Li–Solid Electrolyte Interfaces/Interphases in All-Solid-State Li Batteries

Linan Jia , Jinhui Zhu , Xi Zhang , Bangjun Guo , Yibo Du , Xiaodong Zhuang

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 12

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :12 DOI: 10.1007/s41918-024-00212-1
Review Article
review-article

Li–Solid Electrolyte Interfaces/Interphases in All-Solid-State Li Batteries

Author information +
History +
PDF

Abstract

The emergence of all-solid-state Li batteries (ASSLBs) represents a promising avenue to address critical concerns like safety and energy density limitations inherent in current Li-ion batteries. Solid electrolytes (SEs) show significant potential in curtailing Li dendrite intrusion, acting as natural barriers against short circuits. However, the substantial challenges at the SEs−electrode interface, particularly concerning the anode, pose significant impediments to the practical implementation of ASSLBs. This review aims to delineate the most viable strategies for overcoming anode interfacial hurdles across four distinct categories of SEs: sulfide SEs, oxide SEs, polymer SEs, and halide SEs. Initially, pivotal issues such as anode interfacial side reactions, inadequate physical contact, and Li dendrite formation are comprehensively outlined. Furthermore, effective methodologies aimed at enhancing anode interfacial stability are expounded, encompassing approaches like solid electrolyte interface (SEI) interlayer insertion, SE optimization, and the adoption of Li alloy in lieu of Li metal, each tailored to specific SE categories. Moreover, this review presents novel insights into fostering interfaces between diverse SE types and Li anodes, while also advocating perspectives and recommendations for the future advancement of ASSLBs.

Graphical Abstract

Keywords

All-solid-state Li batteries / Solid electrolytes / Li metal anode / Li dendrites / Interface

Cite this article

Download citation ▾
Linan Jia, Jinhui Zhu, Xi Zhang, Bangjun Guo, Yibo Du, Xiaodong Zhuang. Li–Solid Electrolyte Interfaces/Interphases in All-Solid-State Li Batteries. Electrochemical Energy Reviews, 2024, 7(1): 12 DOI:10.1007/s41918-024-00212-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Whittingham MS. Electrical energy storage and intercalation chemistry. Science, 1976, 192: 1126-1127

[2]

Mizushima K, Jones PC, Wiseman PJ, et al.. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Mater. Res. Bull., 1980, 15: 783-789

[3]

Yoshino A. The birth of the lithium-ion battery. Angew. Chem. Int. Ed., 2012, 51: 5798-5800

[4]

Song RS, Ge YQ, Wang B, et al.. A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes. J. Mater. Chem. A, 2019, 7: 18126-18134

[5]

Tan DHS, Banerjee A, Chen Z, et al.. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol., 2020, 15: 170-180

[6]

Al-Salih H, Houache MSE, Baranova EA, et al.. Composite cathodes for solid-state lithium batteries: “catholytes” the underrated giants. Adv. Energy Sustain. Res., 2022, 3: 2200032

[7]

Wu JH, Liu SF, Han FD, et al.. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater., 2021, 33: 2000751

[8]

Dietrich C, Weber DA, Sedlmaier SJ, et al.. Lithium ion conductivity in Li2S–P2S5 glasses–building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A, 2017, 5: 18111-18119

[9]

Tatsumisago M, Hayashi A. Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ion., 2012, 225: 342-345

[10]

Zhang Q, Cao DX, Ma Y, et al.. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater., 2019, 31: 1901131

[11]

Homma K, Yonemura M, Nagao M, et al.. Crystal structure of high-temperature phase of lithium ionic conductor, Li3PS4. J. Phys. Soc. Jpn., 2010, 79: 90-93

[12]

Mizuno F, Hayashi A, Tadanaga K, et al.. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater., 2005, 17: 918-921

[13]

Deiseroth HJ, Kong ST, Eckert H, et al.. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. Engl., 2008, 47: 755-758

[14]

Rao RP, Adams S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A, 2011, 208: 1804-1807

[15]

Bai XT, Duan Y, Zhuang WD, et al.. Research progress in Li-argyrodite-based solid-state electrolytes. J. Mater. Chem. A, 2020, 8: 25663-25686

[16]

Feng XY, Chien PH, Wang Y, et al.. Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x. Energy Storage Mater., 2020, 30: 67-73

[17]

Kamaya N, Homma K, Yamakawa Y, et al.. A lithium superionic conductor. Nat. Mater., 2011, 10: 682-686

[18]

Kato Y, Hori S, Saito T, et al.. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy, 2016, 1: 16030

[19]

Iwasaki R, Hori S, Kanno R, et al.. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12. Chem. Mater., 2019, 31: 3694-3699

[20]

Luo W, Gong YH, Zhu YZ, et al.. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater., 2017, 29: 1606042

[21]

Hu SQ, Li YF, Yang R, et al.. Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceram. Int., 2018, 44: 6614-6618

[22]

Cussen EJ. Structure and ionic conductivity in lithium garnets. J. Mater. Chem., 2010, 20: 5167-5173

[23]

O'Callaghan MP, Lynham DR, Cussen EJ, et al.. Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm–Lu). Chem. Mater., 2006, 18: 4681-4689

[24]

Cussen EJ, Yip TWS, O'Neill G, et al.. A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12. J. Solid State Chem., 2011, 184: 470-475

[25]

Murugan R, Thangadurai V, Weppner W. Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes. J. Electrochem. Soc., 2008, 155: A90

[26]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 2007, 46: 7778-7781

[27]

Percival J, Kendrick E, Smith RI, et al.. Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12. Dalton Trans, 2009

[28]

Gupta A, Murugan R, Paranthaman MP, et al.. Optimum lithium-ion conductivity in cubic Li7−xLa3Hf2−xTaxO12. J. Power. Sources, 2012, 209: 184-188

[29]

Huang X, Liu C, Lu Y, et al.. A Li-Garnet composite ceramic electrolyte and its solid-state Li–S battery. J. Power. Sources, 2018, 382: 190-197

[30]

Wang DW, Zhu CB, Fu YP, et al.. Interfaces in garnet-based all-solid-state lithium batteries. Adv. Energy Mater., 2020, 10: 2001318

[31]

Zhu YZ, He XF, Mo YF. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces, 2015, 7: 23685-23693

[32]

Han FD, Zhu YZ, He XF, et al.. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater., 2016, 6: 1501590

[33]

Campanella D, Belanger D, Paolella A. Beyond garnets, phosphates and phosphosulfides solid electrolytes: new ceramic perspectives for all solid lithium metal batteries. J. Power. Sources, 2021, 482 228949

[34]

Reddy MV, Julien CM, Mauger A, et al.. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review. Nanomaterials, 2020, 10: 1606

[35]

Goodenough JB, Hong HYP, Kafalas JA. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull., 1976, 11: 203-220

[36]

Hong HYP. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull., 1976, 11: 173-182

[37]

Kohler H, Schulz H. NASICON solid electrolytes part I: the Na+-diffusion path and its relation to the structure. Mater. Res. Bull., 1985, 20: 1461-1471

[38]

Aono H, Imanaka N, Adachi GY. High Li+ conducting ceramics. Acc. Chem. Res., 1994, 27: 265-270

[39]

Zheng F, Kotobuki M, Song SF, et al.. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power. Sources, 2018, 389: 198-213

[40]

Feng JK, Lu L, Lai MO. Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J. Alloys Compd., 2010, 501: 255-258

[41]

Itoh M, Inaguma Y, Jung WH, et al.. High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La, Pr, Nd, Sm). Solid State Ion., 1994, 70(71): 203-207

[42]

Inaguma Y, Yu JD, Shan YJ, et al.. The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate. J. Electrochem. Soc., 1995, 142: L8-L11

[43]

Inaguma Y, Itoh M. Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides. Solid State Ion., 1996, 86(87/88): 257-260

[44]

Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973, 14: 589

[45]

Xue ZG, He D, Xie XL. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A, 2015, 3: 19218-19253

[46]

Wu YX, Li Y, Wang Y, et al.. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem., 2022, 64: 62-84

[47]

Kim, J.U., Sung, C.H., Moon, S.I., et al.: Conductivity and transference number of poly(ethylene oxide)/poly(vinylidene fluoride) blend plasticized polymer electrolytes. In: Proceedings of 5th International Conference on Properties and Applications of Dielectric Materials. IEEE, pp. 646–649, Seoul, (1997). https://ieeexplore.ieee.org/document/616518

[48]

Kim HS, Paik CH, Cho BW, et al.. Discharge characteristics of an Li/LiCoO2 cell with poly(acrylonitirile)-based polymer electrolyte. J. Power. Sources, 1997, 68: 361-363

[49]

Zhang Z, Zhang GZ, Chao L. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries. Energy Storage Mater., 2021, 41: 631-641

[50]

Such K, Stevens JR, Wieczorek W, et al.. Polymer solid electrolytes from the PEG–PMMA–LiCF3SO3 system. J. Polym. Sci. B Polym. Phys., 1994, 32: 2221-2233

[51]

Borah S, Guha AK, Saikia L, et al.. Nanofiber induced enhancement of electrical and electrochemical properties in polymer gel electrolytes for application in energy storage devices. J. Alloys Compd., 2021, 886 161173

[52]

Lv ZL, Tang Y, Dong SM, et al.. Polyurethane-based polymer electrolytes for lithium batteries: advances and perspectives. Chem. Eng. J., 2022, 430 132659

[53]

Cong B, Song YX, Ren NQ, et al.. Polyethylene glycol-based waterborne polyurethane as solid polymer electrolyte for all-solid-state lithium ion batteries. Mater. Des., 2018, 142: 221-228

[54]

Wan JY, Xie J, Kong X, et al.. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol., 2019, 14: 705-711

[55]

Wang BY, Wang GX, He PG, et al.. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. J. Membr. Sci., 2022, 642 119952

[56]

Ding PP, Lin ZY, Guo XW, et al.. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today, 2021, 51: 449-474

[57]

Liang JW, Li XN, Adair KR, et al.. Metal halide superionic conductors for all-solid-state batteries. Acc. Chem. Res., 2021, 54: 1023-1033

[58]

Asano T, Sakai A, Ouchi S, et al.. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater., 2018, 30: 1803075

[59]

Li XN, Liang JW, Yang XF, et al.. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci., 2020, 13: 1429-1461

[60]

Liu ZT, Ma S, Liu J, et al.. High ionic conductivity achieved in Li3Y(Br 3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett., 2021, 6: 298-304

[61]

Emly A, Kioupakis E, Van der Ven A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem. Mater., 2013, 25: 4663-4670

[62]

Wang S, Bai Q, Nolan AM, et al.. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. Engl., 2019, 58: 8039-8043

[63]

Wang XY, He K, Li SY, et al.. Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: a review. Nano Res., 2023, 16: 3741-3765

[64]

Lv Q, Jiang YP, Wang B, et al.. Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Rep. Phys. Sci., 2022, 3 100706

[65]

Paul PP, Chen BR, Langevin SA, et al.. Interfaces in all solid state Li-metal batteries: a review on instabilities, stabilization strategies, and scalability. Energy Storage Mater., 2022, 45: 969-1001

[66]

Liang YH, Liu H, Wang GX, et al.. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat, 2022, 4 e12292

[67]

Xu K. Interfaces and interphases in batteries. J. Power. Sources, 2023, 559 232652

[68]

Lee D, Lee H, Song T, et al.. Toward high rate performance solid-state batteries. Adv. Energy Mater., 2022, 12: 2200948

[69]

Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc., 2013, 135: 1167-1176

[70]

Schwietert TK, Arszelewska VA, Wang C, et al.. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater., 2020, 19: 428-435

[71]

He F, Hu ZL, Tang WJ, et al.. Vertically heterostructured solid electrolytes for lithium metal batteries. Adv. Funct. Mater., 2022, 32: 2201465

[72]

Wenzel S, Leichtweiss T, Krüger D, et al.. Interphase formation on lithium solid electrolytes: an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion., 2015, 278: 98-105

[73]

Nolan AM, Zhu YZ, He XF, et al.. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule, 2018, 2: 2016-2046

[74]

Banerjee A, Wang XF, Fang CC, et al.. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev., 2020, 120: 6878-6933

[75]

Yan M, Liang JY, Zuo TT, et al.. Stabilizing polymer–lithium interface in a rechargeable solid battery. Adv. Funct. Mater., 2020, 30: 1908047

[76]

Wenzel S, Randau S, Leichtweiß T, et al.. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater., 2016, 28: 2400-2407

[77]

Xiao YH, Wang Y, Bo SH, et al.. Understanding interface stability in solid-state batteries. Nat. Rev. Mater., 2019, 5: 105-126

[78]

Richards WD, Miara LJ, Wang Y, et al.. Interface stability in solid-state batteries. Chem. Mater., 2016, 28: 266-273

[79]

Li JC, Ma C, Chi MF, et al.. Lithium-ion batteries: solid electrolyte: the key for high-voltage lithium batteries (adv. energy mater. 4/2015). Adv. Energy Mater., 2015, 5: 1401408

[80]

Hartmann P, Leichtweiss T, Busche MR, et al.. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C, 2013, 117: 21064-21074

[81]

Zhou WD, Wang ZX, Pu Y, et al.. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater., 2019, 31: 1805574

[82]

Duan H, Fan M, Chen WP, et al.. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater., 2019, 31: 1807789

[83]

Khurana R, Schaefer JL, Archer LA, et al.. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc., 2014, 136: 7395-7402

[84]

Lu QW, Fang JH, Yang J, et al.. A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J. Membr. Sci., 2013, 425(426): 105-112

[85]

Wang CH, Liang JW, Luo J, et al.. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv., 2021, 7: eabh1896

[86]

Doux JM, Nguyen H, Tan DHS, et al.. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater., 2020, 10: 1903253

[87]

Pang YP, Pan JY, Yang JH, et al.. Electrolyte/electrode interfaces in all-solid-state lithium batteries: a review. Electrochem. Energy Rev., 2021, 4: 169-193

[88]

Han XG, Gong YH, Fu K, et al.. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017, 16: 572-579

[89]

Huo HY, Chen Y, Li RY, et al.. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci., 2020, 13: 127-134

[90]

Feng XY, Fang H, Wu N, et al.. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule, 2022, 6: 543-587

[91]

Ha HJ, Kil EH, Kwon YH, et al.. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci., 2012, 5: 6491-6499

[92]

Nagao M, Hayashi A, Tatsumisago M, et al.. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys., 2013, 15: 18600-18606

[93]

Porz L, Swamy T, Sheldon BW, et al.. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater., 2017, 7: 1701003

[94]

Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc., 2005, 152: A396

[95]

Yang G, Lehmann ML, Zhao S, et al.. Anomalously high elastic modulus of a poly(ethylene oxide)-based composite electrolyte. Energy Storage Mater., 2021, 35: 431-442

[96]

Kasemchainan J, Zekoll S, Spencer Jolly D, et al.. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater., 2019, 18: 1105-1111

[97]

Sarkar S, Thangadurai V. Critical current densities for high-performance all-solid-state Li-metal batteries: fundamentals, mechanisms, interfaces, materials, and applications. ACS Energy Lett., 2022, 7: 1492-1527

[98]

Liang JW, Li XN, Zhao Y, et al.. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv. Energy Mater., 2019, 9: 1902125

[99]

Fan XL, Ji X, Han FD, et al.. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv., 2018, 4: eaau9245

[100]

Xu RC, Han FD, Ji X, et al.. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy, 2018, 53: 958-966

[101]

Zhao FP, Sun Q, Yu C, et al.. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett., 2020, 5: 1035-1043

[102]

Su H, Liu Y, Zhong Y, et al.. Stabilizing the interphase between Li and argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy, 2022, 96 107104

[103]

Xu HJ, Cao GQ, Shen YL, et al.. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy Environ. Mater., 2022, 5: 852-864

[104]

Wang YH, Yue JP, Wang WP, et al.. Constructing a stable interface between the sulfide electrolyte and the Li metal anode via a Li+-conductive gel polymer interlayer. Mater. Chem. Front., 2021, 5: 5328-5335

[105]

Li JR, Su H, Li M, et al.. A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. Chem. Eng. J., 2022, 431 134019

[106]

Gao Y, Wang DW, Li YC, et al.. Salt-based organic–inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface. Angew. Chem. Int. Ed., 2018, 57: 13608-13612

[107]

Duan C, Cheng Z, Li W, et al.. Realizing the compatibility of a Li metal anode in an all-solid-state Li−S battery by chemical iodine–vapor deposition. Energy Environ. Sci., 2022, 15: 3236-3245

[108]

Zhang ZH, Chen SJ, Yang J, et al.. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces, 2018, 10: 2556-2565

[109]

Chen YM, Wang ZQ, Li XY, et al.. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature, 2020, 578: 251-255

[110]

Su YB, Ye LH, Fitzhugh W, et al.. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci., 2020, 13: 908-916

[111]

Ye LH, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature, 2021, 593: 218-222

[112]

Gil-González E, Ye LH, Wang YC, et al.. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries. Energy Storage Mater., 2022, 45: 484-493

[113]

Alarco PJ, Abu-Lebdeh Y, Abouimrane A, et al.. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater., 2004, 3: 476-481

[114]

MacFarlane DR, Forsyth M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv. Mater., 2001, 13: 957-966

[115]

Wang CH, Adair KR, Liang JW, et al.. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv. Funct. Mater., 2019, 29: 1900392

[116]

Kazyak E, Wood KN, Dasgupta NP. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater., 2015, 27: 6457-6462

[117]

Jung SC, Han YK. How do Li atoms pass through the Al2O3 coating layer during lithiation in Li-ion batteries?. J. Phys. Chem. Lett., 2013, 4: 2681-2685

[118]

Kozen AC, Lin CF, Pearse AJ, et al.. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano, 2015, 9: 5884-5892

[119]

Zhang ZH, Wu LP, Zhou D, et al.. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett., 2021, 21: 5233-5239

[120]

Wang CH, Zhao Y, Sun Q, et al.. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy, 2018, 53: 168-174

[121]

Ji X, Hou S, Wang PF, et al.. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater., 2020, 32: 2002741

[122]

Kato A, Suyama M, Hotehama C, et al.. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films. J. Electrochem. Soc., 2018, 165: A1950-A1954

[123]

Su J, Pasta M, Ning ZY, et al.. Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy Environ. Sci., 2022, 15: 3805-3814

[124]

Zhu YZ, He XF, Mo YF. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A, 2016, 4: 3253-3266

[125]

Xiao RJ, Li H, Chen LQ. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep., 2015, 5: 14227

[126]

Wang XL, Xiao RJ, Li H, et al.. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte. Phys. Chem. Chem. Phys., 2016, 18: 21269-21277

[127]

Chen T, Zhang L, Zhang ZX, et al.. Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO Co-doping. ACS Appl. Mater. Interfaces, 2019, 11: 40808-40816

[128]

Liu GZ, Xie DJ, Wang XL, et al.. High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater., 2019, 17: 266-274

[129]

Trevey JE, Gilsdorf JR, Miller SW, et al.. Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries. Solid State Ion., 2012, 214: 25-30

[130]

Ohtomo T, Hayashi A, Tatsumisago M, et al.. Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. J. Non Cryst. Solids, 2013, 364: 57-61

[131]

Xie DJ, Chen SJ, Zhang ZH, et al.. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power. Sources, 2018, 389: 140-147

[132]

Cengiz M, Oh H, Lee SH. Lithium dendrite growth suppression and ionic conductivity of Li2S-P2S5-P2O5 Glass solid electrolytes prepared by mechanical milling. J. Electrochem. Soc., 2019, 166: A3997-A4004

[133]

Jiang Z, Liang TB, Liu Y, et al.. Improved ionic conductivity and Li dendrite suppression capability toward Li(7)P(3)S(11)-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl. Mater. Interfaces, 2020, 12: 54662-54670

[134]

Mercier R, Malugani JP, Fahys B, et al.. Superionic conduction in Li2S-P2S5-LiI - glasses. Solid State Ion., 1981, 5: 663-666

[135]

Rangasamy E, Liu ZC, Gobet M, et al.. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc., 2015, 137: 1384-1387

[136]

Han FD, Yue J, Zhu XY, et al.. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater., 2018, 8: 1703644

[137]

Zhao FP, Liang JW, Yu C, et al.. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv. Energy Mater., 2020, 10: 1903422

[138]

Park C, Lee S, Kim M, et al.. Li metal stability enhancement of Sn-doped Li2S-P2S5 glass-ceramics electrolyte. Electrochim. Acta, 2021, 390 138808

[139]

Yao XY, Huang N, Han FD, et al.. High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater., 2017, 7: 1602923

[140]

Shin BR, Nam YJ, Oh DY, et al.. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta, 2014, 146: 395-402

[141]

Li JW, Li YY, Cheng J, et al.. A graphene oxide coated sulfide-based solid electrolyte for dendrite-free lithium metal batteries. Carbon, 2021, 177: 52-59

[142]

Li JW, Li YY, Cheng J, et al.. In situ modified sulfide solid electrolyte enabling stable lithium metal batteries. J. Power. Sources, 2022, 518 230739

[143]

Li Y, Cao DX, Arnold W, et al.. Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Mater., 2020, 31: 344-351

[144]

Jiang W, Yan LJ, Zeng XM, et al.. Adhesive sulfide solid electrolyte interface for lithium metal batteries. ACS Appl. Mater. Interfaces, 2020, 12: 54876-54883

[145]

Lewis JA, Cavallaro KA, Liu Y, et al.. The promise of alloy anodes for solid-state batteries. Joule, 2022, 6: 1418-1430

[146]

Hou LP, Yuan H, Zhao CZ, et al.. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries. Energy Storage Mater., 2020, 25: 436-442

[147]

Nagao M, Hayashi A, Tatsumisago M. Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S–P2S5 solid electrolyte. Electrochemistry, 2012, 80: 734-736

[148]

Santhosha AL, Medenbach L, Buchheim JR, et al.. The indium–lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter. Supercaps, 2019, 2: 524-529

[149]

Luo ST, Wang ZY, Li XL, et al.. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun., 2021, 12: 6968

[150]

Park SW, Choi HJ, Yoo Y, et al.. Stable cycling of all-solid-state batteries with sacrificial cathode and lithium-free indium layer (adv. funct. mater. 5/2022). Adv. Funct. Mater., 2022, 32: 2108203

[151]

Lee GH, Lee SG, Park SH, et al.. Interface engineering on a Li metal anode for an electro-chemo-mechanically stable anodic interface in all-solid-state batteries. J. Mater. Chem. A, 2022, 10: 10662-10671

[152]

Sakuma M, Suzuki K, Hirayama M, et al.. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ion., 2016, 285: 101-105

[153]

Hashimoto Y, Machida N, Shigematsu T. Preparation of Li4.4GexSi1−x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries. Solid State Ion., 2004, 175: 177-180

[154]

Cangaz S, Hippauf F, Reuter FS, et al.. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes. Adv. Energy Mater., 2020, 10: 2001320

[155]

Tan DHS, Chen YT, Yang HD, et al.. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 2021, 373: 1494-1499

[156]

Cao DX, Sun X, Li YJ, et al.. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv. Mater., 2022, 34: 2200401

[157]

Cao DX, Sun X, Wang Y, et al.. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries. Energy Storage Mater., 2022, 48: 458-465

[158]

Choi HJ, Kang DW, Park JW, et al.. In situ formed Ag–Li intermetallic layer for stable cycling of all-solid-state lithium batteries (adv. sci. 1/2022). Adv. Sci., 2022, 9: 2103826

[159]

Lee YG, Fujiki S, Jung C, et al.. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy, 2020, 5: 299-308

[160]

Chen ZR, Liang ZT, Zhong HY, et al.. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium–sulfur batteries. ACS Energy Lett., 2022, 7: 2761-2770

[161]

Oh J, Choi SH, Chang B, et al.. Elastic binder for high-performance sulfide-based all-solid-state batteries. ACS Energy Lett., 2022, 7: 1374-1382

[162]

Pan H, Zhang MH, Cheng Z, et al.. Carbon-free and binder-free Li–Al alloy anode enabling an all-solid-state Li–S battery with high energy and stability. Sci. Adv., 2022, 8: eabn4372

[163]

Bates JB, Dudney NJ, Gruzalski GR, et al.. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources, 1993, 43: 103-110

[164]

Ruan YD, Lu Y, Huang X, et al.. Acid induced conversion towards a robust and lithiophilic interface for Li–Li7La3Zr2O12 solid-state batteries. J. Mater. Chem. A, 2019, 7: 14565-14574

[165]

Guo SJ, Wu TT, Sun YG, et al.. Interface engineering of a ceramic electrolyte by Ta2O5 nanofilms for ultrastable lithium metal batteries. Adv. Funct. Mater., 2022, 32: 2201498

[166]

Lou JT, Wang GG, Xia Y, et al.. Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. J. Power. Sources, 2020, 448 227440

[167]

He MH, Cui ZH, Chen C, et al.. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J. Mater. Chem. A, 2018, 6: 11463-11470

[168]

Zhou D, Ren GX, Zhang N, et al.. Garnet electrolytes with ultralow interfacial resistance by SnS2 coating for dendrite-free all-solid-state batteries. ACS Appl. Energy Mater., 2021, 4: 2873-2880

[169]

Luo W, Gong YH, Zhu YZ, et al.. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc., 2016, 138: 12258-12262

[170]

Luo YL, Feng WW, Meng ZJ, et al.. Interface modification in solid-state lithium batteries based on garnet-type electrolytes with high ionic conductivity. Electrochim. Acta, 2021, 397 139285

[171]

Feng WL, Dong XL, Li PL, et al.. Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer. J. Power. Sources, 2019, 419: 91-98

[172]

Alexander GV, Sreejith OV, Indu MS, et al.. Interface-compatible and high-cyclability lithiophilic lithium–zinc alloy anodes for garnet-structured solid electrolytes. ACS Appl. Energy Mater., 2020, 3: 9010-9017

[173]

Wan ZP, Shi K, Huang YF, et al.. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O1.2 and Li metal to achieve excellent cycling stability of all-solid-state battery. J. Power Sources, 2021, 505: 230062

[174]

Fu KK, Gong YH, Liu BY, et al.. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv., 2017, 3 e1601659

[175]

Huang Y, Chen B, Duan J, et al.. Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew. Chem. Int. Ed., 2020, 59: 3699-3704

[176]

Lu GJ, Dong ZC, Liu W, et al.. Universal lithiophilic interfacial layers towards dendrite-free lithium anodes for solid-state lithium-metal batteries. Sci. Bull., 2021, 66: 1746-1753

[177]

Huang WL, Bi ZJ, Zhao N, et al.. Chemical interface engineering of solid garnet batteries for long-life and high-rate performance. Chem. Eng. J., 2021, 424 130423

[178]

Hu BK, Yu W, Xu BQ, et al.. An in situ-formed mosaic Li7Sn3/LiF interface layer for high-rate and long-life garnet-based lithium metal batteries. ACS Appl. Mater. Interfaces, 2019, 11: 34939-34947

[179]

Baniya A, Gurung A, Pokharel J, et al.. Mitigating interfacial mismatch between lithium metal and garnet-type solid electrolyte by depositing metal nitride lithiophilic interlayer. ACS Appl. Energy Mater., 2022, 5: 648-657

[180]

Du MJ, Sun Y, Liu B, et al.. Smart construction of an intimate lithium|garnet interface for all-solid-state batteries by tuning the tension of molten lithium. Adv. Funct. Mater., 2021, 31: 2101556

[181]

Zhao B, Ma WC, Li BB, et al.. A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries. Nano Energy, 2022, 91 106643

[182]

Leng J, Liang HM, Wang HY, et al.. A facile and low-cost wet-chemistry artificial interface engineering for garnet-based solid-state Li metal batteries. Nano Energy, 2022, 101 107603

[183]

Zhong YR, Xie YJ, Hwang S, et al.. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew. Chem. Int. Ed., 2020, 59: 14003-14008

[184]

Zhang Y, Meng JW, Chen KY, et al.. Behind the candelabra: a facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li–FeF3 conversion batteries. ACS Appl. Mater. Interfaces, 2020, 12: 33729-33739

[185]

Shao YJ, Wang HC, Gong ZL, et al.. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett., 2018, 3: 1212-1218

[186]

Xie H, Yang CP, Ren YY, et al.. Amorphous-carbon-coated 3D solid electrolyte for an electro-chemomechanically stable lithium metal anode in solid-state batteries. Nano Lett., 2021, 21: 6163-6170

[187]

Cui C, Ye Q, Zeng C, et al.. One-step fabrication of garnet solid electrolyte with integrated lithiophilic surface. Energy Storage Mater., 2022, 45: 814-820

[188]

Zhang XY, Xiang Q, Tang S, et al.. Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett., 2020, 20: 2871-2878

[189]

Bi ZJ, Huang WL, Mu S, et al.. Dual-interface reinforced flexible solid garnet batteries enabled by in situ solidified gel polymer electrolytes. Nano Energy, 2021, 90 106498

[190]

Chi SS, Liu YC, Zhao N, et al.. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater., 2019, 17: 309-316

[191]

Cheng ZY, Xie ML, Mao YY, et al.. Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors. Adv. Energy Mater., 2020, 10: 1904230

[192]

Hao XG, Zhao Q, Su SM, et al.. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv. Energy Mater., 2019, 9: 1901604

[193]

Liu YL, Sun Q, Zhao Y, et al.. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl. Mater. Interfaces, 2018, 10: 31240-31248

[194]

Yang K, Chen LK, Ma JB, et al.. Progress and perspective of Li1+xAlxTi2−x(PO4)3 ceramic electrolyte in lithium batteries. Infomat., 2021, 3: 1195-1217

[195]

Yang LY, Song YL, Liu H, et al.. Nanocomposite coatings: stable interface between lithium and electrolyte facilitated by a nanocomposite protective layer (small methods 3/2020). Small Methods, 2020, 4: 1900751

[196]

Sheng OW, Zheng JH, Ju ZJ, et al.. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater., 2020, 32: 2000223

[197]

Wang Y, Wang GX, He PG, et al.. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem. Eng. J., 2020, 393 124705

[198]

Yang LY, Wang ZJ, Feng YC, et al.. Lithium-ion batteries: flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium-ion batteries (adv. energy. mater 22/2017). Adv. Energy Mater., 2017, 7: 1701437

[199]

Lei M, Fan SS, Yu YF, et al.. NASICON-based solid state Li–Fe–F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer. Energy Storage Mater., 2022, 47: 551-560

[200]

Hou GM, Ma XX, Sun QD, et al.. Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries. ACS Appl. Mater. Interfaces, 2018, 10: 18610-18618

[201]

Hu F, Li YY, Wei Y, et al.. Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries. ACS Appl. Mater. Interfaces, 2020, 12: 12793-12800

[202]

Jadhav HS, Kalubarme RS, Jadhav AH, et al.. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li–O2 batteries. Electrochim. Acta, 2016, 199: 126-132

[203]

Zhang SN, Zeng Z, Zhai W, et al.. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries. Adv. Mater. Interfaces, 2021, 8: 2100072

[204]

Wang QC, Ding XY, Li JB, et al.. Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature. Chem. Eng. J., 2022, 448 137740

[205]

Sharafi A, Kazyak E, Davis AL, et al.. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater., 2017, 29: 7961-7968

[206]

Huo HY, Chen Y, Zhao N, et al.. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy, 2019, 61: 119-125

[207]

Duan H, Chen WP, Fan M, et al.. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew. Chem. Int. Ed. Engl., 2020, 59: 12069-12075

[208]

Patra S, Krupa BR, Chakravarty V, et al.. Microstructural engineering in lithium garnets by hot isostatic press to cordon lithium dendrite growth and negate interfacial resistance for all solid state battery applications. Electrochim Acta, 2019, 312: 320-328

[209]

Tsai CL, Roddatis V, Chandran CV, et al.. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces, 2016, 8: 10617-10626

[210]

Suzuki Y, Kami K, Watanabe K, et al.. Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ion., 2015, 278: 172-176

[211]

Zhu JX, Li XL, Wu CW, et al.. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew. Chem. Int. Ed., 2021, 60: 3781-3790

[212]

Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion., 2012, 206: 28-32

[213]

Sharafi A, Meyer HM, Nanda J, et al.. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power. Sources, 2016, 302: 135-139

[214]

Kumar PJ, Nishimura K, Senna M, et al.. A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery. RSC Adv., 2016, 6: 62656-62667

[215]

Li YQ, Wang Z, Li CL, et al.. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J. Power. Sources, 2014, 248: 642-646

[216]

Zheng CJ, Lu Y, Su JM, et al.. Grain boundary engineering enabled high-performance garnet-type electrolyte for lithium dendrite free lithium metal batteries. Small Methods, 2022, 6: 2200667

[217]

Xu R, Liu F, Ye YS, et al.. A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv. Mater., 2021, 33: 2104009

[218]

Xu SM, McOwen DW, Wang CW, et al.. Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode. Nano Lett., 2018, 18: 3926-3933

[219]

Xu SM, McOwen DW, Zhang L, et al.. All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater., 2018, 15: 458-464

[220]

Yang CP, Zhang L, Liu BY, et al.. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 3770-3775

[221]

Yi E, Shen H, Heywood S, et al.. All-solid-state batteries using rationally designed garnet electrolyte frameworks. ACS Appl. Energy Mater., 2020, 3: 170-175

[222]

Fu XJ, Wang TT, Shen WZ, et al.. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv. Mater., 2020, 32: 2000575

[223]

Dai QS, Zhao J, Ye HJ, et al.. Ultrastable anode/electrolyte interface in solid-state lithium-metal batteries using LiCux nanowire network host. ACS Appl. Mater. Interfaces, 2021, 13: 42822-42831

[224]

Duan J, Wu WY, Nolan AM, et al.. Solid-state batteries: lithium–graphite paste: an interface compatible anode for solid-state batteries (adv. mater. 10/2019). Adv. Mater., 2019, 31: 1807243

[225]

Wen JY, Huang Y, Duan J, et al.. Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries. ACS Nano, 2019, 13: 14549-14556

[226]

Cao CC, Zhong YJ, Wasalathilake KC, et al.. A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. J. Mater. Chem. A, 2022, 10: 2519-2527

[227]

Liu B, Du MJ, Chen BB, et al.. A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. Chem. Eng. J., 2022, 427 131001

[228]

Wang TR, Duan J, Zhang B, et al.. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci., 2022, 15: 1325-1333

[229]

He XZ, Ji X, Zhang B, et al.. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett., 2022, 7: 131-139

[230]

Lu QW, He YB, Yu QP, et al.. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater., 2017, 29: 1604460

[231]

Sun H, Xie XX, Huang Q, et al.. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. Engl., 2021, 60: 18335-18343

[232]

Wu N, Li YT, Dolocan A, et al.. In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface. Adv. Funct. Mater., 2020, 30: 2000831

[233]

Ma YX, Wan JY, Yang YF, et al.. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater., 2022, 12: 2103720

[234]

Zhang X, Liu T, Zhang SF, et al.. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc., 2017, 139: 13779-13785

[235]

Zhang X, Wang S, Xue CJ, et al.. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater., 2019, 31: 1806082

[236]

Fan ZJ, Ding B, Zhang TF, et al.. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium–sulfur batteries by atomic layer deposition. Small, 2019, 15: 1903952

[237]

Zhang LK, Xu HM, Jing MX, et al.. Solid electrolyte/lithium anodes stabilized by reduced graphene oxide interlayers: implications for solid-state lithium batteries. ACS Appl. Nano Mater., 2021, 4: 9471-9478

[238]

Zhang LK, Jing MX, Yang H, et al.. Highly efficient interface modification between poly(propylene carbonate)-based solid electrolytes and a lithium anode by facile graphite coating. ACS Sustain. Chem. Eng., 2020, 8: 17106-17115

[239]

Ye Y, Deng Z, Gao L, et al.. Lithium-rich anti-perovskite Li2OHBr-based polymer electrolytes enabling an improved interfacial stability with a three-dimensional-structured lithium metal anode in all-solid-state batteries. ACS Appl. Mater. Interfaces, 2021, 13: 28108-28117

[240]

Chen L, Li WX, Fan LZ, et al.. Solid-state lithium batteries: intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries (adv. funct. Mater. 28/2019). Adv. Funct. Mater., 2019, 29: 1901047

[241]

Croce F, Appetecchi GB, Persi L, et al.. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394: 456-458

[242]

Zhou D, Liu RL, He YB, et al.. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater., 2016, 6: 1502214

[243]

Gurevitch I, Buonsanti R, Teran AA, et al.. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc., 2013, 160: A1611-A1617

[244]

Zhao CZ, Zhang XQ, Cheng XB, et al.. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 11069-11074

[245]

Yu XW, Manthiram A. A long cycle life, all-solid-state lithium battery with a ceramic–polymer composite electrolyte. ACS Appl. Energy Mater., 2020, 3: 2916-2924

[246]

Yu XW, Manthiram A. Enhanced interfacial stability of hybrid-electrolyte lithium–Sulfur batteries with a layer of multifunctional polymer with intrinsic nanoporosity. Adv. Funct. Mater., 2019, 29: 1805996

[247]

Wang CH, Yang YF, Liu XJ, et al.. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2017, 9: 13694-13702

[248]

Wu F, Wen ZY, Zhao ZK, et al.. Double-network composite solid electrolyte with stable interface for dendrite-free Li metal anode. Energy Storage Mater., 2021, 38: 447-453

[249]

Yao PC, Zhu B, Zhai HW, et al.. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett., 2018, 18: 6113-6120

[250]

Liu M, Guan X, Liu HM, et al.. Composite solid electrolytes containing single-ion lithium polymer grafted garnet for dendrite-free, long-life all-solid-state lithium metal batteries. Chem. Eng. J., 2022, 445 136436

[251]

Song C, Li ZG, Peng J, et al.. Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li–metal batteries. J. Mater. Chem. A, 2022, 10: 16087-16094

[252]

Hu JK, He PG, Zhang BC, et al.. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater., 2020, 26: 283-289

[253]

Zhang BH, Zhang YH, Zhang N, et al.. Synthesis and interface stability of polystyrene-poly(ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries. J. Power. Sources, 2019, 428: 93-104

[254]

Yue HY, Li JX, Wang QX, et al.. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain. Chem. Eng., 2018, 6: 268-274

[255]

Wu ZJ, Xie ZK, Yoshida A, et al.. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J. Colloid Interface Sci., 2020, 565: 110-118

[256]

Lee MJ, Han J, Lee K, et al.. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601: 217-222

[257]

Xu SJ, Xu RG, Yu T, et al.. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy Environ. Sci., 2022, 15: 3379-3387

[258]

Hu JL, Chen KY, Yao ZG, et al.. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Sci. Bull., 2021, 66: 694-707

[259]

Cheng H, Yan CY, Orenstein R, et al.. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li–metal batteries. Adv. Fiber Mater., 2022, 4: 532-546

[260]

Wen SJ, Luo C, Wang QR, et al.. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Mater., 2022, 47: 453-461

[261]

Shim J, Lee JW, Bae KY, et al.. Dendrite suppression by synergistic combination of solid polymer electrolyte crosslinked with natural terpenes and lithium-powder anode for lithium–metal batteries. Chemsuschem, 2017, 10: 2274-2283

[262]

Yang CP, Wu QS, Xie WQ, et al.. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature, 2021, 598: 590-596

[263]

Xu GF, Luo L, Liang JW, et al.. Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries. Nano Energy, 2022, 92 106674

[264]

Liang JW, Li XN, Wang S, et al.. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc., 2020, 142: 7012-7022

[265]

Li XN, Liang JW, Luo J, et al.. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci., 2019, 12: 2665-2671

[266]

Kwak H, Han D, Lyoo J, et al.. All-solid-state batteries: new cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6 (adv. energy mater. 12/2021). Adv. Energy Mater., 2021, 11: 2003190

[267]

Shao QN, Yan CH, Gao MX, et al.. New insights into the effects of Zr substitution and carbon additive on Li3–xEr1–xZrxCl6 halide solid electrolytes. ACS Appl. Mater. Interfaces, 2022, 14: 8095-8105

[268]

Park KH, Kaup K, Assoud A, et al.. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett., 2020, 5: 533-539

[269]

Riegger LM, Schlem R, Sann J, et al.. Lithium–metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed., 2021, 60: 6718-6723

[270]

Li XN, Liang JW, Kim JT, et al.. Highly stable halide-electrolyte-based all-solid-state Li–Se batteries. Adv. Mater., 2022, 34: 2200856

[271]

Ji WX, Zheng D, Zhang XX, et al.. A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries. J. Mater. Chem. A, 2021, 9: 15012-15018

[272]

Li F, Cheng XB, Lu LL, et al.. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes. Nano Lett., 2022, 22: 2461-2469

[273]

Rajagopal R, Cho JU, Subramanian Y, et al.. Preparation of highly conductive metal doped/substituted Li7P2S8Br(1–x)Ix type lithium superionic conductor for all-solid-state lithium battery applications. Chem. Eng. J., 2022, 428 132155

[274]

Yu TW, Liang JW, Luo L, et al.. Superionic fluorinated halide solid electrolytes for highly stable Li–metal in all-solid-state Li batteries. Adv. Energy Mater., 2021, 11: 2101915

[275]

Tachez M, Malugani JP, Mercier R, et al.. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ion., 1984, 14: 181-185

[276]

Liu ZC, Fu WJ, Payzant EA, et al.. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc., 2013, 135: 975-978

[277]

Bron P, Johansson S, Zick K, et al.. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc., 2013, 135: 15694-15697

[278]

Adeli P, Bazak JD, Park KH, et al.. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed., 2019, 58: 8681-8686

[279]

Xiao W, Wang JY, Fan LL, et al.. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater., 2019, 19: 379-400

[280]

Fu J. Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5. Solid State Ion., 1997, 104: 191-194

[281]

Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2). J. Power. Sources, 2011, 196: 3342-3345

[282]

Inaguma Y, Chen LQ, Itoh M, et al.. High ionic conductivity in lithium lanthanum titanate. Solid State Commun., 1993, 86: 689-693

[283]

Jiang Y, Yan XM, Ma ZF, et al.. Development of the PEO based solid polymer electrolytes for all-solid-state lithium ion batteries. Polymers, 2018, 10: 1237

Funding

National Natural Science Foundation of China(52177218)

National Key Special Projects for International Cooperation in Science and Technology Innovation (2019YFE0100200)

Shanghai Pujiang Program(22PJ1408700)

RIGHTS & PERMISSIONS

The Author(s)

PDF

391

Accesses

0

Citation

Detail

Sections
Recommended

/