Electrochemical Carbon Dioxide Reduction in Acidic Media

Zhe Yao , Xiaomeng He , Rui Lin

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 8

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :8 DOI: 10.1007/s41918-024-00210-3
Review Article
review-article

Electrochemical Carbon Dioxide Reduction in Acidic Media

Author information +
History +
PDF

Abstract

The electrochemical reduction of carbon dioxide (CO2RR) stands as an enticing approach for the production of essential chemicals and feedstocks, storing clean electric energy and mitigating greenhouse gas emissions. Recent years have witnessed remarkable breakthroughs in CO2RR, enhancing its performance and transitioning related research from laboratory settings toward industrial realization. However, the journey of CO2RR development is not devoid of challenges, including issues like mass transfer limitation, salt accumulation, and flooding phenomena. Remarkably, recent studies have unveiled a promising avenue by conducting CO2RR in an acidic environment, effectively circumventing these challenges and presenting novel opportunities. In this review, we embark on a reassessment of H-cells and flow cells, delving into their opportunities, challenges, strengths, and weaknesses. Additionally, we compile recent advancements in CO2RR under acidic conditions, elucidating the performance metrics and strategies embraced by pertinent research. Subsequently, we propose three pivotal concerns in acidic CO2RR: ① balancing the competition between CO2RR and hydrogen evolution reaction (HER), ② enhancing the selectivity, and ③ exploring industrial applications. And finally, we delve into the core factors influencing the performance of CO2RR in acid: local pH, cation effects, and catalyst design. Building upon these strategies, challenges, and insights, prospects are proposed for the future trajectory of CO2RR development.

Graphical Abstract

Keywords

Carbon dioxide electroreduction / Heterogeneous catalysis / Cation effect / Industrial electrolyze / CCUS

Cite this article

Download citation ▾
Zhe Yao, Xiaomeng He, Rui Lin. Electrochemical Carbon Dioxide Reduction in Acidic Media. Electrochemical Energy Reviews, 2024, 7(1): 8 DOI:10.1007/s41918-024-00210-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Luna P, Hahn C, Higgins D, et al.. What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science, 2019, 364: eaav3506

[2]

Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 15729-15735

[3]

Zhang SM, Chen MH, Zhao X, et al.. Advanced noncarbon materials as catalyst supports and non-noble electrocatalysts for fuel cells and metal-air batteries. Electrochem. Energy Rev., 2021, 4: 336-381

[4]

Rockström J, Gaffney O, Rogelj J, et al.. A roadmap for rapid decarbonization. Science, 2017, 355: 1269-1271

[5]

Liu Z, Deng Z, He G, et al.. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ., 2021, 3: 141-155

[6]

Kätelhön A, Meys R, Deutz S, et al.. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 11187-11194

[7]

Meys R, Kätelhön A, Bachmann M, et al.. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science, 2021, 374: 71-76

[8]

Kou ZK, Li X, Wang TT, et al.. Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem. Energy Rev., 2022, 5: 82-111

[9]

Sanz-Pérez ES, Murdock CR, Didas SA, et al.. Direct capture of CO2 from ambient air. Chem. Rev., 2016, 116: 11840-11876

[10]

Nitopi S, Bertheussen E, Scott SB, et al.. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev., 2019, 119: 7610-7672

[11]

Huang JE, Li F, Ozden A, et al.. CO2 electrolysis to multicarbon products in strong acid. Science, 2021, 372: 1074-1078

[12]

Jordaan SM, Wang C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal., 2021, 4: 915-920

[13]

Li J, Yu T, Miao DY, et al.. Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts. Catal. Commun., 2019, 129: 105711

[14]

Li L, Li XD, Sun YF, et al.. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev., 2022, 51: 1234-1252

[15]

Weekes DM, Salvatore DA, Reyes A, et al.. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res., 2018, 51: 910-918

[16]

Lees EW, Mowbray BAW, Parlane FGL, et al.. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater., 2021, 7: 55-64

[17]

Wakerley D, Lamaison S, Wicks J, et al.. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy, 2022, 7: 130-143

[18]

Ma WC, He XY, Wang W, et al.. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev., 2021, 50: 12897-12914

[19]

Salvatore DA, Gabardo CM, Reyes A, et al.. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy, 2021, 6: 339-348

[20]

Yang KL, Kas R, Smith WA, et al.. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett., 2021, 6: 33-40

[21]

Xie Y, Ou PF, Wang X, et al.. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal., 2022, 5: 564-570

[22]

Li JN, Kornienko N. Electrocatalytic carbon dioxide reduction in acid. Chem Catal., 2022, 2: 29-38

[23]

Gu J, Liu S, Ni WY, et al.. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal., 2022, 5: 268-276

[24]

Bondue CJ, Graf M, Goyal A, et al.. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc., 2021, 143: 279-285

[25]

Li G, Liu Y, Zhang Q, et al.. Development of catalysts and electrolyzers toward industrial-scale CO2 electroreduction. J. Mater. Chem. A, 2022, 10: 19254-19277

[26]

Gao D, Wei P, Li H, et al.. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys. Chim. Sin., 2021, 37: 2009021

[27]

Zhang MD, Si DH, Yi JD, et al.. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small, 2020, 16: 2005254

[28]

Zhang BH, Guo ZH, Zuo Z, et al.. The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide. Appl. Catal. B Environ., 2018, 239: 441-449

[29]

Huo SM, Lu J, Wang XQ. Electrodeposition of Ni on MWNTs as a promising catalyst for CO2RR. Energy Sci. Eng., 2021, 9: 1042-1047

[30]

Jiang JJ, Huang BS, Daiyan R, et al.. Defective Sn-Zn perovskites through bio-directed routes for modulating CO2RR. Nano Energy, 2022, 101: 107593

[31]

Yang HJ, Zhang X, Hong YH, et al.. Superior selectivity and tolerance towards metal-ion impurities of a Fe/N/C catalyst for CO2 reduction. Chemsuschem, 2019, 12: 3988-3995

[32]

Jiang N, Zhu ZW, Xue WJ, et al.. Emerging electrocatalysts for water oxidation under near-neutral CO2 reduction conditions. Adv. Mater., 2022, 34: 2105852

[33]

Royer M. Réduction de l’acide carbonique en acide formique. Compt. rend, 1870, 1870: 731-732

[34]

Bagger A, Ju W, Varela AS, et al.. Electrochemical CO2 reduction: a classification problem. ChemPhysChem, 2017, 18: 3266-3273

[35]

Zhai LP, Yang S, Lu CB, et al.. CoN5 sites constructed by anchoring Co porphyrins on vinylene-linked covalent organic frameworks for electroreduction of carbon dioxide. Small, 2022, 18: 2200736

[36]

Wu Q, Xie RK, Mao MJ, et al.. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett., 2020, 5: 1005-1012

[37]

Yuan JJ, Chen ST, Zhang YY, et al.. Structural regulation of coupled phthalocyanine-porphyrin covalent organic frameworks to highly active and selective electrocatalytic CO2 reduction. Adv. Mater., 2022, 34: 2203139

[38]

Hori Y, Kikuchi K, Suzuki S. Production of CO and ch4in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett., 1985, 14: 1695-1698

[39]

Deng BW, Huang M, Zhao XL, et al.. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal., 2022, 12: 331-362

[40]

Miao RK, Xu Y, Ozden A, et al.. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule, 2021, 5: 2742-2753

[41]

Heenan AR, Hamonnet J, Marshall AT. Why careful iR compensation and reporting of electrode potentials are critical for the CO2 reduction reaction. ACS Energy Lett., 2022, 7: 2357-2361

[42]

Marcandalli G, Monteiro MCO, Goyal A, et al.. Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res., 2022, 55: 1900-1911

[43]

Zhu SQ, Jiang B, Cai WB, et al.. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc., 2017, 139: 15664-15667

[44]

Dunwell M, Lu Q, Heyes JM, et al.. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc., 2017, 139: 3774-3783

[45]

Wuttig A, Liu C, Peng QL, et al.. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis. ACS Cent. Sci., 2016, 2: 522-528

[46]

Wuttig A, Yoon Y, Ryu J, et al.. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc., 2017, 139: 17109-17113

[47]

Marcandalli G, Villalba M, Koper MTM. The importance of acid-base equilibria in bicarbonate electrolytes for CO2 electrochemical reduction and CO reoxidation studied on Au(hkl) electrodes. Langmuir, 2021, 37: 5707-5716

[48]

Zhang F, Co AC. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed., 2020, 59: 1674-1681

[49]

Yang KL, Kas R, Smith WA. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc., 2019, 141: 15891-15900

[50]

Zhang ZS, Melo L, Jansonius RP, et al.. pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett., 2020, 5: 3101-3107

[51]

Zhu SQ, Li TH, Cai WB, et al.. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett., 2019, 4: 682-689

[52]

Jin S, Hao ZM, Zhang K, et al.. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed., 2021, 60: 20627-20648

[53]

Niu ZZ, Chi LP, Liu R, et al.. Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci., 2021, 14: 4169-4176

[54]

Ma M, Kim S, Chorkendorff I, et al.. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci., 2020, 11: 8854-8861

[55]

Chen CB, Li YF, Yang PD. Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation. Joule, 2021, 5: 737-742

[56]

Dinh CT, Burdyny T, Kibria MG, et al.. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360: 783-787

[57]

Jouny M, Lv JJ, Cheng T, et al.. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem., 2019, 11: 846-851

[58]

Wang XL, de Araújo JF, Ju W, et al.. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol., 2019, 14: 1063-1070

[59]

Wen C, Zhou M, Liu P, et al.. Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu–S motifs in metal–organic framework based precatalysts. Angew. Chem. Int. Ed., 2022, 61: e202111700

[60]

Li HF, Liu TF, Wei PF, et al.. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem. Int. Ed., 2021, 60: 14329-14333

[61]

Sultan S, Lee H, Park S, et al.. Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ. Sci., 2022, 15: 2397-2409

[62]

Yang QC, Liu XL, Peng W, et al.. Vanadium oxide integrated on hierarchically nanoporous copper for efficient electroreduction of CO2 to ethanol. J. Mater. Chem. A, 2021, 9: 3044-3051

[63]

Gao DF, Arán-Ais RM, Jeon HS, et al.. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal., 2019, 2: 198-210

[64]

O’Brien CP, Miao RK, Liu SJ, et al.. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett., 2021, 6: 2952-2959

[65]

Wu YM, Garg S, Li MR, et al.. Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. J. Power. Sources, 2022, 522: 230998

[66]

Chen HH, Tao R, Bang KT, et al.. Anion exchange membranes for fuel cells: state-of-the-art and perspectives. Adv. Energy Mater., 2022, 12: 202200934

[67]

Das G, Choi JH, Nguyen PKT, et al.. Anion exchange membranes for fuel cell application: a review. Polymers, 2022, 14: 1197

[68]

Qiao Y, Lai WC, Huang K, et al.. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal., 2022, 12: 2357-2364

[69]

Yan T, Pan H, Liu ZK, et al.. Phase-inversion induced 3D electrode for direct acidic electroreduction CO2 to formic acid. Small, 2023, 19: 202207650

[70]

Shen H, Jin H, Li H, et al.. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun., 2023, 14: 2843

[71]

Li L, Liu ZY, Yu XH, et al.. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem. Int. Ed., 2023, 62: e202300226

[72]

Wang Y, Wang C, Wei Y, et al.. Efficient and selective electroreduction of CO2 to HCOOH over bismuth-based bromide perovskites in acidic electrolytes. Chem. A Eur. J., 2022, 28: e202201832

[73]

Monteiro MCO, Philips MF, Schouten KJP, et al.. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat. Commun., 2021, 12: 4943

[74]

Li XZ, Zhang P, Zhang LL, et al.. Confinement of an alkaline environment for electrocatalytic CO2 reduction in acidic electrolytes. Chem. Sci., 2023, 14: 5602-5607

[75]

Pan BB, Fan J, Zhang J, et al.. Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett., 2022, 7: 4224-4231

[76]

Sheng XD, Ge WX, Jiang HL, et al.. Engineering the Ni-N-C catalyst microenvironment enabling CO2 electroreduction with nearly 100% CO selectivity in acid. Adv. Mater., 2022, 34: 2201295

[77]

Li HF, Li HB, Wei PF, et al.. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over a Ni-N-C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci., 2023, 16: 1502-1510

[78]

Liu ZK, Yan T, Shi H, et al.. Acidic electrocatalytic CO2 reduction using space-confined nanoreactors. ACS Appl. Mater. Interfaces, 2022, 14: 7900-7908

[79]

Fan Q, Bao GX, Chen XY, et al.. Iron nanoparticles tuned to catalyze CO2 electroreduction in acidic solutions through chemical microenvironment engineering. ACS Catal., 2022, 12: 7517-7523

[80]

Jiang Z, Zhang ZS, Li H, et al.. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes. Adv. Energy Mater., 2023, 13: 2203603

[81]

Fan MY, Huang JE, Miao RK, et al.. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat. Catal., 2023, 6: 763-772

[82]

Zhang J, Guo CX, Fang SS, et al.. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun., 2023, 14: 1298

[83]

Ma ZS, Yang ZL, Lai WC, et al.. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun., 2022, 13: 7596

[84]

Zi X, Zhou YJ, Zhu L, et al.. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products. Angew. Chem. Int. Ed., 2023, 62: e202309351

[85]

Cao YF, Chen Z, Li PH, et al.. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun., 2023, 14: 2387

[86]

Nie WX, Heim GP, Watkins NB, et al.. Organic additive-derived films on Cu electrodes promote electrochemical CO2 reduction to C2+ products under strongly acidic conditions. Angew. Chem. Int. Ed., 2023, 62: e202216102

[87]

Zhao Y, Hao L, Ozden A, et al.. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth, 2023, 2: 403-412

[88]

Wang ZH, Li YC, Zhao X, et al.. Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J. Am. Chem. Soc., 2023, 145: 6339-6348

[89]

Ooka H, Figueiredo MC, Koper MTM. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir, 2017, 33: 9307-9313

[90]

Goyal A, Marcandalli G, Mints VA, et al.. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc., 2020, 142: 4154-4161

[91]

Hori Y, Takahashi R, Yoshinami Y, et al.. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B, 1997, 101: 7075-7081

[92]

Mustafa A, Lougou BG, Shuai Y, et al.. Theoretical insights into the factors affecting the electrochemical reduction of CO2. Sustain. Energy Fuels, 2020, 4: 4352-4369

[93]

Wang L, Nitopi SA, Bertheussen E, et al.. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal., 2018, 8: 7445-7454

[94]

Xiao H, Cheng T, Goddard WAIII, et al.. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc., 2016, 138: 483-486

[95]

Kim JYT, Zhu P, Chen FY, et al.. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal., 2022, 5: 288-299

[96]

Perazio A, Creissen CE, Rivera de la Cruz JG, et al.. Acidic electroreduction of CO2 to multi-carbon products with CO2 recovery and recycling from carbonate. ACS Energy Lett., 2023, 8: 2979-2985

[97]

Zosel J, Oelßner W, Decker M, et al.. The measurement of dissolved and gaseous carbon dioxide concentration. Meas. Sci. Technol., 2011, 22: 072001

[98]

Monteiro MCO, Mirabal A, Jacobse L, et al.. Time-resolved local pH measurements during CO2 reduction using scanning electrochemical microscopy: buffering and tip effects. JACS Au, 2021, 1: 1915-1924

[99]

Grozovski V, Vesztergom S, Láng GG, et al.. Electrochemical hydrogen evolution: H+ or H2O reduction? A rotating disk electrode study. J. Electrochem. Soc., 2017, 164: E3171-E3178

[100]

Leung K, Nielsen IMB, Kurtz I. Ab Initio molecular dynamics study of carbon dioxide and bicarbonate hydration and the nucleophilic attack of hydroxide on CO2. J. Phys. Chem. B, 2007, 111: 4453-4459

[101]

Rheinhardt JH, Singh P, Tarakeshwar P, et al.. Electrochemical capture and release of carbon dioxide. ACS Energy Lett., 2017, 2: 454-461

[102]

Helmholtz H. Ueber einige gesetze der vertheilung elektrischer ströme in körperlichen leitern mit anwendung auf Die thierisch-elektrischen versuche. Ann. Der Physik, 1853, 165: 211-233

[103]

Gouy M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl., 1910, 9: 457-468

[104]

Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem. Rev., 1947, 41: 441-501

[105]

Chapman DL. Li. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1913, 25: 475-481

[106]

Chen LD. Cations play an essential role in CO2 reduction. Nat. Catal., 2021, 4: 641-642

[107]

Sa YJ, Lee CW, Lee SY, et al.. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev., 2020, 49: 6632-6665

[108]

Murata A, Hori Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn, 1991, 64: 123-127

[109]

Ringe S, Clark EL, Resasco J, et al.. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci., 2019, 12: 3001-3014

[110]

Frumkin AN. Influence of cation adsorption on the kinetics of electrode processes. Trans. Faraday Soc., 1959, 55: 156

[111]

Heyrovskýa J. The processes at the mercury dropping cathode. Part II. The hydrogen overpotential. Trans. Faraday Soc., 1924, 19: 785-788

[112]

Monteiro MCO, Dattila F, Hagedoorn B, et al.. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal., 2021, 4: 654-662

[113]

Singh MR, Kwon Y, Lum Y, et al.. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc., 2016, 138: 13006-13012

[114]

Mills JN, McCrum IT, Janik MJ. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys. Chem. Chem. Phys., 2014, 16: 13699-13707

[115]

Strmcnik D, Uchimura M, Wang C, et al.. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem., 2013, 5: 300-306

[116]

Gauthier JA, Fields M, Bajdich M, et al.. Facile electron transfer to CO2 during adsorption at the Metal|Solution interface. J. Phys. Chem. C, 2019, 123: 29278-29283

[117]

Resasco J, Lum Y, Clark E, et al.. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem, 2018, 5: 1064-1072

[118]

Zhu QS, Wallentine SK, Deng GH, et al.. The solvation-induced Onsager reaction field rather than the double-layer field controls CO2 reduction on gold. JACS Au, 2022, 2: 472-482

[119]

Ovalle VJ, Hsu YS, Agrawal N, et al.. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal., 2022, 5: 624-632

Funding

Key projects of intergovernmental international scientific and technological innovation cooperation(No.2022YFE0102900)

National Natural Science Foundation of China(No.22308262)

the International Cooperation Program of Science and Technology Commission of Shanghai Municipality(No. 22160712100)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

AI Summary AI Mindmap
PDF

344

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/