Solving the Singlet Oxygen Puzzle in Metal-O2 Batteries: Current Progress and Future Directions

Yaying Dou , Shuochao Xing , Zhang Zhang , Zhen Zhou

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 6

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :6 DOI: 10.1007/s41918-023-00201-w
Review Article
review-article

Solving the Singlet Oxygen Puzzle in Metal-O2 Batteries: Current Progress and Future Directions

Author information +
History +
PDF

Abstract

The development of aprotic alkali metal-oxygen batteries has shown promise due to their high theoretical specific energy, which is supported by the exergonic oxygen electrochemistry. However, practical realization of these batteries has been impeded by parasitic reactions that compromise their rechargeability, efficiency, and cycle life. Recent research has identified highly reactive singlet oxygen (1O2) as the main cause of degradation, which has led to a focus on understanding and harnessing this reactive species. This review provides a summary of current knowledge on the formation mechanisms of 1O2, identifies knowledge gaps that need to be addressed in the future, and discusses the implications of contaminants and battery components for 1O2 formation. The review also covers recent advances in deactivating and taming 1O2, and explains the mechanisms that underpin these strategies. We conclude with perspectives on the remaining challenges and future research opportunities in the field of 1O2-related (electro)chemistry in metal-oxygen batteries.

Graphical Abstract

Keywords

Singlet oxygen / Metal-oxygen batteries / Reactive oxygen species / Lithium-oxygen batteries / Physical quencher

Cite this article

Download citation ▾
Yaying Dou, Shuochao Xing, Zhang Zhang, Zhen Zhou. Solving the Singlet Oxygen Puzzle in Metal-O2 Batteries: Current Progress and Future Directions. Electrochemical Energy Reviews, 2024, 7(1): 6 DOI:10.1007/s41918-023-00201-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kwak WJ, Rosy SD, et al.. Lithium-oxygen batteries and related systems: potential, status, and future. Chem. Rev., 2020, 120: 6626-6683

[2]

Xiao N, Ren XD, McCulloch WD, et al.. Potassium superoxide: a unique alternative for metal–air batteries. Acc. Chem. Res., 2018, 51: 2335-2343

[3]

Li YG, Lu J. Metal–air batteries: will they be the future electrochemical energy storage device of choice?. ACS Energy Lett., 2017, 2: 1370-1377

[4]

Aurbach D, McCloskey BD, Nazar LF, et al.. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy, 2016, 1: 16128

[5]

Yao X, Dong Q, Cheng Q, et al.. Why do lithium-oxygen batteries fail: parasitic chemical reactions and their synergistic effect. Angew. Chem. Int. Ed., 2016, 55: 11344-11353

[6]

Lim HD, Lee B, Bae Y, et al.. Reaction chemistry in rechargeable Li-O2 batteries. Chem. Soc. Rev., 2017, 46: 2873-2888

[7]

Su YW, Zhao ZW, Huang J, et al.. Hunting the culprits: reactive oxygen species in aprotic lithium–oxygen batteries. J. Phys. Chem. C, 2022, 126: 1243-1255

[8]

Wu FX, Yu Y, et al.. Toward true lithium-air batteries. Joule, 2018, 2: 815-817

[9]

Kang JH, Lee J, Jung JW, et al.. Lithium-air batteries: air-breathing challenges and perspective. ACS Nano, 2020, 14: 14549-14578

[10]

Xiao N, Rooney RT, Gewirth AA, et al.. The long-term stability of KO2 in K-O2 batteries. Angew. Chem. Int. Ed., 2018, 57: 1227-1231

[11]

Mahne N, Schafzahl B, Leypold C, et al.. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries. Nat. Energy, 2017, 2: 17036

[12]

Liu T, Yang XY, Zhang XB, et al.. Recent progress of flexible lithium–air/O2 battery. Adv. Mater. Technol., 2020, 5: 2000476

[13]

Wandt J, Freiberg ATS, Ogrodnik A, et al.. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today, 2018, 21: 825-833

[14]

Zhang X, Xie ZJ, Zhou Z, et al.. Recent progress in protecting lithium anodes for Li-O2 Batteries. ChemElectroChem, 2019, 6: 1969-1977

[15]

Zhang X, Yang Y, Zhou Z, et al.. Towards practical lithium-metal anodes. Chem. Soc. Rev., 2020, 49: 3040-3071

[16]

Guo HP, Luo WB, Chen J, et al.. Review of electrolytes in nonaqueous lithium–oxygen batteries. Adv. Sustain. Syst., 2018, 2: 1700183

[17]

Li Y, Wang XG, Dong SM, et al.. Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries. Adv. Energy Mater., 2016, 6: 1600751

[18]

Luo WB, Gao XW, Chou SL, et al.. Investigation of promising air electrode for realizing ultimate lithium oxygen battery. Adv. Energy Mater., 2017, 7: 1700234

[19]

Zhang P, Zhao Y, Zhang X, et al.. Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries. Chem. Soc. Rev., 2018, 47: 2921-3004

[20]

Lyu Z, Zhou Y, Dai W, et al.. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem. Soc. Rev., 2017, 46: 6046-6072

[21]

Liu L, Guo H, Fu L, et al.. Critical advances in ambient air operation of nonaqueous rechargeable Li-air batteries. Small Weinheim Der Bergstrasse Ger., 2021, 17 e1903854

[22]

Dai A, Li Q, Liu T, et al.. Fundamental understanding of water-induced mechanisms in Li-O2 batteries: recent developments and perspectives. Adv. Mater. Deerfield Beach Fla, 2019, 31 e1805602

[23]

Hassoun J, Croce F, Armand M, et al.. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angewandte Chemie Int. Ed., 2011, 50: 2999-3002

[24]

Wandt J, Jakes P, Granwehr J, et al.. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery. Angewandte Chemie Int. Ed., 2016, 55: 6892-6895

[25]

Schafzahl L, Mahne N, Schafzahl B, et al.. Singlet oxygen during cycling of the aprotic sodium-O2 battery. Angew. Chem. Int. Ed., 2017, 56: 15728-15732

[26]

Mahne N, Renfrew SE, McCloskey BD, et al.. Electrochemical oxidation of lithium carbonate generates singlet oxygen. Angewandte Chemie Int. Ed., 2018, 57: 5529-5533

[27]

Mourad E, Petit YK, Spezia R, et al.. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries. Energy Environ. Sci., 2019, 12: 2559-2568

[28]

Petit YK, Mourad E, Prehal C, et al.. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nat. Chem., 2021, 13: 465-471

[29]

Dong SM, Yang SX, Chen YH, et al.. Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery. Joule, 2022, 6: 185-192

[30]

Schürmann A, Luerßen B, Mollenhauer D, et al.. Singlet oxygen in electrochemical cells: a critical review of literature and theory. Chem. Rev., 2021, 121: 12445-12464

[31]

Khan AU, Kasha M, et al.. Red chemiluminescence of molecular oxygen in aqueous solution. J. Chem. Phys., 1963, 39: 2105-2106

[32]

de Ruiz LI, Ortiz-Vitoriano N. Unraveling the effect of singlet oxygen on metal-O2 batteries: strategies toward deactivation. Front. Chem., 2020, 8: 605

[33]

Salokhiddinov KI, Dzhagarov BM, Byteva IM, et al.. Photosensitized luminescence of singlet oxygen in solution. Biofizika, 1976, 21: 748-749

[34]

Mondal S, Jethwa RB, Pant B, et al.. Singlet oxygen in non-aqueous oxygen redox: direct spectroscopic evidence for formation pathways and reliability of chemical probes. Faraday Discuss., 2023

[35]

Zhang S, Nava MJ, Chow GK, et al.. On the incompatibility of lithium-O2 battery technology with CO2. Chem. Sci., 2017, 8: 6117-6122

[36]

Kwak WJ, Park JB, Jung HG, et al.. Controversial topics on lithium superoxide in Li–O2 batteries. ACS Energy Lett., 2017, 2: 2756-2760

[37]

Mahne N, Fontaine O, Thotiyl MO, et al.. Mechanism and performance of lithium-oxygen batteries-a perspective. Chem. Sci., 2017, 8: 6716-6729

[38]

Wang L, O'Connor D, Rinklebe J, et al.. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications. Environ. Sci. Technol., 2020, 54: 14797-14814

[39]

Nishioka K, Tanaka M, Fujimoto H, et al.. Overlooked factors required for electrolyte solvents in Li-O2 batteries: capabilities of quenching 1 O2 and forming highly-decomposable Li2 O2. Angewandte Chemie Int. Ed., 2022, 61 e202112769

[40]

Li Q, Chen F, Zhao W, et al.. A spectroscopic study on singlet oxygen production from different reaction paths using solid inorganic peroxides as starting materials. Bull. Korean Chem. Soc., 2007, 28: 1656-1660

[41]

McCloskey BD, Bethune DS, Shelby RM, et al.. Limitations in rechargeability of Li-O2 batteries and possible origins. J. Phys. Chem. Lett., 2012, 3: 3043-3047

[42]

Wang Y, Lai NC, Lu YR, et al.. A solvent-controlled oxidation mechanism of Li2O2 in lithium-oxygen batteries. Joule, 2018, 2: 2364-2380

[43]

Zhai D, Wang HH, Lau KC, et al.. Raman evidence for late stage disproportionation in a Li-O2 battery. J. Phys. Chem. Lett., 2014, 5: 2705-2710

[44]

Das S, Højberg J, Knudsen KB, et al.. Instability of ionic liquid-based electrolytes in Li–O2 batteries. J. Phys. Chem. C, 2015, 119: 18084-18090

[45]

Pierini A, Brutti S, Bodo E, et al.. Superoxide anion disproportionation induced by Li+ and H+: pathways to 1O2 release in Li–O2 batteries. ChemPhysChem, 2020, 21: 2060-2067

[46]

Pierini A, Brutti S, Bodo E, et al.. Reactive pathways toward parasitic release of singlet oxygen in metal-air batteries. NPJ Comput. Mater., 2021, 7: 126

[47]

Houchins G, Pande V, Viswanathan V, et al.. Mechanism for singlet oxygen production in Li-ion and metal–air batteries. ACS Energy Lett., 2020, 5: 1893-1899

[48]

Zaichenko A, Schröder D, Janek J, et al.. Pathways to triplet or singlet oxygen during the dissociation of alkali metal superoxides: insights by multireference calculations of molecular model systems. Chem. Weinheim Der Bergstrasse Ger., 2020, 26: 2395-2404

[49]

Aetukuri NB, Jones GO, Thompson LE, et al.. Ion pairing limits crystal growth in metal–oxygen batteries. ACS Energy Lett., 2018, 3: 2342-2348

[50]

Bender CL, Hartmann P, Vračar M, et al.. On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery. Adv. Energy Mater., 2014, 4: 1301863

[51]

Sheng C, Yu F, Wu Y, et al.. Disproportionation of sodium superoxide in metal-air batteries. Angewandte Chemie Int. Ed., 2018, 57: 9906-9910

[52]

Wang WW, Lu YC, et al.. The potassium–air battery: far from a practical reality?. Acc. Mater. Res., 2021, 2: 515-525

[53]

Ren XD, Wu YY, et al.. A low-overpotential potassium-oxygen battery based on potassium superoxide. J. Am. Chem. Soc., 2013, 135: 2923-2926

[54]

Koppenol WH, et al.. Reactions involving singlet oxygen and the superoxide anion. Nature, 1976, 262: 420-421

[55]

Mayeda EA, Bard AJ, et al.. Search for singlet oxygen in the disproportionation of superoxide anion. J. Am. Chem. Soc., 1974, 96: 4023-4024

[56]

Aubry JM, Rigaudy J, Ferradini C, et al.. Search for singlet oxygen in the disproportionation of superoxide anion. J. Am. Chem. Soc., 1981, 103: 4965-4966

[57]

Nanni EJJr, Birge RR, Hubbard LM, et al.. Oxidation and dismutation of superoxide ion solutions to molecular oxygen. Singlet vs. triplet state. Inorg. Chem., 1981, 20: 737-741

[58]

Khan AU, et al.. Direct spectral evidence of the generation of singlet molecular oxygen (1.DELTA.g) in the reaction of potassium superoxide with water. J. Am. Chem. Soc., 1981, 103: 6516-6517

[59]

Zhao Z, Huang J, Peng Z, et al.. Achilles' heel of lithium-air batteries: lithium carbonate. Angewandte Chemie Int. Ed., 2018, 57: 3874-3886

[60]

Gowda SR, Brunet A, Wallraff GM, et al.. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries. J. Phys. Chem. Lett., 2013, 4: 276-279

[61]

Yang SX, He P, Zhou HS, et al.. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy Environ. Sci., 2016, 9: 1650-1654

[62]

Sun ZQ, Lin XD, Wang CT, et al.. High-performance lithium–oxygen batteries using a urea-based electrolyte with kinetically favorable one-electron Li2O2 oxidation pathways. Angewandte Chemie Int. Ed., 2022, 61: e202207570

[63]

Feng S, Huang M, Lamb JR, et al.. Molecular design of stable sulfamide- and sulfonamide-based electrolytes for aprotic Li-O2 batteries. Chem, 2019, 5: 2630-2641

[64]

Zhang T, Zou BH, Bi XX, et al.. Selective growth of a discontinuous subnanometer Pd film on carbon defects for Li–O2 batteries. ACS Energy Lett., 2019, 4: 2782-2786

[65]

Wang Y, Lu YR, Dong CL, et al.. Critical factors controlling superoxide reactions in lithium–oxygen batteries. ACS Energy Lett., 2020, 5: 1355-1363

[66]

Liu RL, Lei Y, Yu W, et al.. Achieving low overpotential lithium–oxygen batteries by exploiting a new electrolyte based on N, N'-dimethylpropyleneurea. ACS Energy Lett., 2017, 2: 313-318

[67]

Zhou B, Guo LM, Zhang YT, et al.. A high-performance Li-O2 battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode. Adv. Mater., 2017, 29: 1701568

[68]

Wang D, Zhang F, He P, et al.. A versatile halide ester enabling Li-anode stability and a high rate capability in lithium-oxygen batteries. Angewandte Chemie Int. Ed., 2019, 58: 2355-2359

[69]

He L, Huang J, Chen Y, et al.. First-order or second-order? Disproportionation of lithium superoxide in Li-O2 batteries. J. Phys. Chem. Lett., 2022, 13: 2033-2038

[70]

Sheng CC, Yu FJ, Wu YP, et al.. Disproportionation of sodium superoxide in metal-air batteries. Angew. Chem., 2018, 130: 10054-10058

[71]

Burke CM, Pande V, Khetan A, et al.. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl. Acad. Sci. U.S.A., 2015, 112: 9293-9298

[72]

Matsuda S, Kubo Y, Uosaki K, et al.. Potassium ions promote solution-route Li2O2 formation in the positive electrode reaction of Li-O2 batteries. J. Phys. Chem. Lett., 2017, 8: 1142-1146

[73]

de Larramendi IR, Lozano I, Enterría M, et al.. Unveiling the role of tetrabutylammonium and cesium bulky cations in enhancing Na-O2 battery performance. Adv. Energy Mater., 2022, 12: 2102834

[74]

Shen ZZ, Zhou C, Wen R, et al.. Surface mechanism of catalytic electrodes in lithium-oxygen batteries: how nanostructures mediate the interfacial reactions. J. Am. Chem. Soc., 2020, 142: 16007-16015

[75]

Song LN, Zhang W, Wang Y, et al.. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun., 2020, 11: 2191

[76]

Dou YY, Wang XG, Wang DS, et al.. Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries. Chem. Eng. J., 2021, 409: 128145

[77]

Li JH, Wu J, Yu YX, et al.. Singlet oxygen vs. triplet oxygen: functions of 2D-MoO3 catalysts in conquering catastrophic parasitic-reactions in lithium–and sodium–oxygen batteries. J. Mater. Chem. A, 2021, 9: 10186-10198

[78]

Samojlov A, Schuster D, Kahr J, et al.. Surface and catalyst driven singlet oxygen formation in Li-O2 cells. Electrochim. Acta, 2020, 362 137175

[79]

Yanagi K, Okazaki T, Miyata Y, et al.. Deactivation of singlet oxygen by single-wall carbon nanohorns. Chem. Phys. Lett., 2006, 431: 145-148

[80]

Lin Y, Yang Q, Geng F, et al.. Suppressing singlet oxygen formation during the charge process of Li-O2 batteries with a Co3O4 solid catalyst revealed by operando electron paramagnetic resonance. J. Phys. Chem. Lett., 2021, 12: 10346-10352

[81]

Lu J, Jung Lee Y, Luo XY, et al.. A lithium-oxygen battery based on lithium superoxide. Nature, 2016, 529: 377-382

[82]

Plunkett ST, Kondori A, Chung DY, et al.. A new cathode material for a Li–O2 battery based on lithium superoxide. ACS Energy Lett., 2022, 7: 2619-2626

[83]

Jiang Z, Huang Y, Zhu Z, et al.. Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery. Proc. Natl. Acad. Sci. U.S.A., 2022, 119: e2202835119

[84]

Dou YY, Xie ZJ, Wei YJ, et al.. Redox mediators for high-performance lithium-oxygen batteries. Natl. Sci. Rev., 2022, 9: nwac040

[85]

Tamirat AG, Guan X, Liu J, et al.. Redox mediators as charge agents for changing electrochemical reactions. Chem. Soc. Rev., 2020, 49: 7454-7478

[86]

Park JB, Lee SH, Jung HG, et al.. Redox mediators for Li-O2 Batteries: status and perspectives. Adv. Mater., 2018, 30: 1704162

[87]

Liang ZJ, Zou QL, Xie J, et al.. Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy Environ. Sci., 2020, 13: 2870-2877

[88]

Possetto DI, Torres WR, Rueda H, et al.. Spiro-OMeTAD as redox mediator and singlet oxygen scavenger in lithium-oxygen batteries. Batter. Supercaps, 2022, 5: e202200283

[89]

Li QW, Chen F, Zhao WL, et al.. Singlet oxygen production in the reaction of potassium superoxide with chlorine. Chem. Lett., 2007, 36: 496-497

[90]

Ando W, Kabe Y, Kobayashi S, et al.. Formation of sulfinyl oxide and singlet oxygen in the reaction of thianthrene cation radical and superoxide ion. J. Am. Chem. Soc., 1980, 102: 4526-4528

[91]

Freiberg ATS, Roos MK, Wandt J, et al.. Singlet oxygen reactivity with carbonate solvents used for Li-ion battery electrolytes. J. Phys. Chem. A, 2018, 122: 8828-8839

[92]

Mullinax JW, Bauschlicher CWJr, Lawson JW, et al.. Reaction of singlet oxygen with the ethylene group: implications for electrolyte stability in Li-ion and Li-O2 batteries. J. Phys. Chem. A, 2021, 125: 2876-2884

[93]

Mullinax JW, Bauschlicher CWJr, Lawson JW, et al.. Modeling singlet oxygen-induced degradation pathways including environmental effects of 1, 2-dimethoxyethane in Li-O2 batteries through density functional theory. J. Phys. Chem. A, 2022, 126: 7997-8006

[94]

Carboni M, Marrani AG, Spezia R, et al.. Degradation of LiTfO/TEGME and LiTfO/DME electrolytes in Li-O2 batteries. J. Electrochem. Soc., 2018, 165: A118-A125

[95]

Chaisiwamongkhol K, Batchelor-Mcauley C, Palgrave RG, et al.. Singlet oxygen and the origin of oxygen functionalities on the surface of carbon electrodes. Angew. Chem., 2018, 130: 6378-6381

[96]

Kwak WJ, Kim H, Petit YK, et al.. Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen. Nat. Commun., 2019, 10: 1380

[97]

Schweitzer C, Schmidt R, et al.. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev., 2003, 103: 1685-1757

[98]

Khan AU, et al.. Activated oxygen: singlet molecular oxygen and superoxide anion. Photochem. Photobiol., 1978, 28: 615-626

[99]

Ramel F, Birtic S, Cuiné S, et al.. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol., 2012, 158: 1267-1278

[100]

Deneke CF, Krinsky NI, et al.. Enhanced dimol emission of singlet oxygen by cyclic tertiary diamines. J. Am. Chem. Soc., 1976, 98: 3041-3042

[101]

Darmanyan AP, Jenks WS, Jardon P, et al.. Charge-transfer quenching of singlet oxygen O2(1Δg) by amines and aromatic hydrocarbons. J. Phys. Chem. A, 1998, 102: 7420-7426

[102]

Young RH, Martin RL, Feriozi D, et al.. On the mechanism of quenching of singlet oxygen by amines-iii. Evidence for a charge-transfer-like complex. Photochem. Photobiol., 1973, 17: 233-244

[103]

Shiozaki H, Nakazumi H, Takamura Y, et al.. Mechanisms and rate constants for the quenching of singlet oxygen by nickel complexes. Bull. Chem. Soc. Jpn, 1990, 63: 2653-2658

[104]

Miyoshi N, Tomita G, et al.. Quenching of singlet oxygen by sodium azide in reversed micellar systems. Zeitschrift Für Naturforschung B, 1979, 34: 339-343

[105]

Lee HW, Kim H, Jung HG, et al.. Ambilaterality of redox mediators towards 1O2 in Li-O2 batteries: trap and quencher. Adv. Funct. Mater., 2021, 31: 2102442

[106]

Petit YK, Leypold C, Mahne N, et al.. DABCOnium: an efficient and high-voltage stable singlet oxygen quencher for metal-O2 cells. Angewandte Chemie Int. Ed Engl., 2019, 58: 6535-6539

[107]

Kwak WJ, Freunberger SA, Kim H, et al.. Mutual conservation of redox mediator and singlet oxygen quencher in lithium–oxygen batteries. ACS Catal., 2019, 9: 9914-9922

[108]

Yoshizawa-Fujita M, MacFarlane DR, Howlett PC, et al.. A new Lewis-base ionic liquid comprising a mono-charged diamine structure: a highly stable electrolyte for lithium electrochemistry. Electrochem. Commun., 2006, 8: 445-449

[109]

Arrechea PL, Knudsen KB, Mullinax JW, et al.. Suppression of parasitic chemistry in Li–O2 batteries incorporating thianthrene-based proposed redox mediators. ACS Appl. Energy Mater., 2020, 3: 8812-8821

[110]

Mullinax JW, Bauschlicher CW, Knudsen KB, et al.. Amide and urea based solvents for Li–O2 batteries. Part II: evaluation of decomposition pathways using density functional theory. J. Phys. Chem. C, 2023, 127: 7043-7053

[111]

Bregnhøj M, Westberg M, Minaev BF, et al.. Singlet oxygen photophysics in liquid solvents: converging on a unified picture. Acc. Chem. Res., 2017, 50: 1920-1927

[112]

Zhang JQ, Zhao YF, Sun B, et al.. A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Sci. Adv., 2022, 8: eabm1899

[113]

Kim JE, Lee HW, Kwak WJ, et al.. Acceleration of singlet oxygen evolution by superoxide dismutase mimetics in lithium–oxygen batteries. Adv. Funct. Mater., 2022, 32: 2209012

[114]

Huang Z, Zeng H, Xie M, et al.. A stable lithium-oxygen battery electrolyte based on fully methylated cyclic ether. Angewandte Chemie Int. Ed Engl., 2019, 58: 2345-2349

Funding

National Natural Science Foundation of China(22202182)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

/