High-Entropy Strategy for Electrochemical Energy Storage Materials

Feixiang Ding , Yaxiang Lu , Liquan Chen , Yong-Sheng Hu

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 16

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :16 DOI: 10.1007/s41918-024-00216-x
Perspective
review-article

High-Entropy Strategy for Electrochemical Energy Storage Materials

Author information +
History +
PDF

Abstract

Electrochemical energy storage technologies have a profound influence on daily life, and their development heavily relies on innovations in materials science. Recently, high-entropy materials have attracted increasing research interest worldwide. In this perspective, we start with the early development of high-entropy materials and the calculation of the configurational entropy. Then, we summarize the recent progress in material design and application using the high-entropy strategy, especially highlighting rechargeable battery materials. Finally, we discuss the potential directions for the future development of high-entropy energy materials.

Graphical Abstract

Keywords

High-entropy materials / Configurational entropy / Electrochemical energy storage / Structural stabilization

Cite this article

Download citation ▾
Feixiang Ding, Yaxiang Lu, Liquan Chen, Yong-Sheng Hu. High-Entropy Strategy for Electrochemical Energy Storage Materials. Electrochemical Energy Reviews, 2024, 7(1): 16 DOI:10.1007/s41918-024-00216-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Lin SJ, et al.. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6: 299-303

[2]

Cantor B, Chang ITH, Knight P, et al.. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375(376/377): 213-218

[3]

Rost CM, Sachet E, Borman T, et al.. Entropy-stabilized oxides. Nat. Commun., 2015, 6: 8485

[4]

Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat. Rev. Mater., 2020, 5: 295-309

[5]

Ma YJ, Ma Y, Wang QS, et al.. High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci., 2021, 14: 2883-2905

[6]

Fu MS, Ma X, Zhao KN, et al.. High-entropy materials for energy-related applications. iScience, 2021, 24: 102177

[7]

Yao YG, Dong Q, Brozena A, et al.. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science, 2022, 376: eabn3103

[8]

Sarkar A, Wang QS, Schiele A, et al.. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. Deerfield Beach Fla, 2019, 31: e1806236

[9]

Yeh JW. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65: 1759-1771

[10]

Aamlid SS, Oudah M, Rottler J, et al.. Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc., 2023, 145: 5991-6006

[11]

Sarkar A, Velasco L, Wang D, et al.. High entropy oxides for reversible energy storage. Nat. Commun., 2018, 9: 3400

[12]

Wang LP, Wu ZR, Zou J, et al.. Li-free cathode materials for high energy density lithium batteries. Joule, 2019, 3: 2086-2102

[13]

Wang HM, Chen SS, Fu CL, et al.. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater. Lett., 2021, 3: 956-977

[14]

Zhao CL, Ding FX, Lu YX, et al.. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed., 2020, 59: 264-269

[15]

Ding FX, Zhao CL, Xiao DD, et al.. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc., 2022, 144: 8286-8295

[16]

Fu F, Liu X, Fu XG, et al.. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun., 2022, 13: 2826

[17]

Ding FX, Wang HB, Zhang QH, et al.. Tailoring electronic structure to achieve maximum utilization of transition metal redox for high-entropy Na layered oxide cathodes. J. Am. Chem. Soc., 2023, 145: 13592-13602

[18]

Yao LB, Zou PC, Wang CY, et al.. High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv. Energy Mater., 2022, 12: 2201989

[19]

Du XY, Meng Y, Yuan HY, et al.. High-entropy substitution: A strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Mater., 2023, 56: 132-140

[20]

Ma YJ, Ma Y, Dreyer SL, et al.. High-entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater., 2021, 33: 2170269

[21]

Li M, Sun C, Ni Q, et al.. High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater., 2023, 13: 2203971

[22]

Gu ZY, Guo JZ, Cao JM, et al.. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater., 2022, 34: 2270110

[23]

Lun ZY, Ouyang B, Kwon DH, et al.. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater., 2021, 20: 214-221

[24]

Song J, Ning FH, Zuo YX, et al.. Entropy stabilization strategy for enhancing the local structural adaptability of Li-rich cathode materials. Adv. Mater., 2023, 35: 2208726

[25]

Zhang R, Wang CY, Zou PC, et al.. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610: 67-73

[26]

Zeng Y, Ouyang B, Liu J, et al.. High-entropy mechanism to boost ionic conductivity. Science, 2022, 378: 1320-1324

[27]

Li YX, Song SB, Kim H, et al.. A lithium superionic conductor for millimeter-thick battery electrode. Science, 2023, 381: 50-53

[28]

Kim SC, Wang JY, Xu R, et al.. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy, 2023, 8: 814-826

[29]

Wang QD, Zhao CL, Wang JL, et al.. High entropy liquid electrolytes for lithium batteries. Nat. Commun., 2023, 14: 440

[30]

Yang BB, Zhang QH, Huang HB, et al.. Engineering relaxors by entropy for high energy storage performance. Nat. Energy, 2023, 8: 956-964

[31]

Yang B, Zhang Y, Pan H, et al.. High-entropy enhanced capacitive energy storage. Nat. Mater., 2022, 21: 1074-1080

Funding

National Key R&D Program of China (2022YFB3807800)

National Natural Science Foundation of China(52122214)

Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020006)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

PDF

340

Accesses

0

Citation

Detail

Sections
Recommended

/