Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries

Shuang-Jie Tan , Xian-Xiang Zeng , Qiang Ma , Xiong-Wei Wu , Yu-Guo Guo

Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (2) : 113 -138.

PDF
Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (2) : 113 -138. DOI: 10.1007/s41918-018-0011-2
Review Article

Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries

Author information +
History +
PDF

Abstract

In recent years, lithium batteries using conventional organic liquid electrolytes have been found to possess a series of safety concerns. Because of this, solid polymer electrolytes, benefiting from shape versatility, flexibility, low-weight and low processing costs, are being investigated as promising candidates to replace currently available organic liquid electrolytes in lithium batteries. However, the inferior ion diffusion and poor mechanical performance of these promising solid polymer electrolytes remain a challenge. To resolve these challenges and improve overall comprehensive performance, polymers are being coordinated with other components, including liquid electrolytes, polymers and inorganic fillers, to form polymer-based composite electrolytes. In this review, recent advancements in polymer-based composite electrolytes including polymer/liquid hybrid electrolytes, polymer/polymer coordinating electrolytes and polymer/inorganic composite electrolytes are reviewed; exploring the benefits, synergistic mechanisms, design methods, and developments and outlooks for each individual composite strategy. This review will also provide discussions aimed toward presenting perspectives for the strategic design of polymer-based composite electrolytes as well as building a foundation for the future research and development of high-performance solid polymer electrolytes.

Keywords

Solid batteries / Solid electrolytes / Polymer electrolytes / Lithium anode / Interface

Cite this article

Download citation ▾
Shuang-Jie Tan, Xian-Xiang Zeng, Qiang Ma, Xiong-Wei Wu, Yu-Guo Guo. Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews, 2018, 1(2): 113-138 DOI:10.1007/s41918-018-0011-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tarascon JM, Armand M Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367.

[2]

Whittingham MS Lithium batteries and cathode materials. Chem. Rev., 2004, 104: 4271-4301.

[3]

Kalluri S, Yoon M, Jo M, et al. Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv. Mater., 2017, 29: 1605807.

[4]

Xu K Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 2004, 104: 4303-4417.

[5]

Scheers J, Fantini S, Johansson P A review of electrolytes for lithium-sulphur batteries. J. Power Sources, 2014, 255: 204-218.

[6]

Marcinek M, Syzdek J, Marczewski M, et al. Electrolytes for Li-ion transport—review. Solid State Ion., 2015, 276: 107-126.

[7]

Lv, D., Shao, Y., Lozano, T., et al.: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015)

[8]

Bai P, Li J, Brushett FR, et al. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci., 2016, 9: 3221-3229.

[9]

Xu K Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev., 2014, 114: 11503-11618.

[10]

Armand M, Tarascon JM Building better batteries. Nature, 2008, 451: 652-657.

[11]

Dunn B, Kamath H, Tarascon JM Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928-935.

[12]

Goodenough JB Rechargeable batteries: challenges old and new. J. Solid State Electrochem., 2012, 16: 2019-2029.

[13]

Yin YX, Xin S, Guo YG, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed., 2013, 52: 13186-13200.

[14]

Yang CP, Yin YX, Zhang SF, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun., 2015, 6: 8058.

[15]

Xu R, Zhang XQ, Cheng XB, et al. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater., 2018, 28: 1705838.

[16]

Zheng Y, Zhou T, Zhao X, et al. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater., 2017, 29: 1700396.

[17]

Janek J, Zeier WG A solid future for battery development. Nat. Energy., 2016, 1: 16141.

[18]

Quartarone E, Mustarelli P Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev., 2011, 40: 2525-2540.

[19]

Takada K Progress and prospective of solid-state lithium batteries. Acta Mater., 2013, 61: 759-770.

[20]

Li, J., Ma, C., Chi, M., et al.: Lithium ion batteries: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015)

[21]

Manthiram A, Yu X, Wang S Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater., 2017, 2: 16103.

[22]

Bates JB, Dudney NJ, Gruzalski GR, et al. Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries. J. Power Sources, 1993, 43: 103-110.

[23]

Alpen UV, Rabenau A, Talat GH Ionic-conductivity in Li3N single-crystals. Appl. Phys. Lett., 1977, 30: 621-623.

[24]

Boukamp BA, Huggins RA Lithium ion conductivity in lithium nitride. Phys. Lett. A, 1976, 58: 231-233.

[25]

Boukamp BA, Huggins RA Lithium ion conductivity in lithium nitride. J. Electrochem. Soc., 1977, 124: C129-C129.

[26]

Murugan R, Thangadurai V, Weppner W Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 2007, 46: 7778-7781.

[27]

Thangadurai V, Narayanan S, Pinzaru D Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev., 2014, 43: 4714-4727.

[28]

Mazza D Remarks on a ternary phase in the La2O3–Nb2O5–Li2O, La2O3–Ta2O5–Li2O system. Mater. Lett., 1988, 7: 205-207.

[29]

Taylor BE, English AD, Berzins T New solid ionic conductors. Mater. Res. Bull., 1977, 12: 171-181.

[30]

Hong HYP Crystal-structure and ionic-conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull., 1978, 13: 117-124.

[31]

Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat. Mater., 2011, 10: 682-686.

[32]

Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy, 2016, 1: 16030.

[33]

Mercier R, Malugani JP, Fahys B, et al. Superionic conduction in Li2S–P2S5–LiI-Glasses. Solid State Ion., 1981, 5: 663-666.

[34]

McGrogan, F.P., Swamy, T., Bishop, S.R., et al.: Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017)

[35]

Wenzel S, Leichtweiss T, Kruger D, et al. Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion., 2015, 278: 98-105.

[36]

Wenzel S, Randau S, Leichtweiss T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater., 2016, 28: 2400-2407.

[37]

Richards WD, Miara LJ, Wang Y, et al. Interface stability in solid-state batteries. Chem. Mater., 2016, 28: 266-273.

[38]

Li Y, Xu B, Xu H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed., 2017, 56: 753-756.

[39]

Wood KN, Kazyak E, Chadwick AF, et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci., 2016, 2: 790-801.

[40]

Bachman JC, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev., 2016, 116: 140-162.

[41]

Varzi A, Raccichini R, Passerini S, et al. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A, 2016, 4: 17251-17259.

[42]

Wang Y, Richards WD, Ong SP, et al. Design principles for solid-state lithium superionic conductors. Nat. Mater., 2015, 14: 1026-1032.

[43]

Lin D, Liu Y, Cui Y Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol., 2017, 12: 194-206.

[44]

Meesala Y, Jena A, Chang H, et al. Recent advancements in Li-ion conductors for all-solid-state li-ion batteries. ACS Energy Lett., 2017, 2: 2734-2751.

[45]

Abraham KM, Jiang Z A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc., 1996, 143: 1-5.

[46]

Meyer WH Polymer electrolytes for lithium-ion batteries. Adv. Mater., 1998, 10: 439-448.

[47]

Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater., 2016, 5: 139-164.

[48]

Tikekar MD, Archer LA, Koch DL Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv., 2016, 2: e1600320.

[49]

Monroe C, Newman J The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc., 2005, 152: A396-A404.

[50]

Stone GM, Mullin SA, Teran AA, et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc., 2012, 159: A222-A227.

[51]

Li Y, Leung K, Qi Y Computational exploration of the Li-electrode/electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res., 2016, 49: 2363-2370.

[52]

Luntz AC, Voss J, Reuter K Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett., 2015, 6: 4599-4604.

[53]

Scrosati B, Vincent CA Polymer electrolytes: the key to lithium polymer batteries. MRS Bull., 2000, 25: 28-30.

[54]

Arya A, Sharma AL Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 2017, 23: 497-540.

[55]

Ngai KS, Ramesh S, Ramesh K, et al. A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016, 22: 1259-1279.

[56]

Croce F, Appetecchi GB, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394: 456-458.

[57]

Quartarone E, Mustarelli P, Magistris A PEO-based composite polymer electrolytes. Solid State Ion., 1998, 110: 1-14.

[58]

Manuel Stephan A, Nahm KS Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, 47: 5952-5964.

[59]

Le Bideau J, Ducros JB, Soudan P, et al. Solid-state electrode materials with ionic-liquid properties for energy storage: the lithium solid-state ionic-liquid concept. Adv. Funct. Mater., 2011, 21: 4073-4078.

[60]

Wu PW, Holm SR, Duong AT, et al. A sol-gel solid electrolyte with high lithium ion conductivity. Chem. Mater., 1997, 9: 1004-1011.

[61]

Song JY, Wang YY, Wan CC Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources, 1999, 77: 183-197.

[62]

Sadoway DR Block and graft copolymer, electrolytes for high-performance, solid-state, lithium batteries. J. Power Sources, 2004, 129: 1-3.

[63]

Le Nest JF, Callens S, Gandini A, et al. A new polymer network for ionic conduction. Electrochim. Acta, 1992, 37: 1585-1588.

[64]

Alloin F, Sanchez JY, Armand M Electrochemical-behavior of lithium electrolytes based on new polyether networks. J. Electrochem. Soc., 1994, 141: 1915-1920.

[65]

Kumar B, Scanlon LG Polymer-ceramic composite electrolytes. J. Power Sources, 1994, 52: 261-268.

[66]

Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33: 363-386.

[67]

Cui, Y., Liang, X., Chai, J., et al.: High performance solid polymer electrolytes for rechargeable batteries: a self-catalyzed strategy toward facile synthesis. Adv. Sci. 4, 1700174 (2017)

[68]

Cheng, X., Pan, J., Zhao, Y., et al.: Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8, 1702184 (2018)

[69]

Zhou YC, Li ZJ, Lu YC A stable lithium-selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite. Nano Energy, 2017, 39: 554-561.

[70]

Kalhoff J, Eshetu GG, Bresser D, et al. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem, 2015, 8: 2154-2175.

[71]

Zhang MY, Li MX, Chang Z, et al. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim. Acta, 2017, 245: 752-759.

[72]

Armand M Polymers with ionic conductivity. Adv. Mater., 1990, 2: 278-286.

[73]

Lu, Q., He, Y.B., Yu, Q., et al.: Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017)

[74]

Shi J, Yang Y, Shao H Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Membr. Sci., 2018, 547: 1-10.

[75]

Wang Y, Qiu J, Peng J, et al. One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J. Mater. Chem. A, 2017, 5: 12393-12399.

[76]

Wang S, Shi QX, Ye YS, et al. Constructing desirable ion-conducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates. Nano Energy, 2017, 33: 110-123.

[77]

Wang SH, Lin YY, Teng CY, et al. Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries. ACS Appl. Mater. Interfaces, 2016, 8: 14776-14787.

[78]

Sugihara N, Nishimura K, Nishino H, et al. Ion-conductive and elastic slide-ring gel Li electrolytes swollen with ionic liquid. Electrochim. Acta, 2017, 229: 166-172.

[79]

Stepniak I, Andrzejewska E, Dembna A, et al. Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid–based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries. Electrochim. Acta, 2014, 121: 27-33.

[80]

Zhang J, Sun B, Huang X, et al. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep, 2014, 4: 6007.

[81]

Li X, Qian K, He YB, et al. A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J. Mater. Chem. A, 2017, 5: 18888-18895.

[82]

Bhattacharyya AJ, Maier J Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”. Adv. Mater., 2004, 16: 811-814.

[83]

Zeng XX, Yin YX, Shi Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem, 2018, 4(2): 298-307.

[84]

Zhong X, Tang J, Cao L, et al. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochim. Acta, 2017, 244: 112-118.

[85]

Díaz M, Ortiz A, Ortiz I Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci., 2014, 469: 379-396.

[86]

Yang G, Oh H, Chanthad C, et al. Dumbbell-shaped octasilsesquioxanes functionalized with ionic liquids as hybrid electrolytes for lithium metal batteries. Chem. Mater., 2017, 29: 9275-9283.

[87]

Wang X, Zhu H, Girard GMA, et al. Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. J. Mater. Chem. A, 2017, 5: 23844-23852.

[88]

Zhou D, Liu R, Zhang J, et al. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33: 45-54.

[89]

Fenton DE, Parker JM, Wright PV Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973, 14: 589.

[90]

Armand M The history of polymer electrolytes. Solid State Ion., 1994, 69: 309-319.

[91]

Jenkins AD, Kratochvíl P, Stepto RFT, et al. Glossary of basic terms in polymer science. Pure Appl. Chem., 1996, 68: 2287-2311.

[92]

Giles JRM, Gray FM, Maccallum JR, et al. Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer, 1987, 28: 1977-1981.

[93]

Devaux D, Gle D, Phan TNT, et al. Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater., 2015, 27: 4682-4692.

[94]

Singh M, Odusanya O, Wilmes GM, et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules, 2007, 40: 4578-4585.

[95]

Panday A, Mullin S, Gomez ED, et al. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules, 2009, 42: 4632-4637.

[96]

Soo PP, Huang BY, Jang YI, et al. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc., 1999, 146: 32-37.

[97]

Niitani T, Shimada M, Kawamura K, et al. Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem. Solid State Lett., 2005, 8: A385-A388.

[98]

Young WS, Kuan WF, Epps TH, et al. Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. B Polym. Phys., 2014, 52: 1-16.

[99]

Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater., 2013, 12: 452-457.

[100]

Chintapalli M, Chen XC, Thelen JL, et al. Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromolecules, 2014, 47: 5424-5431.

[101]

Fu G, Kyu T Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir, 2017, 33: 13973-13981.

[102]

Zheng Z, Gao X, Luo Y, et al. Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity. Macromolecules, 2016, 49: 2179-2188.

[103]

Kang YK, Cheong K, Noh KA, et al. A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties. J. Power Sources, 2003, 119: 432-437.

[104]

Armand M Polymer solid electrolytes—an overview. Solid State Ionics, 1983, 9–10: 745-754.

[105]

Ben Youcef H, Garcia-Calvo O, Lago N, et al. Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta, 2016, 220: 587-594.

[106]

Nishimoto A, Agehara K, Furuya N, et al. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules, 1999, 32: 1541-1548.

[107]

Snyder JF, Carter RH, Wetzel ED Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem. Mater., 2007, 19: 3793-3801.

[108]

Laik B, Legrand L, Chausse A, et al. Ion-ion interactions and lithium stability in a crosslinked PEO containing lithium salts. Electrochim. Acta, 1998, 44: 773-780.

[109]

Khurana R, Schaefer JL, Archer LA, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc., 2014, 136: 7395-7402.

[110]

Zheng Q, Ma L, Khurana R, et al. Structure-property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chem. Sci., 2016, 7: 6832-6838.

[111]

Hwang SS, Cho CG, Kim H Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochem. Commun., 2010, 12: 916-919.

[112]

Klempner D Interpenetrating polymer networks. Angew. Chem. Int. Ed., 1978, 17: 97-106.

[113]

Sperling LH Utracki LA Interpenetrating polymer networks. Polymer Blends Handbook. Interpenetrating Polymer Networks 2002 Dordrecht Springer 417 447

[114]

Sperling LH Interpenetrating polymer networks and related materials. J. Polym. Sci. Macromol. Rev., 1977, 12: 141-180.

[115]

Liu X, Ding G, Zhou X, et al. An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J. Mater. Chem. A, 2017, 5: 11124-11130.

[116]

Suk J, Lee YH, Kim DY, et al. Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. J. Power Sources, 2016, 334: 154-161.

[117]

Nair JR, Destro M, Bella F, et al. Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J. Power Sources, 2016, 306: 258-267.

[118]

Shaplov AS, Ponkratov DO, Vlasov PS, et al. Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials. J. Mater. Chem. A, 2015, 3: 2188-2198.

[119]

Ha HJ, Kil EH, Kwon YH, et al. UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci., 2012, 5: 6491-6499.

[120]

Zeng XX, Yin YX, Li NW, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc., 2016, 138: 15825-15828.

[121]

Ma Y, Ma J, Chai J, et al. Two players make a formidable combination: in situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte toward 5 V high-voltage batteries. ACS Appl. Mater. Interfaces, 2017, 9: 41462-41472.

[122]

Duan H, Yin YX, Zeng XX, et al. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater., 2018, 10: 85-91.

[123]

Jacob MME, Prabaharan SRS, Radhakrishna S Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ion., 1997, 104: 267-276.

[124]

Xi JY, Qiu XP, Li J, et al. PVDF-PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J. Power Sources, 2006, 157: 501-506.

[125]

Tao C, Gao MH, Yin BH, et al. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta, 2017, 257: 31-39.

[126]

Nunes-Pereira J, Costa CM, Lanceros-Mendez S Polymer composites and blends for battery separators: state of the art, challenges and future trends. J. Power Sources, 2015, 281: 378-398.

[127]

Zhang H, Li C, Piszcz M, et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev., 2017, 46: 797-815.

[128]

Piszcz M, Garcia-Calvo O, Oteo U, et al. New single ion conducting blend based on PEO and PA-LiTFSI. Electrochim. Acta, 2017, 255: 48-54.

[129]

Meziane R, Bonnet JP, Courty M, et al. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta, 2011, 57: 14-19.

[130]

Ma Q, Zhang H, Zhou C, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed., 2016, 55: 2521-2525.

[131]

Zhao MK, Zuo XX, Ma XD, et al. Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries. J. Membr. Sci., 2017, 532: 30-37.

[132]

Appetecchi GB, Croce F, Persi L, et al. Transport and interfacial properties of composite polymer electrolytes. Electrochim. Acta, 2000, 45: 1481-1490.

[133]

Yang T, Zheng J, Cheng Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces, 2017, 9: 21773-21780.

[134]

Jia Z, Yuan W, Zhao H, et al. Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers. RSC Adv., 2014, 4: 41087-41098.

[135]

Zhu LJ, Zhu LP, Zhang PB, et al. Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core–shell silica nanoparticles. J. Colloid Interface Sci., 2016, 468: 110-119.

[136]

Weston JE, Steele BCH Effects of inert fillers on the mechanical and electrochemical properties of lithium salt poly (ethylene-oxide) polymer electrolytes. Solid State Ion., 1982, 7: 75-79.

[137]

Liu Y, Lee JY, Hong L Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J. Appl. Polym. Sci., 2003, 89: 2815-2822.

[138]

Adebahr J, Best AS, Byrne N, et al. Ion transport in polymer electrolytes containing nanoparticulate TiO2: the influence of polymer morphology. Phys. Chem. Chem. Phys., 2003, 5: 720-725.

[139]

Croce F, Sacchetti S, Scrosati B Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources, 2006, 162: 685-689.

[140]

Itoh T, Miyamura Y, Ichikawa Y, et al. Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J. Power Sources, 2003, 119: 403-408.

[141]

Wang YJ, Pan Y, Kim D Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J. Power Sources, 2006, 159: 690-701.

[142]

Xia Y, Wang X, Xia X, et al. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium–sulfur batteries. Chem. Eur. J., 2017, 23: 15203-15209.

[143]

Li D, Chen L, Wang T, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces, 2018, 10: 7069-7078.

[144]

Zheng J, Tang M, Hu YY Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed., 2016, 55: 12538-12542.

[145]

Keller M, Appetecchi GB, Kim GT, et al. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)(15)LiTFSI. J. Power Sources, 2017, 353: 287-297.

[146]

Zhang X, Liu T, Zhang S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength and thermal stability of solid composite electrolytes. J. Am. Chem. Soc., 2017, 139: 13779-13785.

[147]

Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett., 2015, 15: 2740-2745.

[148]

Zhao, K., Wen, M., Dong, Y., et al.: Thermal induced strain relaxation of 1D iron oxide for solid electrolyte interphase control and lithium storage improvement. Adv. Energy Mater. 7, 1601582 (2017)

[149]

Zhao Y, Wu C, Peng G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources, 2016, 301: 47-53.

[150]

Villaluenga I, Wujcik KH, Tong W, et al. Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 52-57.

[151]

Lin DC, Liu W, Liu YY, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett., 2016, 16: 459-465.

[152]

Liu ZC, Fu WJ, Payzant EA, et al. Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J. Am. Chem. Soc., 2013, 135: 975-978.

[153]

Yao XY, Liu D, Wang CS, et al. High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett., 2016, 16: 7148-7154.

[154]

Kumar B, Rodrigues SJ Poly(ethylene oxide)-based composite electrolytes crystalline reversible arrow amorphous transition. J. Electrochem. Soc., 2001, 148: A1336-A1340.

[155]

Kumar B, Scanlon LG, Spry RJ On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J. Power Sources, 2001, 96: 337-342.

[156]

Zhang JX, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28: 447-454.

[157]

Yamada H, Bhattacharyya AJ, Maier J Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv. Funct. Mater., 2006, 16: 525-530.

[158]

Bruce PG, Scrosati B, Tarascon JM Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47: 2930-2946.

[159]

Maier J Ionic conduction in space charge regions. Prog. Solid State Chem., 1995, 23: 171-263.

[160]

Andreev OL, Druzhinin KV, Shevelin PY, et al. Influence of solid electrolyte particles size on ionic transport in model composite system (PVdF-HFP-Li1.3Al0.3Ti1.7(PO4)3). Ionics, 2013, 19: 33-39.

[161]

He XM, Shi Q, Zhou X, et al. In situ composite of nano SiO2-P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta, 2005, 51: 1069-1075.

[162]

Zhai H, Xu P, Ning M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett., 2017, 17: 3182-3187.

[163]

Liu W, Lee SW, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy, 2017, 2: 17035.

[164]

Geim AK, Novoselov KS The rise of graphene. Nat. Mater., 2007, 6: 183-191.

[165]

Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5: 722-726.

[166]

Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7: 699-712.

[167]

Rao CNR, Sood AK, Subrahmanyam KS, et al. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed., 2009, 48: 7752-7777.

[168]

Butler SZ, Hollen SM, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898-2926.

[169]

Lim M-Y, Kim HJ, Baek SJ, et al. Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides. Carbon, 2014, 77: 366-378.

[170]

Shim J, Kim D-G, Kim HJ, et al. Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J. Mater. Chem. A, 2014, 2: 13873-13883.

[171]

Yuan M, Erdman J, Tang C, et al. High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv., 2014, 4: 59637-59642.

[172]

Shim J, Kim HJ, Kim BG, et al. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci., 2017, 10: 1911-1916.

[173]

Fu K, Gong YH, Dai JQ, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 7094-7099.

[174]

Zekoll S, Marriner-Edwards C, Hekselman AKO, et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci., 2018, 11: 185-201.

[175]

Wieczorek W, Zalewska A, Raducha D, et al. Composite polyether electrolytes with Lewis acid type additives. J. Phys. Chem. B, 1998, 102: 352-360.

[176]

Wieczorek W Entropy effects on conductivity of the blend-based and composite polymer solid electrolytes. Solid State Ion., 1992, 53–56: 1064-1070.

[177]

Almond DP, West AR Entropy effects in ionic conductivity. Solid State Ion., 1986, 18–19: 1105-1109.

[178]

Wieczorek W, Lipka P, Zukowska G, et al. Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s. J. Phys. Chem. B, 1998, 102: 6968-6974.

[179]

Wieczorek W, Raducha D, Zalewska A, et al. Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J. Phys. Chem. B, 1998, 102: 8725-8731.

[180]

Chung SH, Wang Y, Persi L, et al. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J. Power Sources, 2001, 97–8: 644-648.

[181]

Nan CW, Fan LZ, Lin YH, et al. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett., 2003, 91: 266104.

[182]

Liu W, Lin D, Sun J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano, 2016, 10: 11407-11413.

[183]

Zhao CZ, Zhang XQ, Cheng XB, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 11069-11074.

[184]

Kalnaus S, Tenhaeff WE, Sakamoto J, et al. Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications. J. Power Sources, 2013, 241: 178-185.

[185]

Fu K, Gong Y, Li Y, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci., 2017, 10: 1568-1575.

[186]

Tu, Z., Kambe, Y., Lu, Y., et al.: Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014)

[187]

Zhou W, Wang S, Li Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc., 2016, 138: 9385-9388.

[188]

Bucur CB, Jones M, Kopylov M, et al. Inorganic-organic layer by layer hybrid membranes for lithium-sulfur batteries. Energy Environ. Sci., 2017, 10: 905-911.

[189]

Duan H, Yin YX, Shi Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc., 2017, 140: 82-85.

Funding

National Natural Science Foundation of China(21773246, U1301244)

National Key R&D Program of China(2016YFA0202500)

The 'Strategic Priority Research Program' of the Chinese Academy of Sciences(XDA09010100)

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/