, Di HX, Ge XL, et al.. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater., 2020, 30: 170-178

[160]

Miao RQ, Wang CZ, Li DL, et al.. Uniform Na metal plating/stripping design for highly reversible solid-state Na metal batteries at room temperature. Small, 2022, 18: 2204487

[161]

Lu Y, Alonso JA, Yi Q, et al.. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv. Energy Mater., 2019, 9: 1901205

[162]

Miao XG, Wang P, Sun R, et al.. Liquid metal–organic frameworks in-situ derived interlayer for high-performance solid-state Na-metal batteries. Adv. Energy Mater., 2021, 11: 2102396

[163]

Hu P, Zhang Y, Chi XW, et al.. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer. ACS Appl. Mater. Interfaces, 2019, 11: 9672-9678

[164]

Miao XG, Wang HY, Sun R, et al.. Isotropous sulfurized polyacrylonitrile interlayer with homogeneous Na+ flux dynamics for solid-state Na metal batteries. Adv. Energy Mater., 2021, 11: 2003469

[165]

Meng WD, Liu JH, Wang L, et al.. In situ construction of a liquid film interface with fast ion transport for solid sodium-ion batteries. Nano Lett., 2022, 22: 5214-5220

[166]

Bay MC, Wang M, Grissa R, et al.. Sodium plating from Na-β″-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries. Adv. Energy Mater., 2020, 10: 1902899

[167]

Gao ZH, Yang JY, Yuan HY, et al.. Stabilizing Na3Zr2Si2PO12/Na interfacial performance by introducing a clean and Na-deficient surface. Chem. Mater., 2020, 32: 3970-3979

[168]

Chen LH, Su YB, Zhang J, et al.. Nanosecond laser cleaning method to reduce the surface inert layer and activate the garnet electrolyte for a solid-state Li metal battery. ACS Appl. Mater. Interfaces, 2021, 13: 37082-37090

[169]

Jung K, Chang HJ, Bonnett JF, et al.. An advanced Na-NiCl2 battery using bi-layer (dense/micro-porous) β″-alumina solid-state electrolytes. J. Power. Sources, 2018, 396: 297-303

[170]

Deng T, Ji X, Zou LF, et al.. Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nat. Nanotechnol., 2022, 17: 269-277

[171]

Wen KH, Xin CZ, Guan SD, et al.. Ion–dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries. Adv. Mater., 2022, 34: 2202143

[172]

Yang ZD, Chen LT, Jiang HY, et al.. SnF2-induced highly current-tolerant solid electrolytes for solid-state sodium batteries. Adv. Funct. Mater., 2023, 33: 2306558

[173]

Yu XW, Manthiram A. Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte. Matter, 2019, 1: 439-451

[174]

Luo CZ, Li QY, Shen DY, et al.. Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solid-state batteries. Energy Storage Mater., 2021, 43: 463-470

[175]

Xie G, Tang M, Xu SH, et al.. Degradation at the Na3SbS4/anode interface in an operating all-solid-state sodium battery. ACS Appl. Mater. Interfaces, 2022, 14: 48705-48714

[176]

Guhl C, Kehne P, Ma QL, et al.. Interfaces in solid-state sodium-ion batteries: NaCoO2 thin films on solid electrolyte substrates. Electrochim. Acta, 2018, 268: 226-233

[177]

Halacoglu S, Chertmanova S, Chen Y, et al.. Visualization of solid-state synthesis for chalcogenide Na superionic conductors by in situ neutron diffraction. ChemSusChem, 2021, 14: 5161-5166

[178]

Zhang ZQ, Wang ZF, Zhang L, et al.. Unraveling the conversion evolution on solid-state Na–SeS2 battery via in situ TEM. Adv. Sci., 2022, 9: 2200744

[179]

Yu Y, Wang JT, Qin ZX, et al.. Sodium carbazolide and derivatives as solid-state electrolytes for sodium-ion batteries. Angew. Chem. Int. Ed., 2023, 62: 2302679

[180]

Wang SF, Xu HH, Li WD, et al.. Interfacial chemistry in solid-state batteries: formation of interphase and its consequences. J. Am. Chem. Soc., 2018, 140: 250-257

[181]

Kim DH, Kim JY, Park JH, et al.. RT-XAMF and TR-XRD studies of solid-state synthesis and thermal stability of NaNiO2 as cathode material for sodium-ion batteries. Ceram. Int., 2022, 48: 19675-19680

[182]

Li XK, Zhao LZ, Li P, et al.. In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy, 2017, 42: 122-128

[183]

Schuett J, Pescher F, Neitzel-Grieshammer S. The origin of high Na+ ion conductivity in Na1+xZr2SixP3−xO12 NASICON materials. Phys. Chem. Chem. Phys., 2022, 24: 22154-22167

[184]

Chun GH, Gong SH, Kim HS, et al.. Enhancing the interfacial stability of all-solid-state high-energy sodium-ion batteries by coating materials: first principles calculations. Appl. Surf. Sci., 2023, 616 156479

[185]

Richards WD, Miara LJ, Wang Y, et al.. Interface stability in solid-state batteries. Chem. Mater., 2016, 28: 266-273

[186]

Zhu YZ, He XF, Mo YF. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A, 2016, 4: 3253-3266

[187]

Tian YS, Shi T, Richards WD, et al.. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci., 2017, 10: 1150-1166

[188]

Lacivita V, Wang Y, Bo SH, et al.. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A, 2019, 7: 8144-8155

[189]

Jang SH, Tateyama Y, Jalem R. High-throughput data-driven prediction of stable high-performance Na-ion sulfide solid electrolytes. Adv. Funct. Mater., 2022, 32: 2206036

[190]

Sun G, Yang X, Chen N, et al.. Na5YSi4O12: a sodium superionic conductor for ultrastable quasi-solid-state sodium-ion batteries. Energy Storage Mater., 2021, 41: 196-202

[191]

Zhang ZZ, Zou ZY, Kaup K, et al.. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes. Adv. Energy Mater., 2019, 9: 1902373

[192]

Kim J, Kang S, Min K. Screening platform for promising Na superionic conductors for Na-ion solid-state electrolytes. ACS Appl. Mater. Interfaces, 2023, 15: 41417-41425

[193]

Pereznieto S, Jaafreh R, Kim JG, et al.. Discovery of solid-state electrolytes for Na-ion batteries using machine learning. Mater. Lett., 2023, 349 134848

[194]

Jo J, Choi E, Kim M, et al.. Machine learning-aided materials design platform for predicting the mechanical properties of Na-ion solid-state electrolytes. ACS Appl. Energy Mater., 2021, 4: 7862-7869

[195]

Deng ZY, Mishra TP, Mahayoni E, et al.. Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes. Nat. Commun., 2022, 13: 4470

Funding

National Natural Science Foundation of China(52272258)

Beijing Nova Program(20220484214)

Key R&D and transformation projects in Qinghai Province(2023-HZ-801)

Fundamental Research Funds for the Central Universities(2023ZKPYJD07)

Fundamental Research Funds of China University of Mining and Technology (Beijing) - Top Innovative Talents Cultivation Fund for Doctoral Students (BBJ2023033)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

PDF

306

Accesses

0

Citation

Detail

Sections
Recommended

/