Li Alloys in All Solid-State Lithium Batteries: A Review of Fundamentals and Applications

Jingru Li , Han Su , Yu Liu , Yu Zhong , Xiuli Wang , Jiangping Tu

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 18

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :18 DOI: 10.1007/s41918-024-00221-0
Review Article
review-article

Li Alloys in All Solid-State Lithium Batteries: A Review of Fundamentals and Applications

Author information +
History +
PDF

Abstract

All solid-state lithium batteries (ASSLBs) overcome the safety concerns associated with traditional lithium-ion batteries and ensure the safe utilization of high-energy-density electrodes, particularly Li metal anodes with ultrahigh specific capacities. However, the practical implementation of ASSLBs is limited by the instability of the interface between the anode and solid-state electrolyte (SSE). To mitigate this, considerable research has been dedicated to achieving enhanced stability at the anode/SSE interface. Among the current strategies for enhancing interface performance, the concept of Li-alloy materials is extensively used and well functionalized in various scenarios, including Li alloys as anodes, Li-alloy interlayers and Li alloys in the anode. Despite the notable achievements of Li-alloy materials in ASSLBs, the functionality, practicality and working mechanism of Li-alloys have not been fully elucidated. This review commences by providing an exhaustive and in-depth examination of the fundamental kinetics, thermodynamics, and mechanics, highlighting Li-alloy materials. Subsequently, through a systematic interconnection of material properties and their practical applications, we undertake a comprehensive analysis of the operative principles governing Li alloys. This analytical approach allows a thorough evaluation of the viability and utility of Li alloys within the context of ASSLBs. Finally, this review concludes by succinctly summarizing the future prospects and inherent potential of Li-alloy materials for further advancing the field of ASSLBs.

Graphical Abstract

Keywords

Li alloys / Anode / All-solid-state lithium batteries / Physicochemical properties / Applications

Cite this article

Download citation ▾
Jingru Li, Han Su, Yu Liu, Yu Zhong, Xiuli Wang, Jiangping Tu. Li Alloys in All Solid-State Lithium Batteries: A Review of Fundamentals and Applications. Electrochemical Energy Reviews, 2024, 7(1): 18 DOI:10.1007/s41918-024-00221-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367

[2]

Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451: 652-657

[3]

Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928-935

[4]

Nitta N, Wu FX, Lee JT, et al.. Li-ion battery materials: present and future. Mater. Today, 2015, 18: 252-264

[5]

Zhang JG, Xu W, Xiao J, et al.. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev., 2020, 120: 13312-13348

[6]

Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc., 2013, 135: 1167-1176

[7]

Wang Q, Lu TT, Xiao YB, et al.. Leap of Li metal anodes from coin cells to pouch cells: challenges and progress. Electrochem. Energy Rev., 2023, 6: 22

[8]

Li YL, Feng XN, Ren DS, et al.. Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces, 2019, 11: 46839-46850

[9]

Hou JX, Lu LG, Wang L, et al.. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun., 2020, 11: 5100

[10]

Jiao SH, Ren XD, Cao RG, et al.. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy, 2018, 3: 739-746

[11]

Liu H, Sun X, Cheng XB, et al.. Working principles of lithium metal anode in pouch cells. Adv. Energy Mater., 2022, 12: 2202518

[12]

Manthiram A, Yu XW, Wang SF. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater., 2017, 2: 16103

[13]

Yang CP, Fu K, Zhang Y, et al.. Protected lithium-metal anodes in batteries: from liquid to solid. Adv. Mater., 2017, 29: 1701169

[14]

Yang SJ, Hu JK, Jiang FN, et al.. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells. ETransportation, 2023, 18: 100279

[15]

Zhao Q, Stalin S, Zhao CZ, et al.. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater., 2020, 5: 229-252

[16]

Wu JH, Shen L, Zhang ZH, et al.. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev., 2021, 4: 101-135

[17]

Su H, Jiang Z, Liu Y, et al.. Recent progress of sulfide electrolytes for all-solid-state lithium batteries. Energy Mater, 2022, 2: 205

[18]

Vishnugopi BS, Kazyak E, Lewis JA, et al.. Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett., 2021, 6: 3734-3749

[19]

Xiao YH, Wang Y, Bo SH, et al.. Understanding interface stability in solid-state batteries. Nat. Rev. Mater., 2019, 5: 105-126

[20]

Wu JH, Liu SF, Han FD, et al.. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater., 2021, 33: 2000751

[21]

Su H, Liu Y, Zhong Y, et al.. Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy, 2022, 96: 107104

[22]

Han FD, Westover AS, Yue J, et al.. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy, 2019, 4: 187-196

[23]

Porz L, Swamy T, Sheldon BW, et al.. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater., 2017, 7: 1701003

[24]

Liu H, Cheng XB, Huang JQ, et al.. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett., 2020, 5: 833-843

[25]

Liu XM, Garcia-Mendez R, Lupini AR, et al.. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater., 2021, 20: 1485-1490

[26]

Wang CH, Deng T, Fan XL, et al.. Identifying soft breakdown in all-solid-state lithium battery. Joule, 2022, 6: 1770-1781

[27]

Sun MH, Liu TF, Yuan YF, et al.. Visualizing lithium dendrite formation within solid-state electrolytes. ACS Energy Lett., 2021, 6: 451-458

[28]

Kasemchainan J, Zekoll S, Spencer Jolly D, et al.. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater., 2019, 18: 1105-1111

[29]

Li JR, Su H, Li M, et al.. A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. Chem. Eng. J., 2022, 431: 134019

[30]

Umeshbabu E, Zheng BZ, Zhu JP, et al.. Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability. ACS Appl. Mater. Interfaces, 2019, 11: 18436-18447

[31]

Xu R, Liu F, Ye YS, et al.. A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv. Mater., 2021, 33: 2104009

[32]

Zhao FP, Sun Q, Yu C, et al.. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett., 2020, 5: 1035-1043

[33]

Wang CH, Zhao Y, Sun Q, et al.. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy, 2018, 53: 168-174

[34]

Wan HL, Liu SF, Deng T, et al.. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett., 2021, 6: 862-868

[35]

Ji X, Hou S, Wang PF, et al.. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater., 2020, 32: 2002741

[36]

Liu Y, Su H, Li M, et al.. In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. J. Mater. Chem. A, 2021, 9: 13531-13539

[37]

Bonnick P, Muldoon J. The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci., 2022, 15: 1840-1860

[38]

Du MJ, Liao KM, Lu Q, et al.. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ. Sci., 2019, 12: 1780-1804

[39]

Chen YM, Wang ZQ, Li XY, et al.. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature, 2020, 578: 251-255

[40]

Rioja RJ, Liu J. The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A, 2012, 43: 3325-3337

[41]

Huang YL, Shao BW, Han FD. Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. J. Mater. Chem. A, 2022, 10: 12350-12358

[42]

Shi Z, Liu ML, Naik D, et al.. Electrochemical properties of Li-Mg alloy electrodes for lithium batteries. J. Power. Sources, 2001, 92: 70-80

[43]

Pelton AD. The Cu-Li (copper-lithium) system. Bull. Alloy Phase Diagr., 1986, 7: 142-144

[44]

Pelton AD. The Ag-Li (silver-lithium) system. Bull. Alloy Phase Diagr., 1986, 7: 223-228

[45]

Nayeb-Hashemi AA, Clark JB, Pelton AD. The Li-Mg (lithium-magnesium) system. Bull. Alloy Phase Diagr., 1984, 5: 365-374

[46]

Songster J, Pelton AD. The In-Li (indium-lithium) system. J. Phase Equilib., 1991, 12: 37-41

[47]

Sangster J, Bale CW. The Li-Sn (lithium-tin) system. J. Phase Equilib., 1998, 19: 70-75

[48]

McAlister AJ. The Al-Li (aluminum-lithium) system. Bull. Alloy Phase Diagr., 1982, 3: 177-183

[49]

Gąsior W, Onderka B, Moser Z, et al.. Thermodynamic evaluation of Cu-Li phase diagram from EMF measurements and DTA study. Calphad, 2009, 33: 215-220

[50]

Adams BD, Zheng JM, Ren XD, et al.. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater., 2018, 8: 1702097

[51]

Sun MH, Wei JK, Xu Z, et al.. Electrochemical solid-state amorphization in the immiscible Cu-Li system. Sci. Bull., 2018, 63: 1208-1214

[52]

Jin S, Ye YD, Niu YJ, et al.. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc., 2020, 142: 8818-8826

[53]

Guo BC, Guo PY, Zhao GH, et al.. A solid-solution-based Li-Mg alloy for highly stable lithium metal anodes. Sustain. Energy Fuels, 2022, 6: 4137-4145

[54]

Braga MH, Dębski A, Terlicka S, et al.. Experimental and ab initio study of the Ag-Li system for energy storage and high-temperature solders. J. Alloys Compd., 2020, 817: 152811

[55]

Krauskopf T, Mogwitz B, Rosenbach C, et al.. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater., 2019, 9: 1902568

[56]

Choi HJ, Kang DW, Park JW, et al.. In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv. Sci., 2022, 9: 2103826

[57]

Lee YG, Fujiki S, Jung C, et al.. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy, 2020, 5: 299-308

[58]

Prasad NE, Ramachandran TR. Prasad NE, Gokhale AA, Wanhill RJH. Phase diagrams and phase reactions in Al-Li alloys. Aluminum-Lithium Alloys, 2014, Boston, Butterworth-Heinemann6197

[59]

Pan H, Zhang MH, Cheng Z, et al.. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv., 2022, 8 eabn4372372

[60]

Huggins RA. Lithium alloy negative electrodes. J. Power. Sources, 1999, 81(82): 13-19

[61]

Boukamp BA, Lesh GC, Huggins RA. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc., 1981, 128: 725-729

[62]

Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem. Rev., 2014, 114: 11444-11502

[63]

Taillades G, Sarradin J. Silver: high performance anode for thin film lithium ion batteries. J. Power. Sources, 2004, 125: 199-205

[64]

Beutl A, Fürtauer S, Flandorfer H. A novel apparatus for coulometric titrations in lithium containing systems. Thermochim. Acta, 2017, 653: 8-15

[65]

Hänsel C, Singh B, Kiwic D, et al.. Favorable interfacial chemomechanics enables stable cycling of high-Li-content Li-In/Sn anodes in sulfide electrolyte-based solid-state batteries. Chem. Mater., 2021, 33: 6029-6040

[66]

Mayo M, Morris AJ. Structure prediction of Li-Sn and Li-Sb intermetallics for lithium-ion batteries anodes. Chem. Mater., 2017, 29: 5787-5795

[67]

Huo HY, Janek J. Silicon as emerging anode in solid-state batteries. ACS Energy Lett., 2022, 7: 4005-4016

[68]

Pelton AD. Pelton AD. General phase diagram sections. Phase Diagrams and Thermodynamic Modeling of Solutions, 2019, Amsterdam, Elsevier103131

[69]

Li YJ, Li JP, Xiao H, et al.. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries. Adv. Funct. Mater., 2023, 33: 2213905

[70]

Qu JL, Xiao JW, Wang TS, et al.. High rate transfer mechanism of lithium ions in lithium-tin and lithium-indium alloys for lithium batteries. J. Phys. Chem. C, 2020, 124: 24644-24652

[71]

Lu Y, Zhao CZ, Zhang R, et al.. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv., 2021, 7: eabi5520

[72]

Ga̧sior W, Moser Z. Chemical diffusion coefficients in solid Al-Li alloys at low Li concentrations. Scand. J. Metall., 2002, 31: 353-358

[73]

Jow TR, Liang CC. Lithium-aluminum electrodes at ambient temperatures. J. Electrochem. Soc., 1982, 129: 1429-1434

[74]

Korblein A, Heitjans P, Stockmann HJ, et al.. Diffusion processes in solid Li-Mg and Li-Ag alloys and the spin-lattice relaxation of 8Li. J. Phys. F: Met. Phys., 1985, 15: 561-577

[75]

Zhang Y, Ravi Chandran KS, Jagannathan M, et al.. The nature of electrochemical delithiation of Li-Mg alloy electrodes: neutron computed tomography and analytical modeling of Li diffusion and delithiation phenomenon. J. Electrochem. Soc., 2016, 164: A28-A38

[76]

Choi YS, Scanlon DO, Lee JC. Extending the performance limit of anodes: insights from diffusion kinetics of alloying anodes. Adv. Energy Mater., 2021, 11: 2003078

[77]

Ye YD, Xie HY, Yang YH, et al.. Solid-solution or intermetallic compounds: phase dependence of the Li-alloying reactions for Li-metal batteries. J. Am. Chem. Soc., 2023, 145: 24775-24784

[78]

Luo ST, Wang ZY, Li XL, et al.. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun., 2021, 12: 6968

[79]

Zeng DW, Yao JM, Zhang L, et al.. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat. Commun., 2022, 13: 1909

[80]

Shi P, Cheng XB, Li T, et al.. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells. Adv. Mater., 2019, 31: 1902785

[81]

Su YB, Ye LH, Fitzhugh W, et al.. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci., 2020, 13: 908-916

[82]

Ye LH, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature, 2021, 593: 218-222

[83]

Lee GH, Lee SG, Park SH, et al.. Interface engineering on a Li metal anode for an electro-chemo-mechanically stable anodic interface in all-solid-state batteries. J. Mater. Chem. A, 2022, 10: 10662-10671

[84]

Cao DX, Sun X, Li YJ, et al.. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv. Mater., 2022, 34: 2200401

[85]

Wu XH, Billaud J, Jerjen I, et al.. Operando visualization of morphological dynamics in all-solid-state batteries. Adv. Energy Mater., 2019, 9: 1901547

[86]

Liu XH, Zhong L, Huang S, et al.. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6: 1522-1531

[87]

Liu HB, Sun Q, Zhang HQ, et al.. The application road of silicon-based anode in lithium-ion batteries: from liquid electrolyte to solid-state electrolyte. Energy Storage Mater., 2023, 55: 244-263

[88]

Hirai K, Ichitsubo T, Uda T, et al.. Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater., 2008, 56: 1539-1545

[89]

Li HY, Yamaguchi T, Matsumoto S, et al.. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun., 2020, 11: 1584

[90]

Heligman BT, Manthiram A. Elemental foil anodes for lithium-ion batteries. ACS Energy Lett., 2021, 6: 2666-2672

[91]

Lee SW, McDowell MT, Berla LA, et al.. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 4080-4085

[92]

Zhao KJ, Pharr M, Wan Q, et al.. Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc., 2012, 159: A238-A243

[93]

Sun F, Dong K, Osenberg M, et al.. Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction. J. Mater. Chem. A, 2018, 6: 22489-22496

[94]

Wu H, Chan G, Choi JW, et al.. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 2012, 7: 310-315

[95]

Liang WT, Yang H, Fan FF, et al.. Tough germanium nanoparticles under electrochemical cycling. ACS Nano, 2013, 7: 3427-3433

[96]

Zhang WB, Schröder D, Arlt T, et al.. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A, 2017, 5: 9929-9936

[97]

Hänsel C, Kumar PV, Kundu DP. Stack pressure effect in Li3PS4 and Na3PS4 based alkali metal solid-state cells: the dramatic implication of interlayer growth. Chem. Mater., 2020, 32: 10501-10510

[98]

Lim H, Jun S, Song YB, et al.. Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy Storage Mater., 2022, 50: 543-553

[99]

Obrovac MN, Christensen L, Le DB, et al.. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc., 2007, 154: A849

[100]

Han SY, Lee C, Lewis JA, et al.. Stress evolution during cycling of alloy-anode solid-state batteries. Joule, 2021, 5: 2450-2465

[101]

Ham SY, Yang HD, Nunez-cuacuas O, et al.. Assessing the critical current density of all-solid-state Li metal symmetric and full cells. Energy Storage Mater., 2023, 55: 455-462

[102]

Fan XL, Ji X, Han FD, et al.. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv., 2018, 4 eaau9245

[103]

Lepley ND, Holzwarth NAW, Du YJA. Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles. Phys. Rev. B, 2013, 88: 104103

[104]

Nagao M, Hayashi A, Tatsumisago M, et al.. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys. Chem. Chem. Phys., 2013, 15: 18600

[105]

Yi JG, Zhou D, Liang YH, et al.. Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. J. Energy Chem., 2021, 58: 17-24

[106]

Jiang Z, Li ZX, Wang XL, et al.. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface. ACS Appl. Mater. Interfaces, 2021, 13: 30739-30745

[107]

Liu Y, Peng HL, Su H, et al.. Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity. Adv. Mater., 2022, 34: 2107346

[108]

Hiratani M. Effect of a lithium alloy layer inserted between a lithium anode and a solid electrolyte. Solid State Ion., 1988, 28(29/30): 1406-1410

[109]

Takada K. Solid state lithium battery with oxysulfide glass. Solid State Ion., 1996, 86(87/88877-882

[110]

Notten P, Roozeboom F, Niessen R, et al.. 3-D integrated all-solid-state rechargeable batteries. Adv. Mater., 2007, 19: 4564-4567

[111]

Han XG, Gong YH, Fu K, et al.. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017, 16: 572-579

[112]

Yang CP, Xie H, Ping WW, et al.. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater., 2019, 31: 1804815

[113]

Park RJY, Eschler CM, Fincher CD, et al.. Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy, 2021, 6: 314-322

[114]

Tan DHS, Chen YT, Yang HD, et al.. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 2021, 373: 1494-1499

[115]

Wan HL, Wang ZY, Zhang WR, et al.. Interface design for all-solid-state lithium batteries. Nature, 2023, 623: 739-744

[116]

Yan WL, Mu ZL, Wang ZX, et al.. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy, 2023, 8: 800-813

[117]

Wan J, Song YX, Chen WP, et al.. Micromechanism in all-solid-state alloy-metal batteries: regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. J. Am. Chem. Soc., 2021, 143: 839-848

[118]

Li DQ, Chu FL, He ZJ, et al.. Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: the roles of prelithiation and working mechanism. Mater. Today, 2022, 58: 80-90

[119]

Kim MS, Deepika N, Lee SH, et al.. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes. Sci. Adv., 2019, 5: eaax5587

[120]

Kamaya N, Homma K, Yamakawa Y, et al.. A lithium superionic conductor. Nat. Mater., 2011, 10: 682-686

[121]

Kato Y, Hori S, Saito T, et al.. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy, 2016, 1: 16030

[122]

Wu Z, Li XH, Zheng C, et al.. Interfaces in sulfide solid electrolyte-based all-solid-state lithium batteries: characterization, mechanism and strategy. Electrochem. Energy Rev., 2023, 6: 10

[123]

Nakamura T, Amezawa K, Kulisch J, et al.. Guidelines for all-solid-state battery design and electrode buffer layers based on chemical potential profile calculation. ACS Appl. Mater. Interfaces, 2019, 11: 19968-19976

[124]

Zhu YZ, He XF, Mo YF. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces, 2015, 7: 23685-23693

[125]

Chen SJ, Xie DJ, Liu GZ, et al.. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater., 2018, 14: 58-74

[126]

Wenzel S, Weber DA, Leichtweiss T, et al.. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion., 2016, 286: 24-33

[127]

Gao J, Zhu JX, Li XL, et al.. Rational design of mixed electronic-ionic conducting Ti-doping Li7La3Zr2O12 for lithium dendrites suppression. Adv. Funct. Mater., 2021, 31: 2001918

[128]

Riegger LM, Schlem R, Sann J, et al.. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed., 2021, 60: 6718-6723

[129]

Riegger LM, Otto SK, Sadowski M, et al.. Instability of the Li7SiPS8 solid electrolyte at the lithium metal anode and interphase formation. Chem. Mater., 2022, 34: 3659-3669

[130]

Il’ina, E.A., Lylin, E.D., Plekhanov, M.S.: Investigation of Li-In alloy application as anode for all-solid-state batteries. J. Phys.: Conf. Ser. 1967, 012012 (2021). https://doi.org/10.1088/1742-6596/1967/1/012012

[131]

Santhosha AL, Medenbach L, Buchheim JR, et al.. The indium-lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter. Supercaps, 2019, 2: 524-529

[132]

Li XN, Liang JW, Chen N, et al.. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed., 2019, 58: 16427-16432

[133]

Park KH, Kaup K, Assoud A, et al.. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett., 2020, 5: 533-539

[134]

Koç T, Hallot M, Quemin E, et al.. Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries. ACS Energy Lett., 2022, 7: 2979-2987

[135]

Liu Y, Su H, Zhong Y, et al.. Revealing the impact of Cl substitution on the crystallization behavior and interfacial stability of superionic lithium argyrodites. Adv. Funct. Mater., 2022, 32: 2207978

[136]

Yamada Y, Furukawa K, Sodeyama K, et al.. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc., 2014, 136: 5039-5046

[137]

Zhang WD, Wu Q, Huang JX, et al.. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater., 2020, 32: 2001740

[138]

Yang QF, Hu JL, Meng JW, et al.. C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci., 2021, 14: 3621-3631

[139]

Liu FF, Wang LF, Zhang ZW, et al.. A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode. Adv. Funct. Mater., 2020, 30: 2001607

[140]

Chen J, Fan XL, Li Q, et al.. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy, 2020, 5: 386-397

[141]

Ming J, Cao Z, Wahyudi W, et al.. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases. ACS Energy Lett., 2018, 3: 335-340

[142]

Gao T, Han Y, Fraggedakis D, et al.. Interplay of lithium intercalation and plating on a single graphite particle. Joule, 2021, 5: 393-414

[143]

Lewis JA, Cavallaro KA, Liu Y, et al.. The promise of alloy anodes for solid-state batteries. Joule, 2022, 6: 1418-1430

[144]

Janek J, Zeier WG. A solid future for battery development. Nat. Energy, 2016, 1: 16141

[145]

Randau S, Weber DA, Kötz O, et al.. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy, 2020, 5: 259-270

[146]

Sun YL, Suzuki K, Hori S, et al.. Superionic conductors: Li10+δ[SnySi1−y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4-Li4SnS4-Li4SiS4 quasi-ternary system. Chem. Mater., 2017, 29: 5858-5864

[147]

Huang WZ, Yoshino K, Hori S, et al.. Superionic lithium conductor with a cubic argyrodite-type structure in the Li-Al-Si-S system. J. Solid State Chem., 2019, 270: 487-492

[148]

Wang CH, Liang JW, Kim JT, et al.. Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv., 2022, 8: eadc9516

[149]

Liang JW, Li XN, Wang S, et al.. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc., 2020, 142: 7012-7022

[150]

Kanno R, Murayama M, Inada T, et al.. A self-assembled breathing interface for all-solid-state ceramic lithium batteries. Electrochem. Solid-State Lett., 2004, 7: A455

[151]

Liu Y, Wang CC, Yoon SG, et al.. Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries. Nat. Commun., 2023, 14: 3975

[152]

Zhong C, Guo C, Jin X, et al.. Gradient electrodeposition enables high-throughput fabrication and screening of alloy anodes for high-energy lithium-ion batteries. Mater. Today Energy, 2020, 18: 100528

[153]

Zhou DB, Liu ZJ, Lv XK, et al.. Electrochemical studies of LiB compound as anode material for lithium-ion battery. Electrochim. Acta, 2006, 51: 5731-5737

[154]

Liu X, Wu XY, Chang BB, et al.. Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater., 2020, 30: 146-169

[155]

He J, Wei YQ, Zhai TY, et al.. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater. Chem. Front., 2018, 2: 437-455

[156]

DeVries LE, Jackson LD, James SD. Structure and anodic discharge behavior of lithium-boron alloys in the LiCl - KCl eutectic melt(II). J. Electrochem. Soc., 1979, 126: 993-996

[157]

Sanchez P, Belin C, Crepy G, et al.. Preparation and characterization of lithium-boron alloys: electrochemical studies as anodes in molten salt media, and comparison with pure lithium-involving systems. J. Mater. Sci., 1992, 27: 240-246

[158]

Sanchez P, Belin C, Crepy C, et al.. Electrochemical studies of lithium-boron alloys in non-aqueous media: comparison with pure lithium. J. Appl. Electrochem., 1989, 19: 421-428

[159]

Netz A, Huggins RA, Weppner W. Investigations of a number of alternative negative electrode materials for use in lithium cells. Ionics, 2001, 7: 433-439

[160]

Duan B, Wang W, Zhao H, et al.. Li-B alloy as anode material for lithium/sulfur battery. ECS Electrochem. Lett., 2013, 2: A47-A51

[161]

Weker JN, Liu N, Misra S, et al.. In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. Energy Environ. Sci., 2014, 7: 2771-2777

[162]

Kennedy T, Brandon M, Ryan KM. Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries. Adv. Mater., 2016, 28: 5696-5704

[163]

Chen GD, Sun JR, Li JD, et al.. Revealing capacity degradation of Ge anodes in lithium-ion batteries triggered by interfacial LiH. Angew. Chem. Int. Ed., 2023, 62: 2306141

[164]

Weppner W, Huggins RA. Thermodynamic properties of the intermetallic systems lithium-antimony and lithium-bismuth. J. Electrochem. Soc., 1978, 125: 7-14

[165]

Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc., 1977, 124: 1569-1578

[166]

Hou HS, Jing MJ, Yang YC, et al.. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J. Mater. Chem. A, 2015, 3: 2971-2977

[167]

Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater., 2008, 20: 2878-2887

[168]

Kim H, Cho J. Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material. Chem. Mater., 2008, 20: 1679-1681

[169]

Gong HX, Chen YL, Chen SC, et al.. Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host. ACS Energy Lett., 2022, 7: 4417-4426

[170]

Ko M, Chae S, Ma J, et al.. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy, 2016, 1: 16113

[171]

Son Y, Ma J, Kim N, et al.. Quantification of pseudocapacitive contribution in nanocage-shaped silicon-carbon composite anode. Adv. Energy Mater., 2019, 9: 1803480

[172]

Lai YZ, Li HY, Yang Q, et al.. Revisit the progress of binders for a silicon-based anode from the perspective of designed binder structure and special sized silicon nanoparticles. Ind. Eng. Chem. Res., 2022, 61: 6246-6268

[173]

Zhang L, Wang CR, Dou YH, et al.. A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries. Angew. Chem. Int. Ed., 2019, 58: 8824-8828

[174]

Yang Z, Jiang MX, Cui C, et al.. In-situ cross-linking strategy for stabilizing the LEDC of the solid-electrolyte interphase in lithium-ion batteries. Nano Energy, 2023, 105 107993

[175]

Lee J, Jin D, Kim JY, et al.. Dry pre-lithiation for graphite-silicon diffusion-dependent electrode for all-solid-state battery. Adv. Energy Mater., 2023, 13: 2300172

[176]

Zhu B, Liu GL, Lv GX, et al.. Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci. Adv., 2019, 5 eaax0651

[177]

Yang YF, Wang JY, Kim SC, et al.. In situ prelithiation by direct integration of lithium mesh into battery cells. Nano Lett., 2023, 23: 5042-5047

[178]

Huang YL, Shao BW, Wang Y, et al.. Solid-state silicon anode with extremely high initial coulombic efficiency. Energy Environ. Sci., 2023, 16: 1569-1580

[179]

Zhan X, Li M, Li S, et al.. Challenges and opportunities towards silicon-based all-solid-state batteries. Energy Storage Mater., 2023, 61: 102875

[180]

Shoji M, Cheng EJ, Kimura T, et al.. Recent progress for all solid state battery using sulfide and oxide solid electrolytes. J. Phys. D Appl. Phys., 2019, 52: 103001

[181]

Wang YY, Diao WY, Fan CY, et al.. Benign recycling of spent batteries towards all-solid-state lithium batteries. Chem., 2019, 25: 8975-8981

[182]

Cangaz S, Hippauf F, Reuter FS, et al.. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes. Adv. Energy Mater., 2020, 10: 2001320

[183]

Han FD, Zhu YZ, He XF, et al.. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater., 2016, 6: 1501590

[184]

Schwietert TK, Arszelewska VA, Wang C, et al.. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater., 2020, 19: 428-435

[185]

Wang Y, Wu YJ, Wang ZX, et al.. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. J. Mater. Chem. A, 2022, 10: 4517-4532

[186]

Yu T, Ke BY, Li HY, et al.. Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Mater. Chem. Front., 2021, 5: 4892-4911

[187]

Trevey J, Jang JS, Jung YS, et al.. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries. Electrochem. Commun., 2009, 11: 1830-1833

[188]

Dunlap NA, Kim S, Jeong JJ, et al.. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries. Solid State Ion., 2018, 324: 207-217

[189]

Piper DM, Yersak TA, Lee SH. Effect of compressive stress on electrochemical performance of silicon anodes. J. Electrochem. Soc., 2012, 160: A77-A81

[190]

Yamamoto M, Terauchi Y, Sakuda A, et al.. Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability. J. Power. Sources, 2018, 402: 506-512

[191]

Cao DX, Sun X, Wang Y, et al.. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries. Energy Storage Mater., 2022, 48: 458-465

[192]

Zhang WB, Leichtweiß T, Culver SP, et al.. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces, 2017, 9: 35888-35896

[193]

Chen C, Li Q, Li YQ, et al.. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries. ACS Appl. Mater. Interfaces, 2018, 10: 2185-2190

[194]

Ke XY, Wang Y, Dai LM, et al.. Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: lithium dendrites. Energy Storage Mater., 2020, 33: 309-328

[195]

Xiong SZ, Xu XY, Jiao XX, et al.. Mechanical failure of solid-state electrolyte rooted in synergy of interfacial and internal defects. Adv. Energy Mater., 2023, 13: 2203614

[196]

Liu J, Yuan H, Liu H, et al.. Unlocking the failure mechanism of solid state lithium metal batteries. Adv. Energy Mater., 2022, 12: 2100748

[197]

Kazyak E, Garcia-Mendez R, LePage WS, et al.. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter, 2020, 2: 1025-1048

[198]

Lu Y, Zhao CZ, Hu JK, et al.. The void formation behaviors in working solid-state Li metal batteries. Sci. Adv., 2022, 8: eadd0510

[199]

Lee K, Kazyak E, Wang MJ, et al.. Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule, 2022, 6: 2547-2565

[200]

Shishvan SS, Fleck NA, McMeeking RM, et al.. Vacancy diffusion and its consequences for void growth at the interface of a stripping metal electrode and solid electrolyte. Electrochim. Acta, 2023, 467: 143081

[201]

Ma J, Zhang S, Zheng Y, et al.. Interelectrode talk in solid-state lithium-metal batteries. Adv. Mater., 2023, 35: 2301892

[202]

Kang J, Shin HR, Yun J, et al.. Chemo-mechanical failure of solid composite cathodes accelerated by high-strain anodes in all-solid-state batteries. Energy Storage Mater., 2023, 63: 103049

[203]

Kato A, Kowada H, Deguchi M, et al.. XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ion., 2018, 322: 1-4

[204]

Kato A, Hayashi A, Tatsumisago M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power. Sources, 2016, 309: 27-32

[205]

Chen BT, Zhang JC, Zhang TR, et al.. Constructing a superlithiophilic 3D burr-microsphere interface on garnet for high-rate and ultra-stable solid-state Li batteries. Adv. Sci., 2023, 10: 2207056

[206]

Jiang JL, Ou YH, Lu SY, et al.. In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery. Energy Storage Mater., 2022, 50: 810-818

[207]

Shi K, Wan ZP, Yang L, et al.. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew. Chem. Int. Ed., 2020, 59: 11784-11788

[208]

Zhong YR, Xie YJ, Hwang S, et al.. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew. Chem. Int. Ed., 2020, 59: 14003-14008

[209]

Chen Y, Qian J, Hu X, et al.. Constructing a uniform and stable mixed conductive layer to stabilize the solid-state electrolyte/Li interface by cold bonding at mild conditions. Adv. Mater., 2023, 35: 2212096

[210]

Lee K, Han S, Lee J, et al.. Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett., 2022, 7: 381-389

[211]

Deng T, Ji X, Zhao Y, et al.. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv. Mater., 2020, 32: 2000030

[212]

He XZ, Ji X, Zhang B, et al.. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett., 2022, 7: 131-139

[213]

Wang TR, Duan J, Zhang B, et al.. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci., 2022, 15: 1325-1333

[214]

He G, Li QW, Shen YL, et al.. Flexible amalgam film enables stable lithium metal anodes with high capacities. Angew. Chem. Int. Ed., 2019, 58: 18466-18470

[215]

Fan Y, Tao T, Gao YX, et al.. A self-healing amalgam interface in metal batteries. Adv. Mater., 2020, 32: 2004798

[216]

Zhang Q, Wu L, Fan MJ, et al.. A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. Energy Storage Mater., 2021, 34: 708-715

[217]

Li XN, Liang JW, Li X, et al.. High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes. Energy Environ. Sci., 2018, 11: 2828-2832

[218]

Fan XL, Yue J, Han FD, et al.. High-performance all-solid-state Na-S battery enabled by casting-annealing technology. ACS Nano, 2018, 12: 3360-3368

[219]

Huo HY, Chen Y, Li RY, et al.. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci., 2020, 13: 127-134

[220]

Krauskopf T, Richter FH, Zeier WG, et al.. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev., 2020, 120: 7745-7794

[221]

Pathak R, Chen K, Gurung A, et al.. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun., 2020, 11: 93

[222]

Li F, Tan YH, Yin YC, et al.. A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes. Chem. Sci., 2019, 10: 9735-9739

[223]

Li S, Yang SJ, Liu GX, et al.. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries. Adv. Mater., 2024, 36: 2307768

[224]

Liang X, Pang Q, Kochetkov IR, et al.. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy, 2017, 2: 17119

[225]

Zhao FP, Alahakoon SH, Adair K, et al.. An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries. Adv. Mater., 2021, 33: 2006577

[226]

Liu H, Zhu QS, Wang C, et al.. High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries. Adv. Funct. Mater., 2022, 32: 2203858

[227]

Ni Y, Huang C, Liu H, et al.. A high air-stability and Li-metal-compatible Li3+2xP1−xBixS4−1.5xO1.5x sulfide electrolyte for all-solid-state Li-metal batteries. Adv. Funct. Mater., 2022, 32: 2205998

[228]

Jiang Z, Liu Y, Peng HL, et al.. Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries. Energy Storage Mater., 2023, 56: 300-309

[229]

Taklu BW, Su WN, Nikodimos Y, et al.. Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy, 2021, 90: 106542

[230]

Xu BY, Li XY, Yang C, et al.. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc., 2021, 143: 6542-6550

[231]

Jia WS, Wang ZH, Li JZ, et al.. A dual-phase Li-Ca alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance. J. Mater. Chem. A, 2019, 7: 22377-22384

[232]

Chen L, Fan XL, Ji X, et al.. High-energy Li metal battery with lithiated host. Joule, 2019, 3: 732-744

[233]

Wan MT, Kang SJ, Wang L, et al.. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun., 2020, 11: 829

[234]

Ding XL, Lu X, Fu ZW, et al.. Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries. Electrochim. Acta, 2013, 87: 230-235

[235]

Wu C, Huang HF, Lu WY, et al.. Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries. Adv. Sci., 2020, 7: 1902643

[236]

Chen ZR, Liang ZT, Zhong HY, et al.. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries. ACS Energy Lett., 2022, 7: 2761-2770

[237]

Wang MQ, Peng Z, Luo WW, et al.. Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide. Adv. Sci., 2020, 7: 2000237

[238]

Park SH, Jun D, Lee GH, et al.. Designing 3D anode based on pore-size-dependent Li deposition behavior for reversible Li-free all-solid-state batteries. Adv. Sci., 2022, 9: 2203130

[239]

Ye SF, Chen XJ, Zhang R, et al.. Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano Micro Lett., 2022, 14: 187

[240]

Yan K, Lu ZD, Lee HW, et al.. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy, 2016, 1: 16010

[241]

Wang HS, Cao X, Gu HK, et al.. Improving lithium metal composite anodes with seeding and pillaring effects of silicon nanoparticles. ACS Nano, 2020, 14: 4601-4608

[242]

Zhu JQ, Cai D, Li JR, et al.. In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Mater., 2022, 49: 546-554

[243]

Wan HL, Wang ZY, Liu SF, et al.. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy, 2023, 8: 473-481

[244]

Chen LH, Tong RA, Zhang JX, et al.. Reactive magnesium nitride additive: a drop-in solution for lithium/garnet wetting in all-solid-state batteries. Angew. Chem. Int. Ed., 2023, 62: 2305099

[245]

Qiu HL, Tang TY, Asif M, et al.. Stable lithium metal anode enabled by lithium metal partial alloying. Nano Energy, 2019, 65: 103989

[246]

Huang Y, Chen B, Duan J, et al.. Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew. Chem. Int. Ed., 2020, 59: 3699-3704

[247]

Wang CW, Xie H, Zhang L, et al.. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater., 2018, 8: 1701963

[248]

Wang TS, Zhai PB, Legut D, et al.. S-doped graphene-regional nucleation mechanism for dendrite-free lithium metal anodes. Adv. Energy Mater., 2019, 9: 1804000

[249]

Xu Y, Zheng HQ, Yang H, et al.. Thermodynamic regulation of dendrite-free Li plating on Li3Bi for stable lithium metal batteries. Nano Lett., 2021, 21: 8664-8670

[250]

Li JR, Su H, Jiang Z, et al.. Domain-limited laminar lithium deposition behavior mediated by the design of hybrid anode for sulfide-based all-solid-state batteries. Acta Mater., 2023, 244: 118592

[251]

Liu C, Chen BT, Zhang TR, et al.. Electron redistribution enables redox-resistible Li6PS5Cl towards high-performance all-solid-state lithium batteries. Angew. Chem. Int. Ed., 2023, 62: 2302655

Funding

National Natural Science Foundation of China(51971201)

Zhejiang Provincial Natural Science Foundation of China(LY23E020009)

Development Program of Zhejiang Province(2022C01071)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

AI Summary AI Mindmap
PDF

260

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/