Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries

Shuzhi Zhao , Haiying Che , Suli Chen , Haixiang Tao , Jianping Liao , Xiao-Zhen Liao , Zi-Feng Ma

Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) : 3

PDF
Electrochemical Energy Reviews ›› 2024, Vol. 7 ›› Issue (1) :3 DOI: 10.1007/s41918-023-00196-4
Review Article
review-article

Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries

Author information +
History +
PDF

Abstract

Because sodium-ion batteries are relatively inexpensive, they have gained significant traction as large-scale energy storage devices instead of lithium-ion batteries in recent years. However, sodium-ion batteries have a lower energy density than lithium-ion batteries because sodium-ion batteries have not been as well developed as lithium-ion batteries. Solid-state batteries using solid electrolytes have a higher energy density than liquid batteries in regard to applications with sodium-ion batteries, making them more suitable for energy storage systems than liquid batteries. Due to their low ionic conductivity, solid electrolytes are currently unable to achieve comparable performance to liquid electrolytes at room temperature. In this review, we discuss the advancements in SSEs applied to sodium-ion batteries in recent years, including inorganic solid electrolytes, such as Na–β-Al2O3, NASICON and Na3PS4, polymer solid electrolytes based on PEO, PVDF-HFP and PAN, and plastic crystal solid electrolytes mainly composed of succinonitrile. Additionally, appropriate solutions for low ionic conductivity, a narrow electrochemical stability window and poor contact with electrodes, which are the significant flaws in current SSEs, are discussed in this review.

Graphical Abstract

Keywords

Energy storage / Sodium-ion batteries / Solid-state electrolyte / Ionic conductivity / Electrochemical stability window

Cite this article

Download citation ▾
Shuzhi Zhao, Haiying Che, Suli Chen, Haixiang Tao, Jianping Liao, Xiao-Zhen Liao, Zi-Feng Ma. Research Progress on the Solid Electrolyte of Solid-State Sodium-Ion Batteries. Electrochemical Energy Reviews, 2024, 7(1): 3 DOI:10.1007/s41918-023-00196-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou CT, Bag S, Thangadurai V. Engineering materials for progressive all-solid-state Na batteries. ACS Energy Lett., 2018, 3: 2181-2198

[2]

Peng LS, Wei ZD. Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering, 2020, 6: 653-679

[3]

Wang ZY, Zhao ZJ, Baucom J, et al.. Nitrogen-doped graphene foam as a metal-free catalyst for reduction reactions under a high gravity field. Engineering, 2020, 6: 680-687

[4]

Cai Y, Chu GW, Luo Y, et al.. An evaluation of metronidazole degradation in a plasma-assisted rotating disk reactor coupled with TiO2 in aqueous solution. Engineering, 2021, 7: 1603-1610

[5]

Huang XJ, Qb M, Chen HJ, et al.. Renewable energy conversion, storage, and efficient utilization. Science, 2018, 360: 47-51

[6]

Du SF. Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications. Engineering, 2021, 7: 33-49

[7]

Mohideen MM, Radhamani AV, Ramakrishna S, et al.. Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport. J. Energy Chem., 2022, 69: 466-489

[8]

Marappan M, Palaniswamy K, Velumani T, et al.. Performance studies of proton exchange membrane fuel cells with different flow field designs-review. Chem. Rec., 2021, 21: 663-714

[9]

Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414: 345-352

[10]

Lim B, Jiang MJ, Camargo PHC, et al.. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324: 1302-1305

[11]

Hu YS. Batteries: getting solid. Nat. Energy, 2016, 1: 16042

[12]

Wu T, Wen ZY, Sun CZ, et al.. Disordered carbon tubes based on cotton cloth for modulating interface impedance in β″-Al2O3-based solid-state sodium metal batteries. J. Mater. Chem. A, 2018, 6: 12623-12629

[13]

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem., 2015, 7: 19-29

[14]

Goodenough JB. How we made the Li-ion rechargeable battery. Nat. Electron., 2018, 1: 204

[15]

Yabuuchi N, Kubota K, Dahbi M, et al.. Research development on sodium-ion batteries. Chem. Rev., 2014, 114: 11636-11682

[16]

Service RF. Hydrogen cars: fad or the future?. Science, 2009, 324: 1257-1259

[17]

Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem. Soc. Rev., 2017, 46: 3529-3614

[18]

Che HY, Chen SL, Xie YY, et al.. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci., 2017, 10: 1075-1101

[19]

Kim H, Kim H, Ding Z, et al.. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater., 2016, 6: 1600943

[20]

Ramesh A, Tripathi A, Balaya P. A mini review on cathode materials for sodium-ion batteries. Int. J. Appl. Ceram. Technol., 2022, 19: 913-923

[21]

Huang Q, Chen GX, Zheng P, et al.. NASICON-structured Na ion conductor for next generation energy storage. Funct. Mater. Lett., 2021, 14: 2130005

[22]

Palomares V, Serras P, Villaluenga I, et al.. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci., 2012, 5: 5884-5901

[23]

Deng JQ, Luo WB, Chou SL, et al.. Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater., 2018, 8: 1701428

[24]

Pan HL, Hu YS, Chen LQ. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci., 2013, 6: 2338-2360

[25]

Peng J, Zhang W, Liu QN, et al.. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater., 2022, 34: 2108384

[26]

Chae MS, Elias Y, Aurbach D. Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries. ChemElectroChem, 2021, 8: 798-811

[27]

Wang YS, Feng ZM, Cui PX, et al.. Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat. Commun., 2021, 12: 13

[28]

Peters J, Buchholz D, Passerini S, et al.. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci., 2016, 9: 1744-1751

[29]

Reddy MV, Mauger A, Julien CM, et al.. Brief history of early lithium-battery development. Materials, 2020, 13: 1884

[30]

Zeng, Y.: Sodium metal batteries, electrochemical devices. China Patent CN114824167A, 29 Jul 2022

[31]

Tian Y, An YL, Wei CL, et al.. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78: 105344

[32]

Nakamoto K, Sakamoto R, Sawada Y, et al.. Over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Methods, 2019, 3: 1800220

[33]

Jeong S, Kim BH, Park YD, et al.. Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries. J. Alloys Compd., 2019, 784: 720-726

[34]

Zhang J, Wang DW, Lv W, et al.. Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater., 2018, 8: 1801361

[35]

Mauger, Julien, Paolella, et al.. Building better batteries in the solid state: a review. Materials, 2019, 12: 3892

[36]

Jin T, Ji X, Wang PF, et al.. High-energy aqueous sodium-ion batteries. Angew. Chem. Int. Ed., 2021, 60: 11943-11948

[37]

Jiang P, Lei ZY, Chen L, et al.. Polyethylene glycol-Na+ interface of vanadium hexacyanoferrate cathode for highly stable rechargeable aqueous sodium-ion battery. ACS Appl. Mater. Interfaces, 2019, 11: 28762-28768

[38]

Bin D, Wang F, Tamirat AG, et al.. Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater., 2018, 8: 1703008

[39]

Zhang H, Qin BS, Han J, et al.. Aqueous/nonaqueous hybrid electrolyte for sodium-ion batteries. ACS Energy Lett., 2018, 3: 1769-1770

[40]

Li Q, Cao Z, Wahyudi W, et al.. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries. ACS Energy Lett., 2021, 6: 69-78

[41]

Olsson E, Cottom J, Alptekin H, et al.. Investigating the role of surface roughness and defects on EC breakdown, as a precursor to SEI formation in hard carbon sodium-ion battery anodes. Small, 2022, 18: 2200177

[42]

Dubois M, Ghanbaja J, Billaud D. Electrochemical intercalation of sodium ions into poly(para-phenylene) in carbonate-based electrolytes. Synth. Met., 1997, 90: 127-134

[43]

Hofmann A, Wang ZQ, Bautista SP, et al.. Comprehensive characterization of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells. Electrochim. Acta, 2022, 403: 139670

[44]

Subramanyan K, Lee YS, Aravindan V. Impact of carbonate-based electrolytes on the electrochemical activity of carbon-coated Na3V2(PO4)2F3 cathode in full-cell assembly with hard carbon anode. J. Colloid Interface Sci., 2021, 582: 51-59

[45]

Kamath G, Cutler RW, Deshmukh SA, et al.. In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications. J. Phys. Chem. C, 2014, 118: 13406-13416

[46]

Liu Q, Wu F, Mu DB, et al.. A theoretical study on Na+ solvation in carbonate ester and ether solvents for sodium-ion batteries. Phys. Chem. Chem. Phys., 2020, 22: 2164-2175

[47]

Ponrouch A, Monti D, Boschin A, et al.. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A, 2015, 3: 22-42

[48]

Wan M, Tang Y, Wang LL, et al.. Core-shell hexacyanoferrate for superior Na-ion batteries. J. Power Sources, 2016, 329: 290-296

[49]

Viet Thieu QQ, Hoang H, Le VT, et al.. Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceram. Int., 2021, 47: 30164-30171

[50]

Jang JY, Kim H, Lee Y, et al.. Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries. Electrochem. Commun., 2014, 44: 74-77

[51]

Ponrouch A, Marchante E, Courty M, et al.. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci., 2012, 5: 8572-8583

[52]

Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed., 2014, 53: 10169-10173

[53]

Lin ZH, Xia QB, Wang WL, et al.. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat, 2019, 1: 376-389

[54]

Slater MD, Kim D, Lee E, et al.. Sodium-ion batteries. Adv. Funct. Mater., 2013, 23: 947-958

[55]

Zhao CL, Liu LL, Qi XG, et al.. Solid-state sodium batteries. Adv. Energy Mater., 2018, 8: 1703012

[56]

Amaral MM, Venâncio R, Peterlevitz AC, et al.. Recent advances on quasi-solid-state electrolytes for supercapacitors. J. Energy Chem., 2022, 67: 697-717

[57]

Janek J, Zeier WG. A solid future for battery development. Nat. Energy, 2016, 1: 16141

[58]

Guin M, Tietz F, Guillon O. New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3−xO12. Solid State Ion., 2016, 293: 18-26

[59]

Monti D, Jónsson E, Palacín MR, et al.. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J. Power Sources, 2014, 245: 630-636

[60]

Kaur G, Kumar H, Singla M. Diverse applications of ionic liquids: a comprehensive review. J. Mol. Liq., 2022, 351: 118556

[61]

Ghandi K. A review of ionic liquids, their limits and applications. Green Sustain. Chem., 2014, 4: 44-53

[62]

Hagiwara R, Matsumoto K, Hwang J, et al.. Sodium ion batteries using ionic liquids as electrolytes. Chem. Rec., 2019, 19: 758-770

[63]

Basile A, Hilder M, Makhlooghiazad F, et al.. Sodium energy storage: ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies. Adv. Energy Mater., 2018, 8(171870078

[64]

Xu CX, Yang G, Wu DX, et al.. Roadmap on ionic liquid electrolytes for energy storage devices. Chem. Asian J., 2021, 16: 549-562

[65]

Wang YM, Song SF, Xu CH, et al.. Development of solid-state electrolytes for sodium-ion battery: a short review. Nano Mater. Sci., 2019, 1: 91-100

[66]

Lian PJ, Zhao BS, Zhang LQ, et al.. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A, 2019, 7: 20540-20557

[67]

Hu CJ, Qi JZ, Zhang YX, et al.. Room-temperature all-solid-state sodium battery based on bulk interfacial superionic conductor. Nano Lett., 2021, 21: 10354-10360

[68]

Chen SL, Che HY, Feng F, et al.. Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries. ACS Appl. Mater. Interfaces, 2019, 11: 43056-43065

[69]

Chen SL, Feng F, Che HY, et al.. High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem. Eng. J., 2021, 406: 126736

[70]

Yao XY, Huang BX, Yin JY, et al.. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science. Chin. Phys. B, 2016, 25: 018802

[71]

Schnell J, Günther T, Knoche T, et al.. All-solid-state lithium-ion and lithium metal batteries: paving the way to large-scale production. J. Power Sources, 2018, 382: 160-175

[72]

Xu GL, Amine R, Abouimrane A, et al.. Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion batteries. Adv. Energy Mater., 2018, 8: 1702403

[73]

Zheng SY, Yan JY, Wang K. Engineering research progress of electrochemical microreaction technology: a novel method for electrosynthesis of organic chemicals. Engineering, 2021, 7: 22-32

[74]

Duchêne L, Kühnel RS, Rentsch D, et al.. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chem. Commun., 2017, 53: 4195-4198

[75]

Yang Z, Jin MY, Cheng S, et al.. Developing a high-voltage electrolyte based on conjuncto-hydroborates for solid-state sodium batteries. J. Mater. Chem. A, 2022, 10: 7186-7194

[76]

Chen SL, Feng F, Yin YM, et al.. Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries. Energy Storage Mater., 2019, 22: 57-65

[77]

Zhang ZZ, Shao YJ, Lotsch B, et al.. New horizons for inorganic solid state ion conductors. Energy Environ. Sci., 2018, 11: 1945-1976

[78]

Banerjee A, Park KH, Heo JW, et al.. Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed., 2016, 55: 9634-9638

[79]

Kim JJ, Yoon K, Park I, et al.. Progress in the development of sodium-ion solid electrolytes. Small Methods, 2017, 1: 1700219

[80]

Famprikis T, Canepa P, Dawson JA, et al.. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater., 2019, 18: 1278-1291

[81]

Bachman JC, Muy S, Grimaud A, et al.. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev., 2016, 116: 140-162

[82]

Lacivita V, Wang Y, Bo SH, et al.. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A, 2019, 7: 8144-8155

[83]

Lu XC, Xia GG, Lemmon JP, et al.. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J. Power Sources, 2010, 195: 2431-2442

[84]

Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res., 2013, 46: 1053-1061

[85]

Lu Y, Li L, Zhang Q, et al.. Electrolyte and interface engineering for solid-state sodium batteries. Joule, 2018, 2: 1747-1770

[86]

Birnie DPIII. On the structural integrity of the spinel block in the β"-alumina structure. Acta Crystallogr. Sect. B Struct. Sci., 2012, 68: 118-122

[87]

Kummer JT. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem., 1967, 29: 2453-2475

[88]

Sudworth JL. The sodium/sulphur battery. J. Power Sources, 1984, 11: 143-154

[89]

Ghadbeigi L, Szendrei A, Moreno P, et al.. Synthesis of iron-doped Na-β″–alumina + yttria-stabilized zirconia composite electrolytes by a vapor phase process. Solid State Ion., 2016, 290: 77-82

[90]

Viswanathan L, Ikuma Y, Virkar AV. Transfomation toughening of β″-alumina by incorporation of zirconia. J. Mater. Sci., 1983, 18: 109-113

[91]

Liu ZH, Chen JJ, Wang XX, et al.. Synthesis and characterization of high ionic-conductive sodium beta-alumina solid electrolyte derived from boehmite. J. Mater. Sci. Mater. Electron., 2020, 31: 17670-17678

[92]

Li H, Fan HQ, Chen GY, et al.. Performance of nano-3YSZ toughened β’’-alumina solid electrolyte prepared by EDTA-Zr(IV)/Y(III) complex as surface modifier. J. Alloys Compd., 2020, 817: 152717

[93]

Park RJY, Eschler CM, Fincher CD, et al.. Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy, 2021, 6: 314-322

[94]

Spencer Jolly D, Ning ZY, Darnbrough JE, et al.. Sodium/Na β″ alumina interface: effect of pressure on voids. ACS Appl. Mater. Interfaces, 2020, 12: 678-685

[95]

Lei DN, He YB, Huang HJ, et al.. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun., 2019, 10: 4244

[96]

Medenbach L, Hartmann P, Janek J, et al.. A sodium polysulfide battery with liquid/solid electrolyte: improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technol., 2020, 8: 1901200

[97]

Wang D, Hwang J, Chen CY, et al.. A β″-alumina/inorganic ionic liquid dual electrolyte for intermediate-temperature sodium–sulfur batteries. Adv. Funct. Mater., 2021, 31: 2105524

[98]

Goodenough JB, Hong HYP, Kafalas JA. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull., 1976, 11: 203-220

[99]

Hong HYP. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull., 1976, 11: 173-182

[100]

Zhang ZZ, Zou ZY, Kaup K, et al.. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes. Adv. Energy Mater., 2019, 9: 1902373

[101]

Benabed Y, Rioux M, Rousselot S, et al.. Assessing the electrochemical stability window of NASICON-type solid electrolytes. Front. Energy Res., 2021, 9: 682008

[102]

Schwietert TK, Arszelewska VA, Wang C, et al.. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater., 2020, 19: 428-435

[103]

Yang ZD, Tang B, Xie ZJ, et al.. NASICON-type Na3Zr2Si2PO12 solid-state electrolytes for sodium batteries. ChemElectroChem, 2021, 8: 1035-1047

[104]

Sun F, Xiang YX, Sun Q, et al.. Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes. Adv. Funct. Mater., 2021, 31: 2102129

[105]

Zhang ZZ, Zhang QH, Shi JN, et al.. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater., 2017, 7: 1601196

[106]

Martínez-Cisneros CS, Pandit B, Antonelli C, et al.. Development of sodium hybrid quasi-solid electrolytes based on porous NASICON and ionic liquids. J. Eur. Ceram. Soc., 2021, 41: 7723-7733

[107]

Park KH, Bai Q, Kim DH, et al.. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater., 2018, 8: 1800035

[108]

Jansen M, Henseler U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem., 1992, 99: 110-119

[109]

Hayashi A, Noi K, Sakuda A, et al.. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun., 2012, 3: 856

[110]

Moon CK, Lee HJ, Park KH, et al.. Vacancy-driven Na+ superionic conduction in new Ca-doped Na3PS4 for all-solid-state Na-ion batteries. ACS Energy Lett., 2018, 3: 2504-2512

[111]

Feng XY, Chien PH, Zhu ZY, et al.. Studies of functional defects for fast Na-ion conduction in Na3–yPS4–xClx with a combined experimental and computational approach. Adv. Funct. Mater., 2019, 29: 1807951

[112]

Han FD, Zhu YZ, He XF, et al.. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater., 2016, 6: 1501590

[113]

Wang H, Chen Y, Hood ZD, et al.. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem. Int. Ed., 2016, 55: 8551-8555

[114]

Gamo H, Phuc NHH, Matsuda R, et al.. Multiphase Na3SbS4 with high ionic conductivity. Mater. Today Energy, 2019, 13: 45-49

[115]

Yubuchi S, Ito A, Masuzawa N, et al.. Aqueous solution synthesis of Na3SbS4–Na2WS4 superionic conductors. J. Mater. Chem. A, 2020, 8: 1947-1954

[116]

Tsuji F, Masuzawa N, Sakuda A, et al.. Preparation and characterization of cation-substituted Na3SbS4 solid electrolytes. ACS Appl. Energy Mater., 2020, 3: 11706-11712

[117]

Banerjee A, Park KH, Heo JW, et al.. Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem., 2016, 128: 9786-9790

[118]

Tian YS, Sun YZ, Hannah DC, et al.. Reactivity-guided interface design in Na metal solid-state batteries. Joule, 2019, 3: 1037-1050

[119]

Matsuo M, Kuromoto S, Sato T, et al.. Sodium ionic conduction in complex hydrides with [BH4] and [NH2] anions. Appl. Phys. Lett., 2012, 100: 203904

[120]

Tang WS, Yoshida K, Soloninin AV, et al.. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts. ACS Energy Lett., 2016, 1: 659-664

[121]

Sun YL, Wang YC, Liang XM, et al.. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4. J. Am. Chem. Soc., 2019, 141: 5640-5644

[122]

Duchêne L, Remhof A, Hagemann H, et al.. Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Mater., 2020, 25: 782-794

[123]

Yoon K, Kim JJ, Seong WM, et al.. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Sci. Rep., 2018, 8: 8066

[124]

Agrawal RC, Pandey GP. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D Appl. Phys., 2008, 41: 223001

[125]

Long LZ, Wang SJ, Xiao M, et al.. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A, 2016, 4: 10038-10069

[126]

Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Brit. Polym. J., 1975, 7: 319-327

[127]

Xue ZG, He D, Xie XL. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A, 2015, 3: 19218-19253

[128]

Devi C, Gellanki J, Pettersson H, et al.. High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci. Rep., 2021, 11: 20180

[129]

Guo B, Fu YD, Wang JN, et al.. Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. Chem. Commun., 2022, 58: 8182-8193

[130]

Shenbagavalli S, Muthuvinayagam M, Jayanthi S, et al.. Investigations on Al2O3 dispersed PEO/PVP based Na+ ion conducting blend polymer electrolytes. J. Mater. Sci. Mater. Electron., 2021, 32: 9998-10007

[131]

Yao YW, Liu ZH, Wang XX, et al.. Promoted ion conductivity of sodium salt–poly(ethylene oxide) polymer electrolyte induced by adding conductive beta-alumina and application in all-solid-state sodium batteries. J. Mater. Sci., 2021, 56: 9951-9960

[132]

Chen GH, Bai Y, Gao YS, et al.. Inhibition of crystallization of poly(ethylene oxide) by ionic liquid: insight into plasticizing mechanism and application for solid-state sodium ion batteries. ACS Appl. Mater. Interfaces, 2019, 11: 43252-43260

[133]

Hulvat JF, Stupp SI. Liquid-crystal templating of conducting polymers. Angew. Chem. Int. Ed., 2003, 42: 778-781

[134]

Koduru HK, Marinov YG, Hadjichristov GB, et al.. Characterization of polymer/liquid crystal composite based electrolyte membranes for sodium ion battery applications. Solid State Ion., 2019, 335: 86-96

[135]

Park SS, Tulchinsky Y, Dincă M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu–azolate metal–organic framework. J. Am. Chem. Soc., 2017, 139: 13260-13263

[136]

Wei T, Wang ZM, Zhang Q, et al.. Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review. CrystEngComm, 2022, 24: 5014-5030

[137]

Ge Z, Li J, Liu J. Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO–NaCF3SO3–MIL-53(Al) solid electrolyte. Ionics, 2020, 26: 1787-1795

[138]

Svarfvar BL, Ekman KB, Sundell MJ, et al.. Electron-beam graft-modified membranes with externally controlled flux. Polym. Adv. Technol., 1996, 7: 839-846

[139]

Bristi AA, Samson AJ, Sivakumaran A, et al.. Ionic conductivity, Na plating–stripping, and battery performance of solid polymer Na ion electrolyte based on poly(vinylidene fluoride) and poly(vinyl pyrrolidone). ACS Appl. Energy Mater., 2022, 5: 8812-8822

[140]

Bag S, Zhou CT, Reid S, et al.. Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J. Power Sources, 2020, 454: 227954

[141]

Wang XE, Zhu HJ, Greene GW, et al.. Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning. J. Mater. Chem. A, 2016, 4: 9873-9880

[142]

Makhlooghiazad F, Nti F, Sun J, et al.. Composite electrolytes based on electrospun PVDF and ionic plastic crystal matrices for Na-metal battery applications. J. Phys. Mater., 2021, 4: 034003

[143]

Fang RY, Li YT, Wu N, et al.. Ultra-thin single-particle-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Adv. Funct. Mater., 2023, 33: 2211229

[144]

Shetty SK, Ismayil, Nasreen, et al.. Sodium ion conducting PVA/NaCMC bio poly-blend electrolyte films for energy storage device applications. Int. J. Polym. Anal. Charact., 2021, 26: 411-424

[145]

Cyriac V, Ismayil, Noor ISBM, et al.. Modification in the microstructure of sodium carboxymethylcellulose/polyvinyl alcohol polyblend films through the incorporation of NaNO3 for energy storage applications. Int. J. Energy Res., 2022, 46: 22845-22866

[146]

Yu XW, Xue LG, Goodenough JB, et al.. All-solid-state sodium batteries with a polyethylene glycol diacrylate–Na3Zr2Si2PO12 composite electrolyte. Adv. Energy Sustain. Res., 2021, 2: 2000061

[147]

Ren YX, Hortance N, McBride J, et al.. Sodium-sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett., 2021, 6: 345-353

[148]

Batten SR, Champness NR, Chen XM, et al.. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem., 2013, 85: 1715-1724

[149]

Gebert F, Knott J, Gorkin R, et al.. Polymer electrolytes for sodium-ion batteries. Energy Storage Mater., 2021, 36: 10-30

[150]

Menisha M, Senavirathna SLN, Vignarooban K, et al.. Synthesis, electrochemical and optical studies of poly(ethylene oxide) based gel-polymer electrolytes for sodium-ion secondary batteries. Solid State Ion., 2021, 371: 115755

[151]

Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem., 1975, 5: 63-69

[152]

Yu QP, Lu QW, Qi XG, et al.. Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Mater., 2019, 23: 610-616

[153]

Choi NS, Lee YG, Park JK, et al.. Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend. Electrochim. Acta, 2001, 46: 1581-1586

[154]

Vo DT, Do HN, Nguyen TT, et al.. Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene). Mater. Sci. Eng. B, 2019, 241: 27-35

[155]

Janakiraman S, Agrawal A, Biswal R, et al.. An amorphous polyvinylidene fluoride-co-hexafluoropropylene based gel polymer electrolyte for sodium-ion cells. Appl. Surf. Sci. Adv., 2021, 6: 100139

[156]

Chauhan AK, Kumar D, Mishra K, et al.. Performance enhancement of Na+ ion conducting porous gel polymer electrolyte using NaAlO2 active filler. Mater. Today Commun., 2021, 26: 101713

[157]

Kwon DS, Gong SH, Yun S, et al.. Regulating Na electrodeposition by sodiophilic grafting onto porosity-gradient gel polymer electrolytes for dendrite-free sodium metal batteries. ACS Appl. Mater. Interfaces, 2022, 14: 47650-47658

[158]

Zhao CD, Guo JZ, Gu ZY, et al.. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res., 2022, 15: 925-932

[159]

Shubha N, Prasanth R, Hng HH, et al.. Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene fluoride)-glass ceramic composite membranes for lithium polymer batteries. J. Power Sources, 2014, 267: 48-57

[160]

Zhang YG, Bakenov Z, Tan TZ, et al.. Polyacrylonitrile-nanofiber-based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na4Mn9O18 cathode and Zn metal anode. Polymers, 2018, 10: 853

[161]

Lonchakova OV, Semenikhin OA, Zakharkin MV, et al.. Efficient gel-polymer electrolyte for sodium-ion batteries based on poly(acrylonitrile-co-methyl acrylate). Electrochim. Acta, 2020, 334: 135512

[162]

Zhou YN, Xiao ZC, Han DZ, et al.. Approaching practically accessible and environmentally adaptive sodium metal batteries with high loading cathodes through in situ interlock interface. Adv. Funct. Mater., 2022, 32: 2111314

[163]

Shuai Y, Lou J, Pei XL, et al.. Constructing an in situ polymer electrolyte and a Na-rich artificial SEI layer toward practical solid-state Na metal batteries. ACS Appl. Mater. Interfaces, 2022, 14: 45382-45391

[164]

Gandini A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules, 2008, 41: 9491-9504

[165]

Mittal N, Ojanguren A, Cavasin N, et al.. Transient rechargeable battery with a high lithium transport number cellulosic separator. Adv. Funct. Mater., 2021, 31: 2101827

[166]

Mittal N, Tien SA, Lizundia E, et al.. Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small, 2022, 18: 2107183

[167]

Yang ZG, Zhang JL, Kintner-Meyer MCW, et al.. Electrochemical energy storage for green grid. Chem. Rev., 2011, 111: 3577-3613

[168]

Simari C, Tuccillo M, Brutti S, et al.. Sodiated Nafion membranes for sodium metal aprotic batteries. Electrochim. Acta, 2022, 410: 139936

[169]

Abouimrane A, Whitfield PS, Niketic S, et al.. Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries. J. Power Sources, 2007, 174: 883-888

[170]

Kim SH, Choi KH, Cho SJ, et al.. A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. J. Mater. Chem. A, 2014, 2: 10854-10861

[171]

Abu-Lebdeh Y, Abouimrane A, Alarco PJ, et al.. Ambient temperature proton conducting plastic crystal electrolytes. Electrochem. Commun., 2004, 6: 432-434

[172]

Long S. Fast ion conduction in molecular plastic crystals. Solid State Ion., 2003, 161: 105-112

[173]

Zhu XM, Zhao RR, Deng WW, et al.. An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte. Electrochim. Acta, 2015, 178: 55-59

[174]

Yu XW, Xue LG, Goodenough JB, et al.. Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv. Funct. Mater., 2021, 31: 2002144

[175]

Makhlooghiazad F, Gunzelmann D, Hilder M, et al.. Mixed phase solid-state plastic crystal electrolytes based on a phosphonium cation for sodium devices. Adv. Energy Mater., 2017, 7: 1601272

[176]

Biernacka K, Makhlooghiazad F, Popov I, et al.. Investigation of unusual conductivity behavior and ion dynamics in hexamethylguanidinium bis(fluorosulfonyl)imide-based electrolytes for sodium batteries. J. Phys. Chem. C, 2021, 125: 12518-12530

[177]

Makhlooghiazad F, Sharma M, Zhang ZZ, et al.. Stable high-temperature cycling of Na metal batteries on Na3V2(PO4)3 and Na2FeP2O7 cathodes in NaFSI-rich organic ionic plastic crystal electrolytes. J. Phys. Chem. Lett., 2020, 11: 2092-2100

Funding

Natural Science Foundation of China(22005190)

Science & Technology Commission of Shanghai Municipality(20QB1405700)

Science & Technology Commission of Shanghai Municipality(19DZ1205500)

Zhejiang Key Research and Development Program(2020C01128)

RIGHTS & PERMISSIONS

Shanghai University and Periodicals Agency of Shanghai University

PDF

371

Accesses

0

Citation

Detail

Sections
Recommended

/